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A few special chaotic systems without unstable equilibrium points have been investigated recently. It is worth noting that these
special systems are di�erent from normal chaotic ones because the classical Shilnikov criterion cannot be used to prove chaos of
such systems. A novel unusual chaotic system without equilibrium is proposed in this work. We discover dynamical properties
as well as the synchronization of the new system. Furthermore, a physical realization of the system without equilibrium is also
implemented to illustrate its feasibility.

1. Introduction

A considerable amount of literature has been published on
chaotic systems in last decades, for example, Lorenz’s system
[1], Rössler’s system [2], Chen and Ueta’s system [3], simple
chaotic 
ows [4, 5], memristive chaotic system with heart-
shaped attractors [6], chaotic circuit based on memristor [7,
8], MOS-transistors based oscillators [9, 10], mixed analog-
digital designs [11], fully digital realization of chaotic systems
[12, 13], or electromechanical oscillator [14]. Complexity of
chaotic systems has been used in various engineering applica-
tions from asymmetric color pathological image encryption
[15, 16], control and synchronization [17, 18], a chaotic video

communication scheme via WAN remote transmission [19],
and image encryption with avalanche e�ects [20] to audio
encryption scheme [21] and so on.

It is now well established from a variety of studies that
equilibrium points play a vital role in our understanding of
chaos in nonlinear systems [22–24]. In general, conventional
chaotic systems have unstable equilibria and we are able to
verify chaos in such systems with the Shilnikov criterion [25,
26]. However, recent researches have consistently shown that
chaotic behavior can be observed in three-dimensional (3D)
systems with no equilibrium [27].

�e study of systems without equilibria has a long history,
describing various electromechanical models with rotation
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and electrical circuits with cylindrical phase space. One of
the �rst such examples has been described by Arnold Som-
merfeld in 1902 [28], by studying the oscillations caused by a
motor driving an unbalancedweight and discovered the reso-
nance capture, which is called “Sommerfeld e�ect.”�is phe-
nomenon represents the failure of a rotating mechanical sys-
tem to be spun up by a torque-limited rotor to a desired rota-
tional velocity due to its resonant interaction with another
part of the system [29, 30]. Many decades later, in 1984-
85, Nosé [31] and Hoover [32] have led the study with their
proposed dynamical systemwithout equilibria and its various
modi�cations, where hidden chaotic oscillations can be
found [4, 33–36].

Systematic search routine was developed by Jafari et al. to
determine simple quadratic 
ows with no equilibria [24, 27].
Wang and Chen found a new system without equilibrium
while studying a chaotic systemwith any number of equilibria
[24]. Wei discovered dynamical properties of a no-equilib-
rium chaotic system by applying a constant to the Sprott D
system [37]. Multiple attractors in a three-dimensional sys-
tem with no-equilibrium point were reported in [38]. Akgul
et al. designed a random number generator with a 3D chaotic
system without equilibrium point [39]. In addition, 4D no-
equilibrium systems with hyperchaos were presented in [40–
42]. It is interesting to note that chaotic systems without equi-
librium display “hidden attractors” [43–46]. �ere has been
considerable interest in discovering hidden attractors because
they cannot be localized by applying common computational
procedures [47–52].

�is study makes a contribution to research on systems
with hidden attractors by exploring a new chaotic system
without equilibrium. In the next section, the description
and dynamics of the no-equilibrium system are presented.
Synchronization of two new chaotic systems without equi-
librium is studied in Section 3. �e theoretical system has
been realized by an electronic circuit as reported in Section 4.
Finally, conclusion remarks are drawn in the last section.

2. Description and Dynamics of
the System without Equilibrium

Jafari et al. have introduced an e�ective approach for inves-
tigating potential systems without equilibrium [27]. Authors
constructed general models and applied a systematical search
routine to obtain seventeen simple 
ows with no equilibrium
[27]. Motivated by Jafari et al.’s systems, in this work we
consider a general form as follows:

�̇ = �,
̇� = �,
�̇ = �0 |�| + �1� + �2� + �3�2 + �4�2 + �5�� + �6��

+ �7�� + �8,

(1)

in which three state variables of the general form are �, �, and
�, while nine parameters are �� (� = 0, . . . , 8) with �0 ̸= 0. An
absolute nonlinearity has been included in (1) because it is a

potential term for designing nonlinear systems with special
characteristics [53, 54].

In order to �nd the equilibrium of system (1), we solve the
three following equations:

� = 0, (2)

� = 0, (3)

�0 |�| + �1� + �2� + �3�2 + �4�2 + �5�� + �6��
+ �7�� + �8 = 0.

