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ABSTRACT In order to improve the performance of the global positioning system (GPS) and inertial

navigation system (INS) integrated system during GPS outages, a novel fusion algorithm based on back

propagation neural network (BPNN) is proposed. A new model is built which relates the INS velocity,

inertial measurement unit (IMU) outputs and the duration of GPS outages to the GPS position increment.

Performance of the proposedmethod has been experimentally evaluated in a land vehicle navigation test. The

test results show: (1) the proposed model can efficiently predict the increment of position and compensate

the INS errors accumulation during GPS outage; (2) the advantage of new model on positioning accuracy

becomes more obvious when the GPS observations are unavailable for a long time; (3) utilizing the current

and past 2-step information as the input of BPNNmodel can effectively balance the computation burden and

accuracy.

INDEX TERMS INS/GPS integrated system, BP neural network, global positioning system (GPS) outages.

I. INTRODUCTION

The GPS-equipped devices are becoming more and more

widely used in our daily life. As we know, the GPS could

provide long-term accurate position and velocity information.

However, the accuracy and availability will be deteriorated

when the vehicles working within urban scenarios such as

urban canyons, tunnels or indoor environment because of

the signal masking and multipath [1]. To solve the problem,

GPS is usually combined with INS, which is a self-contained

system having a short-term accurate solution. The integration

of GPS and INS which combines the advantages, therefore,

has superior performance in comparison with either GPS or

INS stand-alone system.

In GPS/INS integrated navigation system, Kalman Fil-

ter (KF) is the most popular fusion method in recent years

for its practicability and suitability [2]. KF contains two

processes: the time update process is to estimate the errors

state of vehicle according to the dynamic model, and the

other process which corrects the INS errors accumulation

using the GPS information is called measurement update

process. However, if the GPS is unavailable for a long time,
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the accuracy of integrated system would decay due to the

measurement update does not work during this period. Aim-

ing to conquer the above problem and get an accurate nav-

igation result continuously, a number of effective methods

are proposed. One solution is zero velocity update (ZUPT)

which utilizes the zero velocity condition during every stop to

control the navigation error growth. The velocity error curve

fitting is one commonmethod for applying the ZUPT, consid-

ering the velocity error is an approximate quadratic curve [3].

The long-time and high-frequency stop is the biggest dis-

advantage of hindering the application of ZUPT [4]. The

artificial intelligence (AI) related solutions are drawing more

attention with the development of computer technologies in

hardware and software. When GPS works well, the AI learns

GPS/INS behavior patterns and builds the model mapping the

vehicle’s dynamics (attitude, velocity or position) with the

corresponding errors [5]. The errors derived from AI model

will be used to compensate the INS drift during the GPS

signal outages. In recently years, a lot of research has been

conducted on this aspect. Wavelet multi-resolution analy-

sis (WRMA) and radial basis function (RBF) were combined

to improve the positioning accuracy during GPS outages.

The input of the RBF network is the INS position and time

information, while the output is the INS position error [6].
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Fuzzy neural network was employed to generate the velocity

correction using the GPS, odometer and IMU information as

the input [7].

The same shortcoming of traditional AI models mentioned

above is that the outputs consist of both INS and GPS

information which are difficult to decouple. An accurate

prediction result is hard to be obtained with these mod-

els. Therefore, besides the traditional AI solutions, a few

modified models have been raised recently to set up rela-

tionship between the INS information and the GPS result

directly. Based the multi-layered feed forward neural net-

works (MFNNs), the AI model that receives the azimuth

and velocity from the INS along with the time information

and exports the pseudo GPS azimuth and velocity had been

built [8]. The support vector machine (SVM) model was

proposed that mimics the increments of GPS position with

the INS information including velocity, attitude and the IMU

measurement. Utilizing the model, best result can be reached

if the current and past 1-step INS information is collected as

the input of the model [9].

