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Abstract

Finding the minimum connected dominating set (MCDS) is a key problem in wireless sensor networks, which is

crucial for efficient routing and broadcasting. However, the MCDS problem is NP-hard. In this paper, a new

approximation algorithm with approximation ratio H(�) + 3 in time O
(

n2
)

is proposed to approach the MCDS

problem. The key idea is to divide the sensors in CDS into core sensors and supporting sensors. The core sensors

dominate the supporting sensors in CDS, while the supporting sensors dominate other sensors that are not in CDS. To

minimize the number of both the cores and the supporters, a three-phased algorithm is proposed. (1) Finding the

base-core sensors by constructing independent set (denoted as S1), in which the sensors who have the largest |N2(v)|
|N(v)|

(number of two-hop neighbors over the number of one-hop neighbors) will be selected greedily into S1; (2)

Connecting all base-core sensors in S1 to form a connected subgraph, the sensors in the subgraph are called cores; (3)

Adding the one-hop neighbors of the core sensors to the supporter set S2. This guarantees a small number of sensors

can be added into CDS, which is a novel scheme for MCDS construction. Extensive simulation results are shown to

validate the performance of our algorithm.
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1 Introduction
Wireless sensor networks (WSNs) play a critical role in

many areas, such as environmental monitoring, disaster

forecast, etc [1]. A key problem in WSN is multi-hop

communication, because the communication range of a

individual sensor is generally limited. In multi-hop com-

munication, any two sensors that are within the commu-

nication range of each other are called neighbors, which

can communicate to each other. Other sensors that are

not within the communication range of each other and

want to communicate, need intermediate sensors between

them to forward their packets (for instance, sensory data

[2, 3] and image data [4, 5]).

However, due to the broadcasting nature of the wireless

communication, if there is not a specific routing path for

packet forwarding, all neighbors are possible to become
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intermediators for forwarding messages, which causes

message flooding problem. The key way to avoid flooding

is to find a communication backbone, so that the packets

are relayed by the backbone sensors to save energy for the

other sensors.

If modeling theWSN into an undirected graph, the con-

nected dominating set (CDS) [6–8] is one of the good

choices to construct virtual backbone of the network,

because the sensor nodes in the CDS form a connected

subgraph to forward messages from other sensors.

However, forwarding message may run into collision,

which introduces retransmissions and increases end-to-

end delays. As the number of sensors in the CDS grows,

the negative effect of retransmissions increases greatly.

Hence, CDS with smaller number of sensors is highly

desired, which leads to the problem of finding the CDS

with the minimum number of sensors, i.e., the minimum

connected dominating set (MCDS) problem. However, it

has been proved that the MCDS problem is NP-hard [9].

Therefore, approximation algorithms become the focus of

addressing the MCDS problem. The majority of proposed
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algorithms in literatures follow a general two-phased

approach [10–14]. In the first phase, a dominating set is

constructed, and the sensors in the dominating set are

called dominators. In the second phase, additional sen-

sors are selected, called connectors. Together with the

dominators, they induce a connected CDS topology.

In this paper, we design a three-phased approximation

algorithm for the MCDS problem in WSNs. Firstly, we

propose a novel method to construct an independent set

S1 for the graph G such that any pair of complementary

sensor subsets for S1 is separated by exactly three hops.

Secondly, sensors in S1 are connected by other sensors

that are added into C to form a subtree. The number of

sensors in C is an even number, since any pair of comple-

mentary sensor subsets in S1 is separated by two sensors.

A supporter set S2 is constructed that neighbors of S1 ∪C

are added into S2. S1 ∪ C ∪ S2 is connected dominated

set. The performances of the proposed algorithms are

thoroughly analyzed.

Our contributions are presented as follow:

• We propose a novel algorithm to generate the CDS

and construct the virtual backbones in WSNs.
• We analyze the performance ratio and time

complexity of our algorithm.
• We conduct extensive simulations to demonstrate

the performance of the algorithms. Simulation results

show that the algorithm generates CDS with smaller

size than the state-of-the-art algorithms in [15].

The rest of the paper is organized as follows. Related

work is reviewed in Section 2. Our novel centralized algo-

rithm for constructing a CDS is presented in Section 3.

The performance of the proposed algorithm is thoroughly

analyzed in Section 4. Section 5 gives the results of sim-

ulations, which show the performance of the algorithm.