(4)

By substituting (2), (3) into (4), we have

|�| = −�8�0 . (5)

It is easy to verify that the equation is inconsistent for

�0�8 > 0. (6)

In other words, in this case the general model (1) has no
equilibrium.

By applying a systematic search procedure [27] into (1), a
simple three-dimensional system is obtained in the following
form:

�̇ = �,
̇� = �,
�̇ = −� |�| − � + 3�2 − �� − 	,

(7)

inwhich three state variables are�,�, and �while twopositive
parameters are �, 	 (� > 0, 	 > 0). According to condition
(6), it is trivial to verify that there is no equilibrium in the
new system (7).

It is interesting that system (7) can generate chaotic
signals although there is the absence of equilibrium. For � =
0.35, 	 = 0.05 and the initial conditions (�(0), �(0), �(0)) =
(0.1, 0.1, 0.1), system (7) generates chaotic behavior as shown
in Figure 1. As can be seen in Figure 1, chaotic waveforms and
broadband spectra indicate the chaoticity of system (7). In
addition, chaotic phase portraits of system (7) are illustrated
in Figure 2. Calculated Lyapunov exponents andKaplan-York
dimension of the system without equilibrium (7) are 
1 =0, 0594, 
2 = 0, 
3 = −0.358, and�KY = 2.1659, respectively.
In other words, system (7) has hidden attractors, which is
important for a wide range of scienti�c and engineering
processes [55–58]. In our work, the well-known algorithm
of Wolf et al. [59] has been applied to calculate Lyapunov
exponents. �e time of the computation is 10,000. It is
noted that, due to the di�erent values of the �nite-time local
Lyapunov exponents and Lyapunov dimension for di�erent
points, the maximum of the �nite-time local Lyapunov
dimensions on the grid of point has to be considered [60–62].

Dynamics of the system without equilibrium have been
investigated by changing the value of the bifurcation param-
eter � in the range from 0.2 to 0.36. Figures 3 and 4 show the
bifurcation diagram and the diagram of maximal Lyapunov
exponents (MLEs) of the no-equilibrium system. As can be
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Figure 1: Chaotic waveform and the frequency spectra generated from system (7): (a) time series of �(�), (b) single-sided amplitude spectrum
of �(�), (c) time series of �(�), (d) single-sided amplitude spectrum of �(�), (e) time series of �(�), and (f) single-sided amplitude spectrum of
�(�).
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Figure 2: Four views of the chaotic attractors in system without equilibrium (7) in (a) �-� plane, (b) �-� plane, (c) �-� plane, and (d) �-�-�
space for � = 0.35, 	 = 0.05, and the initial conditions (�(0), �(0), �(0)) = (0.1, 0.1, 0.1).
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Figure 3: Bifurcation diagramof the systemwithout equilibrium (7)
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Figure 5: Four views of limit cycles in the system without equilibrium (7) in (a) period-1 oscillation (� = 0.25), (b) period-2 oscillation (� =
0.3), (c) period-4 oscillation (� = 0.325), and (d) period-8 oscillation (� = 0.333) for the initial conditions (�(0), �(0), �(0)) = (0.1, 0.1, 0.1)
and 	 = 0.05.

seen from Figures 3 and 4, system (7) displays periodical
oscillations for � < 0.335. For instance, di�erent periodical
oscillations of system (7) are illustrated in Figure 5. For � ≥
0.335, complex behaviors of the system can be observed.
Moreover, it is easy to verify the presence of a period-
doubling route to chaos when increasing the value of the
parameter �.

3. Synchronization of Two Identical
Systems without Equilibrium

�e past decade has seen the rapid development of syn-
chronization schemes for numerous chaotic systems because
synchronization plays a critical role in practical applications
[63–67]. �erefore, when investigating a new chaotic system
it is important to consider its synchronization ability. In this
section, we study the synchronization of two new systems
without equilibrium (the master and slave systems) via an
adaptive controller, which has been reported as an e�ective
approach [68–70].

Here the master system without equilibrium is presented
by

�̇1 = �1,
̇�1 = �1,
�̇1 = −� �����1���� − �1 + 3�21 − �1�1 − 	,

(8)

where three state variables are�1,�1, and �1 and the unknown
system parameters are �, 	. �e slave system without equilib-
rium is given by

�̇2 = �2 + ��,
̇�2 = �2 + ��,
�̇2 = −� �����2���� − �2 + 3�22 − �2�2 − 	 + ��,

(9)

in which �2, �2, and �2 are system’s variables and u = [��, ��,
��]� is an adaptive control. By calculating the di�erence
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between the slave system and the master system, the state
errors are de�ned as

�� = �2 − �1,
�� = �2 − �1,
�� = �2 − �1.