Previously, all methods are under the hypothesis that the

INS error characteristics are consistent during training phase

and predicting phase. However, due to the variability and

uncertainty of INS errors, the error characteristics during

predicting phase are not consistent with that during training

phase [10]. Taking the velocity error for example, its trend

seems as a long-term and time-related quadratic curve. In this

situation, the compensation deprived from the model which

not considers the error changes may be inaccurate. To solve

this problem, input delay neural network (IDNN) has been

proposed to model both the INS position and velocity errors

based on current and some past samples of INS position and

velocity. The road test showed a significant improvement in

positioning accuracy [11]. Then, the comparison of different

predicting results has been done with some typical number of

past information. The conclusion is that the best prediction

could be obtained using past 10 steps information with the

wavelet neural network (WNN) [12].

In the methods mentioned above, the common way of

eliminating the long-term errors is to increase the num-

ber of past information. And more past information are

involved, better performance is commonly achieved. With

no doubt, the huge computation burden will also increase

simultaneously. In order to overcome the problems of pre-

vious methods mentioned above, a novel back propaga-

tion neural network (BPNN) model has been proposed. The

output of the model is the increment of position deprived

from GPS. The input not only includes the INS velocity,

angular rate and specific force, but also the time from the

start point of training model to now. Apparently, the new

model separates the INS and GPS errors into the input and

output respectively. It is beneficial to improve the accu-

racy of the prediction result. In addition, the novel module,

due to the inclusion of time information, has the abil-

ity of modeling the time-related changes of velocity error.

Therefore, even if the characteristics of velocity errors in

training and predicting stages are not consistent, the novel

model can predict and eliminate the errors caused by this

inconsistency.

The problem of large computation also disappears natu-

rally, since we do not need to increase the past information in

quantity.

II. MODEL DESCRIPTION

As mentioned in Section, there have been many AI models

used in the GPS/INS integrated system. The common idea

is to build the relation between the INS outputs (angular

velocity, specific force, velocity, position, et al.) and some

GSP information. When the GPS signal is available, the GPS

information can be obtained and used to train the AI model

along with the INS outputs. In case of GPS outage, the pseudo

GPS information can be achieved from the well-trained AI

model. One of such model isOINS −δPINS , which establishes

the relation between the output of INS (OINS ) and the position

error of INS (δPINS ). Because the δPINS is the difference

of the INS and GPS position, the established model always

be influenced by the errors of GPS and INS simultaneously.

To avoid the problem, a OINS − 1PGPS model has been

proposed. Because the model output (1PGPS ) is only the

position increment of GPS, the OINS − 1PGPS model shows

a better performance than OINS − δPINS in the comparison

test [9]. The above methods are all under the hypothesis

that the error characteristics of the INS output are consistent

during training phase and predicting phase. However, due

to the variability of INS errors, the characteristics during

predicting phase are not consistent with that during training

phase. The normal solution to mitigating the errors caused

by the inconsistence is that increase the number of training

samples. However, the large computation comes with the

increasing past information involved. To reduce the computa-

tion burden, a novel OINST −1PGPS model is proposed. The

time information (T ) is added in this model. Fig. 1 shows

the configuration of the model. ω is angular velocity, f is

specific force, VINS and PINS are respectively velocity and

position of INS. Symbol k-1 and k denote the time k − 1

and k . When GPS works well, the outputs of INS and GPS

are integrated by KF. In the meantime, the BPNN module is

trained, whose inputs are the time k − 1, k and the samples

of the specific force, angular rate, and velocity at these two

moments, while the expected output is the GPS position

increment1PGPS (k−1, k). Suppose the training phase starts

from the time 1, and GPS outages occur on the time k . The

GPS position increment 1PGPS (k, k + 1) will be predicted

and accumulated to achieve the pseudo GPS position on the

time k + 1. Then, this pseudo GPS position is used as the

input of KF to form the observation vector with INS position.

The inputs of the BPNN model are carefully selected to

satisfy the requirement of mimicking the position increment.