Finally, we conclude this paper in Section 6.

2 Related works
In this section, we review the classical algorithms for con-

structing CDS. For more comprehensive approximation

algorithms for CDS construction, one can refer to Du and

Wan and Yu et al. [16, 17]. Since the MCDS problem in

unit disk graph is NP-hard, many algorithms are proposed

to compute approximation solutions. CDS construction

algorithms can be divided into distributed algorithms and

centralized algorithms.

2.1 Distributed algorithms

In the case of distributed algorithms, each node in the

network only knows the local information and commu-

nicates with its neighbors. Recently, the popular meth-

ods for constructing CDS are to firstly construct an

maximal independent set (MIS), then a CDS is formed by

connecting the nodes in the MIS, such as [7, 8, 11–13].

In [7], Wan et al. proposed an ID-based distributed

algorithm to construct a CDS with the performance ratio

8|opt| − 2, where opt represents the minimum connected

dominating set of the unit disk graph. In [8, 11, 12], some

MIS-based algorithms are proposed and the first phase

of these algorithms is to construct an MIS as shown in

[7]. In the second phase of the algorithm in [8], Li et al.

constructed a Steiner tree for connecting all nodes in

MIS. The performance ratio of their algorithm is (4.8 +

ln 5)|opt| + 1.2. In [11] Min et al. improved the construc-

tion of Steiner tree to decrease the size of connectors.

Consequently, they proved that the approximation ratio of

the proposed algorithm is 6.8. In [12], Wan et al. proved

the approximation ratio of [7] is 7.333 and proposed a new

approximation algorithm with ratio 6.389. In [13], Misra

et al. proposed a heuristic algorithm, called collaborative

cover, to obtain an MIS. After that, they constructed a

Steiner tree with minimum number of Steiner nodes to

obtain a small CDS. The size of the CDS they got is at most

(4.8 + ln 5)|opt| + 1.2.

2.2 Centralized algorithms

In the literature, Guha and Kuller [6] proposed the first

approximation algorithm to construct an MCDS as a vir-

tual backbone in a wireless network. They presented two

centralized greedy algorithms for CDS construction with

approximation factor 2H(�) + 2 and H(�) + 2 respec-

tively, where � is the maximum degree of the graph. In

[18], Ruan et al. proposed another centralized algorithm

with the approximation factor ln� + 2. In [19], Fu et al.

proposed a centralized algorithm for CDS construction

with the time complexity O
(

n�2
)

. Note that � can be as

many as O(n). Thus, the time complexity of the algorithm

in [19] is O
(

n3
)

.

In [15], Al-Nabhan et al. proposed three similar cen-

tralized algorithms to construct CDSs in wireless network

with approximation factor of 5. These approximation

algorithms outperform the existing state-of-the-art meth-

ods. Their algorithm contains four phases. The first phase

is to construct a special independent set S1 and any pair

of complementary subsets of S1 is separated by exactly

three hops. The second phase is to compute an MDS for

each disconnected component and all nodes inMDS form

the set S2. The third phase is to connect S2 nodes and S1
nodes. The fourth phase is to connect all nodes in S1.

Some other centralized CDS construction algorithms

also exist in the literatures [20–23].

The MCDS has many applications in the special net-

work models, such as ad hoc networks [24, 25], energy

harvest networks [26], battery-free networks [27], cogni-

tive ratio networks [28], and others [29–31].

In this paper, we propose a three-phased approxima-

tion algorithm for CDS construction with approximation

ratio H(�) + 3 in time O
(

n2
)

. To compare with the three
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Fig. 1 Sensor state transition of our algorithm. The transition conditions are as follows: a has the largest value of |N2(v)|
|N(v)| ; b exists a black neighbor; c

has a red neighbor but does not have black neighbor; d exists a yellow neighbor but does not have black or red neighbor; e has the largest value of
|N2(v)|
|N(v)| among all blue nodes, where N2(v) and N(v) only contain white nodes; f becomes connector; g exists a black neighbor; h has the maximum

number of yellow neighbors among all red nodes; I has a red neighbor but does not have black neighbor; J becomes connector

algorithms proposed in [15], extensive simulations are

conducted, and the results show effectiveness of our algo-

rithm. A preliminary version [32] was published inWASA

2017.

3 MCDS construction
3.1 Model

For simplicity, all sensors in WSN are randomly deployed

in the two-dimensional plane. Assume that all sensors

have the same transmission range in the network. The

WSN is modeled as a unit disk graph G(V ,E), where V is

the set of all sensors and E represents the set of links in

the network. If the Euclidean distance between any two

sensors u and v is less than or equal to 1, then there is

an undirected edge euv between these two sensors. Each

sensor v ∈ V has a unique ID. Let N(v) be the set of all

neighbors of v and dv = |N(v)| be the degree of v. Denote

� = max{dv|∀v ∈ V } and N i(v) to be the i-hops neighbor

set of v.

3.1.1 Connected dominating set (CDS)

A dominating set (DS) of a graph G = (V ,E) is a sub-

set V ′ ⊆ V such that each node in V\V ′ is adjacent to

at least one node in V ′, and a connected dominating set

(CDS) is a dominating set which also induces a connected

subgraph.

3.1.2 Minimum connected dominating set (MCDS) problem

Given a graph G = (V ,E), the minimum connected dom-

inating set problem is to find the CDS in G such that the

size of the CDS is minimized.

In this paper, we propose a novel approximation algo-

rithm for solving the MCDS problem.

3.2 Algorithm overview

In this section, we overview the proposed approximation

algorithm for the MCDS problem. The algorithm consists

of three phases.

Fig. 2 The process of CDS construction by our algorithm in a–c. d A CDS constructed by algorithm in [7]
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• In the first phase, we construct an independent set S1
(sensors in S1 called base-cores) for the graph G such

that any pair of complementary sensor subsets in S1
is separated by exactly three hops, which differs from

the construction process of the first phase in [15].
• In the second phase, we select connectors from V\S1

to connect the base-core sensors in S1 for obtaining a

subtree, called all sensors on the subtree as cores.
• In the third phase, we construct a supporter set S2

such that neighbors of S1 ∪ C are added into S2.

S1 ∪ C ∪ S2 forms a CDS.

For an illustrative purpose, we employ the different

colors to differentiate sensor states during the construc-

tion process of our algorithm. Figure 1 shows the state

transition process of sensors in the WSN.

We illustrate the CDS construction process of our algo-

rithm by Fig. 2, which is the same network example

G(V ,E) in [7]. Initially, all sensors aremarked as white and

each sensor has a unique ID, as shown in Fig. 2a. In the

first phase, we can know that node 8 has the largest value

of |N2(v)|
|N(v)| among all sensors in the graph. Hence, sensor

8 is colored black and all neighbors in N(8) are colored

red and all sensors in N2(8) are colored yellow. As shown

in Fig. 2b, sensors 3, 4, 5, and 6 are colored red and sen-

sors 0, 1, 2, 7, 9, 10, 11, and 12 are colored yellow. None

of sensors become connector in the second phase since

only one black sensor 8 is added into independent set S1.

In the third phase, we need to select supporters (added

into S2) from red sensors to dominate all yellow sensors.

For all red sensors, sensor 5 has the maximum number of

yellow neighbors, then sensor 5 is marked green and its

yellow neighbors 9, 10, 11, and 12 are colored red. After

that, sensors 6 and 4 have the same number of yellow

neighbors and the ID of sensor 6 is larger than sensor 4;

therefore, sensor 6 is marked green and its yellow neigh-

bors 1 and 7 are colored red. Then sensor 4 is marked

green and sensors 0 and 2 are colored red. Finally, sensors

with black and green form a CDS that contains sensors

4, 5, 6, and 8, as shown in Fig. 2c. Figure 2d shows a

CDS (blue and black sensors) obtained by the algorithm

in [12].

3.3 Independent set S1 construction

In this section, we construct the set S1 such that the hop

distance between any two complementary sensor subsets

in S1 is exactly three hops. The details of S1 construction

process as shown in the following steps.

First, a sensor v ∈ V with the largest value of |N2(v)|
|N(v)|

initiates the S1 construction by coloring itself black. Then,

the black sensor v dominates its neighbors in N(v) and

all sensors in N(v) are marked red. After that, we color

all sensors in N2(v) as yellow and all sensors in N3(v) are

colored blue. Last, each blue sensor u deletes red sensors

from the setN2(u) and deletes yellow sensors from the set

N(u).

Then select black sensor from the current blue sensors,

for this purpose, the algorithm repeats the following steps,

until no blue/white sensors is left in the graph.