Due to the high-accuracy, the errors of GPS position and

velocity can be ignored. Therefore, the position increment
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FIGURE 1. Configuration of the proposed fusion algorithm.

and velocity can be modeled as

1PGPS (k, k + 1)

=

∫ k+1

k

VINS (k) + (VINS (k + 1) − VINS (k)) t

−
(δVINS (k)

①
+

(δVINS (k + 1) − δVINS (k))t)dt

②
(1)

where VINS (k) and VINS (k + 1) are the INS velocity on

time k and k + 1, δVINS (k) and δVINS (k + 1) are the errors

of the velocity VINS (k) and VINS (k + 1) respectively. From

equation (1), we can see that if these errors can all be mod-

eled accurately, the position increment error contained in the

1PGPS (k, k+1) will be known. The above mentioned veloc-

ity errors are classified into two kinds, long-term error ① and

short-term error ②. The former one approximates a quadratic

curve on the time, and the latter is related to the motion states

of vehicle. Accordingly, if we want to establish an accurate

model for the velocity errors, both the time information and

the motion state related quantity (angular velocity, specific

force) should be considered tomimic the long-term and short-

term part of velocity error simultaneously.

A. GPS/INS LOOSELY COUPLED MODEL

A 15-state KF has been constructed for GPS/INS integration.

The process model and observation model are:
{

Ẋ = 8X + ΓW

Z = HX + V
(2)

where X and Ẋ are the state vector and its differential, 8 is

systemmatrix. Γ is system noise matrix, andW is the process

noise vector. Z is observation vector, and H is observation

matrix. V is the observation noise vector. The observation

vector Z can be obtained with the difference between INS

position and GPS position. Once the GPS outages happen,

the vector Z will be composed with the INS position and the

pseudo GPS position derived from AI model instead of the

true GPS position.

The states vector X is expressed as

X = [φE φN φU δVE δVN δVU δL δλ

δh ∇x ∇y ∇z εx εy εz] (3)

where φE , φN , and φU are the misalignment angles of the

calculated platform in local geographical frame, δVE , δVN ,

and δVU are velocity errors of three axes of local geographical

frame, δL, δλ and δh denote position errors, ∇x , ∇y, and ∇z

represent accelerometers biases of the body frame, εx , εy, and

εz are gyros biases in three axes of the body frame, the system

matrix 8 is constructed according to INS error equations:

ϕ̇ = ϕ × ω
g
ig + δω

g
ig − δω

g
ib (4)

˙δV
g

= f g × ϕ + Vg × (2δω
g
ie + δωg

eg)

−(2ω
g
ie + ωg

eg) × δVg + δf g + δgg (5)

δL̇ =
1

R+ h
δV

g
N −

VN

(R+ h)2
δh (6)
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δλ̇ =
secL

R+ h
δV

g
E +

V
g
E secL tanL

R+ h
δL −

V
g
E secL

(R+ h)2
δh (7)

δḣ = δV
g
U (8)

where ω
g
ie and δω

g
ie are the earth angular rate vector and it

error, ω
g
ig and δω

g
ig are the angular rate vector of frame g to

the inertial frame and its error.

The discrete-time form of (2) is expressed as
{

Xk = 8k,k−1Xk−1 + Γ kW k

Zk = HkXk + V k

(9)

where 8k,k−1 is one step transition matrix of system state

from epoch k-1 to k. Suppose that the mean of the process

noise vector and observation noise vector are both equal

to zero. The covariance of W k and V k can be denoted as

Qk and Rk , besides, the Qk and Rk are nonnegative and

positive definite matrix respectively. Then the prediction and

update processes of KF are described as follows [13]:

X̂k/k−1 = 8k,k−1X̂k−1 (10)

X̂k = X̂k/k−1 + Kk (Zk −Hk X̂k/k−1) (11)

Kk = Pk/k−1H
T
k (HkPk/k−1H

T
k + Rk )

−1 (12)

Pk/k−1 = 8k,k−1Pk−18
T
k,k−1 + Ŵk−1Qk−1Ŵ

T
k−1 (13)

Pk = (I − KkHk )Pk/k−1 (14)

where X̂k/k−1 is the predicted state estimate, Pk/k−1 is the

corresponding variance matrix, Kk is KF gain matrix, X̂k is

the updated state estimate, Pk is the variance matrix of X̂k .