We select a blue sensor v and color it black when the

value of |N2(v)|
|N(v)| is largest among all blue sensors. If more

than one sensor node have the same value of |N2(v)|
|N(v)| , then

the algorithm selects the blue sensor with the maximum

number of sensors in N(v). If more than one blue sensor

have the same value of |N(v)|, then the algorithm selects

the blue sensor with the highest ID value among these blue

sensors.

After that, the algorithm executes the following opera-

tions:

• All sensors in N(v) are colored red
• All sensors in N2(v) are colored yellow
• All sensors in N3(v) are colored blue
• Each blue sensor u deletes red sensors from the set

N2(u) and deletes yellow sensors from the set N(u)

The detail illustration as shown in Algorithm 1.

Algorithm 1 S1 Construction

1: Input: G(V ,E)

2: Output: S1
3: Sets of S1 ← ø;

4: All sensors in V are marked white;

5: Choose an initiator v ∈ V with the maximum |N2(v)|
|N(v)|

among all sensors in V ;

6: Colorv = black; S1 = S1 ∪ {v};

7: for each sensor u ∈ N(v) do

8: Coloru = red;

9: end

10: for each sensor u ∈ N2(v) do

11: Coloru = yellow;

12: end

13: for each sensor u ∈ N3(v) do

14: Coloru = blue;

15: end

16: for each blue sensor w do

17: Delete red sensors from the set N2(w) and delete

yellow sensors from the set N(w);

18: end

19: Select blue sensor w with the largest value |N2(w)|
|N(w)|

among all blue sensors and set v = w;

20: Repeat line 4-17 until all sensors in V are black or red

or yellow;

21: return S1;

After Algorithm 1 terminates, the sensors inV are either

black, red, or yellow.We obtain an independent set S1 that
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is composed of black sensors and any red sensor is defi-

nitely dominated by a black sensor and any yellow sensor

has two hops distance from a black sensor. We can prove

that any pair of complementary sensor subsets of S1 is sep-

arated by exactly three hops. The sensors in the set S1 are

called base-cores.

3.4 Connector set C construction

In this section, we propose a novel algorithm to find

a set of connectors C such that S1 ∪ C forms a

subtree.

Before we describe the algorithm, we introduce some

terms and notations. For any subset U ⊆ V , let q(U) be

the number of connected components in G(U). The set U

is initially equal to S1, and the initial value of q(U) is |S1|.

Let M = {e|e ∈ E and the endpoints are red and yellow}

and C be the set of connectors. Let W be the subset of S1
such that any pair of sensors of W is connected by other

sensors in C .

To begin our algorithm, first, we select an arbitrary black

sensor s1 ∈ S1 to start selection of connectors and set

W = {s1}. The algorithm repeats the following steps, until

the condition q(U) = 1 is satisfied:

• Select a sensor si ∈ W such that there exists a sensor

sj ∈ N3(si) ∩ (S1 − W )
• Select an edge exy ∈ M such that x ∈ N(sj) and

y ∈ N(si)
• Delete the edge exy fromM, then sensors x and y are

marked blue and added into C
• For each yellow sensor w, if w ∈ N(x) or w ∈ N(y),

then it is marked red
• Execute operations U = U ∪ {u}, U = U ∪ C and

q(U) = q(U) − 1

The detail illustration as shown in Algorithm 2.

After Algorithm 2 terminates, any two black sensors are

connected by a path that consists of black sensors and blue

sensors. That is, we obtain a subtree and all sensors on the

subtree are called cores.

3.5 Supporter set S2 construction

After executing Algorithm 2, we have got a subtree over

on S1∪C. However, there are still some yellow sensors not

being dominated since they have two hops distance from

black sensor or blue sensor.

In this section, we propose a novel greedy algorithm for

acquiring a supporting set S2, in which the sensors are

used to dominate remaining yellow sensors. Sensors in the

set S2 are called supporter.

Let RD be the set {s|s ∈ V ,Colors = red} and YL be

the set {s|s ∈ V ,Colors = yellow}. In each iteration, we

select a red sensor s ∈ RD with the maximum number

of yellow sensors in N(s). If more than one red sensors

Algorithm 2 Connecting S1 sensors

1: Input: G(V ,E), S1
2: Output: C (The set of connectors)

3: Let U = S1, W ,C ← ∅, M = {e|e ∈ E and the

endpoints are red and yellow};

4: q(U) = |S1|;

5: Select arbitrary sensor s1 ∈ S1;

6: W = W ∪ {s1};

7: while q(U) > 1 do

8: Select a sensor si ∈ W such that there exists a sensor

sj ∈ N3(si) ∩ (S1 − W );

9: Select an edge exy ∈ M such that x ∈ N(sj) and y ∈

N(si);

10: M = M\exy, Colorx = blue, Colory = blue, C = C ∪

{x, y};

11: for each sensor w ∈ N(x) or w ∈ N(y) do

12: Colorw = red;

13: end

14: W = W ∪ {sj}, U = U ∪ C, q(U) = q(U) − 1;

15: end

16: return C;

have the same number of the yellow neighbors, then the

algorithm selects the red sensor with the highest ID.

The algorithm repeats the following steps, until the

condition YL = ∅ is satisfied:

• Select a red sensor s ∈ V with the maximum number

of yellow neighbors
• Sensor s is marked green and its yellow neighbors in

N(s) ∩ YL are marked red
• Delete sensors of N(s) ∩ YL from YL

The detail illustration as shown in Algorithm 3.

Algorithm 3 S2 Construction

1: Input: G(V ,E), S1, C

2: Output: S2
3: Let S2 ← ∅, RD = {s|s ∈ V ,Colors = red}, YL =

{s|s ∈ V ,Colors = yellow};

4: while YL 
= ∅ do

5: Select a red sensor s ∈ RDwith themaximum number

of yellow neighbors;

6: Colors = green, S2 = S2 ∪ {s};

7: for each sensor u ∈ N(s) ∩ YL do

8: Coloru = red, RD = RD ∪ {u};

9: YL = YL\{u};

10: end

11: end

12: return S2;
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3.6 CDS construction

In this section, we propose our approximation algorithm

for solving MCDS problem. The algorithm consists of

four steps, and the first three steps correspond to Algo-

rithms 1–3, respectively. The last step is to compute union

of S1 , C, and S2. The detail illustration as shown in

Algorithm 4.

After this algorithm terminates, we obtain a CDS that

is union of S1 (black sensors), C (blue sensors), and

S2 (green sensors). For a given graph G(V ,E), we give

the executing process of the Algorithm 4, as shown in

Fig. 3(a)-(d).

Algorithm 4 CDS Construction

Input: G(V ,E)

Output: CDS

step 1: Obtain independent set S1 by executing

Algorithm 1;

step 2: Obtain connector set C by executing

Algorithm 2;

step 3: Obtain supporter set S2 by executing

Algorithm 3;

step 4: CDS = S1 ∪ C ∪ S2;

return CDS;

4 Performance analysis
In this section, we analyze the performance ratio and time

complexity of our algorithm. Let H(n) =
∑n

i=1
1
i be the

harmonic function and MCDS be an optimal CDS.

Lemma 1 The set S1 found by Algorithm 1 is an inde-

pendent set, and any pair of complementary sensor subsets

of S1 is separated by exactly three hops.

Proof We use {s1, s2, · · ·, sk} to denote the set S1.

Any two sensors si, sj ∈ S1 are not adjacent to each

other according to the process of S1 construction by

Algorithm 1. Therefore, the set S1 is an independent set

of G.

Let Tj = {s1, s2, · · ·, sj} and Hj = (Tj,Ej) for any 1 ≤ j ≤

k. For arbitrary two sensors si, sl ∈ Tj, an edge (si, sl) ∈

Ej if and only if their distance in G is three. We prove by

induction on j that Hj is connected. Since H1 contains a

single sensor, it is connected obviously. Assume that Hj

is connected for 1 ≤ j ≤ k − 1, when the sensor sj+1 is

marked black, according to the Algorithm 1, there exists

si ∈ Ti (1 ≤ i ≤ j) such that the distance between sj+1 and

si in G is three, which means there exists an edge between

si and sj+1 in Hj+1. Due to Hj is connected, Hj+1 is also

connected. Therefore, Hj is connected for any 1 ≤ j ≤ k.

This implies that any pair of complementary subsets of S1
is exactly three hops.

Lemma 2 The CDS = S1 ∪ C ∪ S2 got by Algorithm 4 is

a connected dominating set.

Proof According to lemma 1, we know that S1 is an

independent set and S1 ∪ C is connected.