B. BACK PROPAGATION NEURAL NETWORK

The BPNN is a multi-layer feedforward neural network

trained by error back propagation algorithm.

FIGURE 2. Configuration of the BPNN.

It adopts the gradient descent method to approach the goal

of minimizing the total error of the output. Fig. 2 shows the

configuration of BPNN. In this network, there is an input

layer, an output layer, and one or more hidden layers between

them.

Suppose that the BP network is composed of n inputs and

m outputs, besides s neurons in the hidden layer, the output

of the hidden layer and out layer are bj and yk , the threshold

value of the hidden layer and out layer are θj and θk , the

FIGURE 3. Motion states in the simulation experiment.

FIGURE 4. Vehicle trajectory in the simulation experiment.

TABLE 1. The parameters of the inertial measurement unit.

transfer function of the hidden layer and output layer are

f1 and f2, the weight from input layer to hidden layer is ωij,

the weight from hidden layer to output layer is ωjk . During

the training phase, the desired output is available, and denoted

as tk . The output of j th neuron of the hidden layer is:

bj= f1(

n
∑

i=1

wijxi − θj )(i=1, 2, . . . , n; j=1, 2, . . . , s) (15)

Then, the result of output layer can be derived

yk = f2(

s
∑

j=1

wjkbj − θk ) (j=1, 2, . . . , s; k=1, 2, . . . ,m)

(16)
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FIGURE 5. Average position error during the GPS outages with different
accuracy integration systems. (a) S1 system; (b) S2 system; (c) S3 system.

Defining the error function by the network actual output,

that is:

e =
m
∑

k=1

(tk − yk )
2 (17)

TABLE 2. The parameters of the inertial measurement unit.

FIGURE 6. Vehicle trajectory in the road experiment.

The network training is a process of continual readjustment

between the weights and the threshold, in order to make the

network error reduce to a pre-set minimum or stop at the

pre-set training steps [14].

A three-layer BP neural network can approach any non-

linear functions with any accuracy. However, since the BP

algorithm is based on the gradient information of error

function, some problems also appear, such as poor rate of

convergence, and getting stuck in local minimum easily.

To overcome the disadvantages, some effective measures

have been taken as follows.

1) ADDITIONAL MOMENTUM

An additional momentum that contains the gradient descent

information of past 2 iterations is adopted. If the errors keep

decreasing during past 2 iterations, the momentum could

accelerate the convergence. In contrast, the momentum will

change the variation direction of weight value.

w(n0 + 1)=w(n0) + ηd(n0) + α1w(n0) (18)

d(n0)= −
∂e

∂w(n0)
(19)

1w(n0) = w(n0)−w(n0 − 1)=η(n0 − 1)d(n0 − 1) (20)

wherew(∗) is theweight values of the ∗th iteration (∗=n0−1,

n0, n0 + 1), η is the learning rate, d(∗) is the additional

momentum of the ∗th iteration (∗ = n0 − 1, n0), α is the

momentum factor which is set between 0.1 and 0.8.
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FIGURE 7. Comparison of the predicting errors during 3 sections of GPS outages. (a) East direction. (b) North
direction. (c) Down direction.

2) HIDDEN UNIT COMPETITION

Aiming to avoid getting stuck the local minimum, the hidden

unit competition algorithm has been employed. The process

is as follows: Firstly, calculate the δ error of every hidden

unit. Then correct normally the weight value of the unit which

has the maximum error, while the weights of last units are
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corrected in the opposite direction. The change of weight

value can be denoted by the mathematical formula [16]:

wji(n0 + 1) = wji(n0) + ηδjxj(n0) (21)

δj =







max(δ), δj = max(δ),

−
1

4
max(δ), others.