According to Algorithm 3, each sensor in S2 is adja-

cent to at least one sensor in S1 ∪ C. Therefore, the set

CDS is connected. Since the distance between any sen-

sor not in S1 ∪ C and S1 ∪ C in G is at most 2, all other

sensors not in CDS are dominated by sensors in CDS

according to the selection process of S2. Therefore, for

any sensor v ∈ V , it belongs to the set CDS or has at

least a neighbor in CDS, which means CDS is a connected

dominating set.

Lemma 3 The size of S1 is less than or equal to |MCDS|.

This lemma has been proved by lemma 2 in [15].

Lemma 4 The size of the set C obtained by Algorithm 2

is at most 2|MCDS| − 2.

Proof Let S1 be the set {s1, s2 · ··, sk}. According to lemma

1, we obtain that auxiliary graph Hk over S1 is a tree.

Hence,Hk contains k−1 edges. According to Algorithm 2,

any two endpoints of an edge in Hk are two sensors in S1.

Therefore, two connectors are added intoC to connect the

two sensors.

Therefore, the size of set C is 2|S1| − 2. By lemma 3, we

get |C| is at most 2|MCDS| − 2 .

Lemma 5 The size of the set S2 obtained by Algorithm 3

is less than H(�)|MCDS|.

Proof For a sensor v∈MCDS, let Pv be the sensors set

including v in which each sensor is dominated by v.

According to Algorithm 3, when a red sensor v is marked

green, all yellow neighbors of v are dominated by v.

We will prove that the total number of sensors in Pv for

any node v is at most H(�).

Assume that when we pick a sensor v from RD to add to

S2, y yellow sensors turn to red. We obtain that each of y

yellow sensors spends at most 1
y .

Assume that the number of yellow sensors is initially

y0 < � in Pv, and finally drops to 0. Let yj denote the num-

ber of yellow sensors in Pv after step j. Here, we assume

that some yellow sensors in Pv aremarked red at each step.

Therefore, the number of yellow sensors in Pv decreases

at each step. After the first step, the number of sensors

which changed color is y0 − y1. In the jth step, the num-

ber of sensors that change color in set Pv is yj−1 − yj, and

the cost of each sensor which changed color is at most
1
yj
. Let yh = 0. We can get the total number of sensors

in Pv is
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Fig. 3 Let the transmission range R be 250 m and deploy 100 sensors in the 1000*1000 m2 detection area. The execution process of the Algorithm 4

as follows: a Select a sensor s to start S1 construction and sensor s is marked black. b An independent set S1 that contains four black sensors is

constructed in step 1. c The connector set C that contains six blue sensors is constructed after executing step 2, and we obtain a subtree that

contains all cores. d The supporter set S2 that consists of four green sensors is constructed in step 3, then we can obtain a CDS that consists of all

black, blue, and green sensors

h
∑

j=1

1

yj−1
(yj−1 − yj) =

h
∑

j=1

yj−1
∑

i=yj

1

yj−1

≤

h
∑

j=1

yj−1
∑

i=yj

1

i

=

h
∑

j=1

(

yi−1
∑

i=1

1

i
−

yi
∑

i=1

1

i

)

= H(y0) < H(�).

Therefore,

|S2| ≤ ∪v∈MCDS|Pv| < H(�)|MCDS|.

This lemma is proved.

We know that CDS = S1 ∪ C ∪ S2. According to lemma

3–5, we obtain the following theorem.

Theorem 1 The number of sensors in CDS found by

Algorithm 4 is less than (H(�) + 3)|MCDS| − 2.
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Lemma 6 The time complexity of Algorithm 1 is O
(

n2
)

.

Proof According to Algorithm 1, we need |S1| iterations

for obtaining the set S1. In the first iteration, we need at

most n steps to choose a sensor v with the largest value

of |N2(v)|
|N(v)| from V. Since any black sensor comes from blue

sensor, we need at most n steps to select a black sen-

sor from blue sensors in ith iteration. Therefore, the total

number of black sensor selection over all iterations is

O
(

n2
)

= O(n|S1|), since |S1| < n, and we obtain that

the time complexity of Algorithm 1 is O
(

n2
)

+ O(n) =

O
(

n2
)

.

Lemma 7 The time complexity of Algorithm 2 is O
(

n2
)

.

Proof Firstly, we pick out all edges with a red endpoint

and a yellow endpoint from set E. Therefore, the operation

needs the running time of O(|E|).

Secondly, due to the initial value of q(U) is |S1|, the

number of iterations is less than |S1| by lemma 3. In the

interior of the loop, first, we need |W | steps to select a

sensor si ∈ W such that there exists a sensor sj ∈ N3(si) ∩

(S1−W ). The maximum value of |W | is equal to |S1|. Sec-

ond, we select an edge exy ∈ M for connecting si and sj
such that exy is composed of an endpoint x ∈ N(si) and an

endpoint y ∈ N(sj). Therefore, we need at most 2� steps

to select edge exy. Last, 2� steps are needed for coloring

all sensors in N(x) ∪ N(y).

Therefore, the time complexity of Algorithm 2 isO(|E|+

(|W | + 2� + 2�) × |S1|) = O
(

n2
)

.

Lemma 8 The time complexity of Algorithm 3 is O
(

n2
)

.

Proof We need n steps to pick out red sensors (added

into RD) and yellow sensors (added into YL) from V.

Algorithm 3 executes at most |YL| iterations. In a single

iteration, due to the size of RD is less than n, we need at

most n steps a red sensor v ∈ RDwith themaximum num-

ber of yellow neighbors among all sensors in RD. And at

most � steps are needed to mark all yellow neighbors of v.

Therefore, the time complexity of Algorithm 3 isO((n+

� + n) × |YL|) = O(n2), since |YL| < n.

We know that Algorithm 4 consists of four steps and

the first three steps correspond to Algorithms 1, 2, and 3,

respectively. The last step needs single time to compute

the union of S1 , C, and S2. According to lemmas 6–8, we

obtain the following theorem.

Theorem2 The time complexity of Algorithm 4 is O
(

n2
)

.

5 Simulation
In this section, we evaluate the performance of our algo-

rithm through simulations. In the simulations, N sensors

are randomly deployed in the two-dimension plane. All

sensors are assumed to have the same transmission range

R. Each experimental result is the average of 100 runs.

We first evaluate how the network configuration, such as

the number of the sensors, the transmission range, and

the area of the deployment, impact on the size of CDS, as

shown in Section 5.1. After that, we compare the perfor-

mance of our algorithm with the performance of the three

algorithms (Approach I, Approach II, and Approach III) in

[15], as shown in Section 5.2. We used MATLAB R2013a

for all simulations.

5.1 Impact of network configuration

In this section, we evaluate the impact of the different

parameter settings on the size of CDS.

Firstly, Fig. 4a illustrates the impact of the transmission

range R on the size of CDS with different number of sen-

sors. We randomly deploy N sensors in a 1000 × 1000 m2

area, and measure the size of CDS when the transmis-

sion range R varies from 200 to 500 m increased by

50 m. As shown in Fig. 4a, we can observe that the size

of CDS decreases as the transmission range R increases.

This is because when the transmission range becomes

longer, the number of neighbors of sensors increase. That

is to say, a backbone sensor is able to dominate more

non-backbone sensors. When the transmission range R

is large enough and the number of senors reaches to

some number, the CDS size is almost same no mat-

ter how big the number of sensors N is. It is because

the some sensors can cover the whole detection area

when the transmission range R is large enough. From

Fig. 4a, when R = 500 m, the CDS sizes are almost the

same. We can also find that the ratio of CDS size to

the total number of sensors in the network decreases

with the increasing of the density of network deploy-

ment. For example, we fix R to 300 m, when N = 100

and N = 500, the size of CDSs are 11.2 and 14.5, respec-

tively, and the ratio of the former is 11.2% and the

latter is 2.9%.

Secondly, we evaluate the impact of the number of sen-

sors N on the size of CDS with the different transmission

range R. In the 1000× 1000 m2 monitor area, the number

of sensors N changes from 200 to 1200 sensors, we can

find that the size of CDS increases with the number of sen-

sors increasing when R = 100 m and that the size of CDS

levels off as R is more than 250 m, as shown in Fig. 4b. We

also obtain that, whenN is fixed, the size of CDS decreases

more andmore slowly with the increasing of the transmis-

sion range when the transmission range reaches to some

value.