(22)

III. SIMULATION EXPERIMENT

In order to verify the effectiveness of this method,

we designed a simulation experiment lasting 24 hours. The

experiment is divided into equal 1440 sections, and every

section lasts for 1 minute. During the different section,

the vehicle stays randommotion states such as uniform speed,

acceleration, deceleration, left turn and right turn. The simu-

lated motion states showed in the Fig. 3 and the trajectory in

the Fig. 4 are even more complex than those in reality.

Then, three vehicles equipped with different accuracy

grade INS/GPS integration systems (S1, S2, S3) are simu-

lated. The parameters of the systems are listed in the Table 1.

These vehicles move according to the Fig. 3 and Fig. 4.

In addition, 48 artificial 600s GPS outages are introduced

in the experiment. The position errors during these out-

ages are averaged and showed in the Fig. 5. Three pictures

(5(a), 5(b), 5(c)) are included, and illustrate the position

errors of three different systems (S1, S2, S3) respectively.

The x-axis represents the GPS outages time, and the y-axis

the average position error in horizontal direction.

From Fig. 5, we can see that the O − 1P method and the

OT − 1P proposed by us both gain obvious improvement

compared the pure INS. With the increment of the outages

time, the latter method achieves the more accurate position

than the former one, especially in the low-accuracy system.

When the 600s GPS outages happen, we can see a few meters

or hundreds meters improvement on position accuracy in the

Fig. 5. The position result of the low-accuracy is still unac-

ceptable when the GPS outages last for a long time, even the

improvement has been made. We hold the reason is that the

systematic error in the low-accuracy system is so random and

changes quickly with time. And it is too difficult to establish

the model accurately. However, the problem does not exist

for the high-accuracy systemwhose systematic error is stable.

Considering this situation, we recommend to use theOT−1P

method on the high-accuracy INS/GPS system to overcome

the GPS outages. And the method is seemed always effective

during the whole outages which last for hundreds of seconds.

While for the low-accuracy system, only when the short-term

outages occur does the novel method is recommended. So we

will put more attention on the high-accuracy system in the

following study.

IV. ROAD EXPERIMENT

The performance of the proposed OINST − 1PGPS model

was examined with a field test in Nanjing, Jiangsu Province,

China. The test was conducted on a vehicle platform equipped

a PHINS inertial system, a FlexPark6 GPS receiver as well

FIGURE 8. MAE of predicting result.

TABLE 3. The mae of the predicting result with different steps past
information.

as an IMU. The PHINS is a high performance inertial navi-

gation system equipped a fiber optic gyroscope (FOG), and

was developed by French IXBLUE. It provides 200Hz ref-

erence position information combined with the FlexPark6 in

our test. The IMU contains three FOGs and three quartz

accelerometers. The parameters of these sensors are showed

in the Table 2. The road experiment lasted for 2160s, and

the moving distance was about 40 kilometers during this

period.

Over the whole trajectory of test, no natural GPS outages

occurred, and thus the accurate position information which

obtained from INS/GPS system can be consistent. The trajec-

tory in rectangular coordinate was plotted in the Fig. 6 where

GPS outages are marked by red lines. Five artificial 300s

GPS outages (#1, #2, #3, #4 and #5) intentionally introduced

in order to test the stability of OINST − 1PGPS model.

In addition, GPS outages occurred when the vehicle was in

different dynamics conditions, so that the robustness of the

module can also be examined.

A. COMPARISON OF PREDICTION RESULTS

BETWEEN DIFFERENT MODELS

In this test, proposed model termed as OINST − 1PGPS ,

is applied to predict the position increment of GPS. In order to

verify the performance ofOINST −1PGPS ,OINS −1PGPS is

employed as comparison which was the most accurate model

in previous [9].

If the proposed algorithm achieves the same accuracy as

others with fewer neurons in the input layer (lower time com-

plexity), the higher efficiency can be proved. However, it is
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FIGURE 9. Positioning results with different algorithms.

not easy to get the same accurate results using different algo-

rithms, because the accuracy is relative with many parameters

and factors. In other way, if the proposed algorithm achieves

the higher accuracy than the others with the same or almost

same number of neurons in the input layer, the superiority on

the computational efficiency can also be proved.