Thirdly, we measure the effect of the size of the deploy-

ment area on the size of CDS. We deploy network sensors

in the detection areas 300 × 300m2, 400 × 400m2, 500 ×

500m2, and 600 × 600m2, respectively. First, we evaluate
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ba

dc

Fig. 4 The performance of our algorithm. a Size of CDS with a different value of N when R varies between 200 and 500 m. b Size of CDS with the

different value of R when N changes from 200 and 1200 sensors. c Size of CDS with fixed R = 80 m when N varies between 200 and 1000 sensors. d

Size of CDS with fixed N=1000 sensors when R changes from 50 to 120 m

the impact of the number of sensors N on the size of CDS

in different detection areas, as shown in Fig. 4c. When we

fix the transmission range to 80 m and the number of sen-

sorsN (from 200 to 1000), we can notice that the CDS size

increases as the deployment area grows. Afterwards, we

evaluate the impact of the transmission range on the size

of CDS in different detection areas, as shown in Fig. 4d.

When we fix the number of sensorsN to 1000 and R (from

50 to 120 m), we can notice that the CDS size increases as

the deployment area grows.

a b

Fig. 5 Comparing results in the 300× 300 m2 detection area. a The average performance of four algorithms when N = 1000 sensors and R changes

from 50 to 120 m. b The average performance of four algorithms, when R = 50 m and N varies between 100 and 1000 sensors
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ba

Fig. 6 Comparing results in the 600 × 600m2 detection area. a The average performance of four algorithms, when N = 1000 sensors and R changes

from 50 to 120 m. b The average performance of four algorithms when R = 100m and N changes from 100 to 1000 sensors

5.2 Performance evaluation

In this section, we compare the performance of our

algorithm with the performance of the three algorithms

(Approach I, Approach II, and Approach III) in [15].

To compare the performance of our algorithm with the

three algorithms, we set the same value of the experiment

parameters of our algorithm as the other three algorithms

in [15].

Firstly, we give the comparison of the algorithms when

the sensors are randomly deployed in the 300 × 300 m2

area, as shown in Fig. 5. When the number of sensors

N = 1000 and the transmission range R is increased by

10 m from 50 to 120 m, we give the comparative results

of the four algorithms in Fig. 5a. The results show that the

size of CDS got by our algorithm is always better than the

other three algorithms as the transmission range becomes

longer. And CDS sizes decrease with the transmission

range increasing, which is because the transmission range

is bigger, the coverage area is larger, and the network area

size is finite. Similarly, we fix the transmission range R to

50 m and changeN from 100 to 1000 sensors increased by

100. The comparative results in Fig. 5b illustrate that our

algorithm outperforms the other three algorithms.

Secondly, for 600 × 600 m2 monitor area, Fig. 6 shows

the performance of the compared algorithms. If setting

the number of sensors N = 1000 and changing the trans-

mission range R between 50 and 100 m, our algorithm

is better than the other three algorithms and the gap

between the four results is getting smaller and smaller

with increasing of the transmission range. By setting

R = 100 m, Fig. 6b gives the comparison in terms of CDS

size through increasing the number of sensors from 100

to 1000. We can observe that our algorithm is still better

than the other three algorithms.

Finally, to better illustrate the superiority of our

algorithm, we deploy the sensors 1000 × 1000 m2 area

ba

Fig. 7 Comparing results in the 1000× 1000m2 detection area. a The average performance of four algorithms when N is fixed to 1000 sensors and R

changes from 150 to 500 m. b The average performance of four algorithms when R = 200 m and N varies between 1000 and 10,000 sensors



Luo et al. EURASIP Journal onWireless Communications and Networking  (2018) 2018:55 Page 11 of 12

randomly, as shown in Fig. 7. In Fig. 7a, when the num-

ber of sensors N is fixed to 1000 and R varies from 150

to 500 m, we can observe that our algorithm also outper-

forms the other three algorithms in the larger detection

area. And the size of CDS of the four algorithms tends to

be stable when transmission range is big enough. Accord-

ing to Fig. 7b, if we set R = 200 m and vary N from 1000

and 10,000, our algorithm still outperforms other three

algorithms and the CDS sizes of the algorithms level off

as the number of sensors increases, which means that our

algorithm is also suitable in dense networks.

6 Conclusions
This paper proposes an approximation algorithm for the

MCDS problem in wireless sensor networks. The key

idea is to separate sensors in CDS into core sensors and

supporting sensors. The core sensors dominate the sup-

porting sensors in CDS and some sensors are not in CDS,

while the supporting sensors dominate remaining sen-

sors that are not in CDS. Simulation results show that

the algorithm generates CDS with smaller size than the

state-of-the-art algorithms.
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