The position increments predicted by the two models are

collected. Comparedwith the pureGPS result during the three
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300s GPS outage, the eastern and northern prediction errors

can be gained and illustrated in the Fig. 4. The prediction

errors of two models are represented respectively by the blue

and red curves.

In the Fig.7, two models shows the almost equivalent accu-

racy in case of short GPS outages, however, OINST −1PGPS
provides a significant improvement over OINS − 1PGPS in

case of long GPS outages(>100 s). For further analysis, the

performance of OINST −1PGPS and OINS −1PGPS both get

worse as the GPS outages time increases, however, the latter’s

accuracy deteriorates faster than the former’s. The reason for

the phenomenon is exactly the long-term and time-related

errors which not be eliminated in OINS − 1PGPS module.

In order to describe the advantages of OINST − 1PGPS
more intuitively, the mean value of absolute errors (MAE)

have been calculated and shown in histogram. From Fig. 8,

it can be clearly seen that the MAE of OINST − 1PGPS is

always smaller than OINS − 1PGPS ’s during 5 GPS outages

sections. To sum up the above arguments, we can draw a

major conclusion: the proposed OINST − 1PGPS can lead to

a better performance in terms of providing accurate position

information during GPS outages, especially when the GPS

signals disappear for a long time. Under the condition that

the time complexity of our algorithm is almost equal to the

other one, but the improvement on accuracy is far greater

than 10%. This result proves the advantage on the compu-

tation efficiency of our algorithm indirectly.

B. THE SELECTIN OF THE NUMBER OF STEPS

IN THE PAST INFORMATION

In previous studies, the way of eliminating the long-term

errors is to increase the number of information in the past. But

now the time dimension was added in the OINST − 1PGPS ,

the long-term INS velocity error trend can be modeled and

eliminated. Consequently, it does not need to consider too

much past information. The problem that needs to be solved

now is to determine how many steps past information we

should select to mimic the short-term errors. In this section,

past 2-5 steps INS velocity and IMU information are used to

predict GPS position increment. The MAEs of the prediction

results are listed in Table 3.

As the Table 2 shows, the mean values of MAEs in both

directions decline as the number steps of past information

increases. In other words, themore steps are involved, the bet-

ter performance is achieved in overall. However, the ten-

dency slows down and even stops as more than 3 steps past

information is added to the input of BPNN module. Tak-

ing into account both accuracy and computation efficiency,

the past 3-step information is selected to predict position

increment of vehicle in the following experiment.

C. COMPARISON OF POSITION RESULTS BETWEEN

DIFFERENT ALGORITHMS

Fig. 9 shows the positioning results after compensation. The

reference trajectory is provided by the PIHINS, while the

INS trajectory is calculated with the IMU data. During these

5 sections of GPS outages, the best performance is always

achieved when the time dimension was added to the input

of NN module. The advantage of OINST − 1PGPS becomes

more and more evident along with the increase of time. Obvi-

ously, considering the time information is helpful to model

and eliminate the positioning error introduced by INS error

changes over time.

V. CONCLUSIONS

In order to supply high-performance position information to

the vehicles during GPS outages, an improved BPNNmodule

is presented. When the GPS signal is available, the GPS

position increment and some INS information are collected

and trained by BPNN module. During GPS outages, the well

trained model will provide the pseudo GPS position for the

vehicles.

Considering the shortcoming of the conventional network

modules, the time information are added into the input of the

new module to slow down the accuracy degradation caused

by the changes of INS error characteristic over time. Field

test including 5 sections of 300s GPS outages has been con-

ducted to evaluate the performance of the proposed method.

It can be seen that, the novel OINST − 1PGPS model has

more advantage on predicting the position increment over

the traditional OINS − 1PGPS model, especially, under the

circumstance where the GPS outages last for a long time.

Meanwhile, we explore the number of past information that

should be selected to balance the computation burden and the

accuracy. The past 3-steps information is determined as the

optimal inputs of the proposed OINST − 1PGPS module.
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