(10)

As a result, the state error dynamics are calculated by

̇�� = �̇2 − �̇1,
̇�� = ̇�2 − ̇�1,
̇�� = �̇2 − �̇1.

(11)

�e parameter estimation error is denoted as ��
�� = � − �̂, (12)

where the estimation of the unknown parameter (�) is �̂. By
di�erentiating (12), we get

̇�� = − ̇̂�. (13)

We design an adaptive control to synchronize the slave
system without equilibrium (9) with the master system (8)
without equilibrium as follows:

�� = −�� − ����,
�� = −�� − ����,
�� = �� − 3 (�22 − �21) + �2�2 − �1�1 + �̂ (�����2���� − �����1����)

− ����.

(14)

In the adaptive control (14), three positive gain constants are
��, ��, and �� while the parameter update law is constructed
by

̇̂� = �� (�����1���� − �����2����) . (15)

It is simple to verify that the slave system (9) and
the master system (8) are synchronized when applying the
proposed adaptive control (14). We prove this result by using
the selected Lyapunov function:

�(��, ��, ��, ��) = 12 (�
2
� + �2� + �2� + �2�) . (16)

From (16), we have the di�erentiation of �:
�̇ = �� ̇�� + �� ̇�� + �� ̇�� + �� ̇��. (17)

By combining (8), (9), and (14), synchronization error
dynamics are achieved as

̇�� = −����,
̇�� = −����,
̇�� = −�� (�����2���� − �����1����) − ����.

(18)
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Figure 6: Time-history of the synchronization errors between the
slave system without equilibrium (9) and the master system without
equilibrium (8).

Finally, by substituting (13) and (18) into (17), the di�erentia-
tion of the Lyapunov function can be simpli�ed as

�̇ = −���2� − ���2� − ���2�. (19)

Obviously, the di�erentiation of � is a negative semide�nite
function. �erefore, according to Barbalat’s lemma [71], we
have �� → 0, �� → 0, and �� → 0 exponentially as � → ∞.
As a result, the synchronization between the slave system (9)
and the master system (8) is veri�ed.

In order to con�rm the calculation of the synchronization
scheme, we consider an example where the parameter values
of the master system and the slave system are �xed as

� = 0.35,
	 = 0.05. (20)

�e initial states of the master system are assumed as

�1 (0) = 0.1,
�1 (0) = 0.1,
�1 (0) = 0.1,

(21)

while the initial states of the slave system are selected as

�2 (0) = 0,
�2 (0) = −0.1,
�2 (0) = 0.2.

(22)

We take the positive gain constants which are �� = 6, �� =6, and �� = 6 and set the initial condition of the parameter
estimate, that is,

�̂ (0) = 0.3. (23)

�e time-history of the synchronization errors ��, ��, �� is
reported in Figure 6. Furthermore, the time series of the



Complexity 7

master and the slave systems are illustrated in Figure 7. From
Figures 6 and 7 it is straightforward to see the synchroniza-
tion of the slave system and the master system.

4. Realization of the Proposed
System without Equilibrium

�e issue of realizing theoretical chaotic models has received
considerable critical attention due to its practical applications
[65, 72–76]. �us, an electronic circuit for realizing the
proposed systemwithout equilibrium (7) is introduced in this
section. We rescaled three state variables of system without
equilibrium (7), that is, � = 10�, � = 10�, and � = 10�, to
get enough larger signals in our electronic circuit. �erefore,
the system without equilibrium (7) is transformed into the
following equivalent system:

�̇ = �,
�̇ = �,
�̇ = −� |�| − � + 3

10�
2 − 1

10�� − 10	.
(24)

Figure 8 shows the schematic of the circuit for realizing
system (24). As shown in Figure 8, there are three inte-
grators (�3–�5) implemented with operational ampli�ers.
�e circuit of absolute nonlinearity (|�|) is based on two
operational ampli�ers (�6, �7) and two diodes (�1, �2). By
applying Kirchho� ’s circuit laws into the designed circuit, the
following circuital equation is derived:

�̇ = 1
� �,

�̇ = 1
� �,

�̇
= 1
� (−

�
�� |�| − � +

�
�110��

2 − 1
10��� − ��) .

(25)

�e variables�,�, and� in (25) correspond to the voltages in
the outputs of three integrators (�3,�4, and�5), respectively.
It is simple to verify that system (25) is equivalent to the
system without equilibrium (24) by normalizing it with
# = �/� . In order to get � = 0.35 and 	 = 0.05, the
electronic components have been selected as � = 10 kΩ,
�� = 28.571 kΩ, �1 = 3.333 kΩ,  = 10 nF, and �� =0.5VDC.�e power supplies of all active devices are ±15VDC.
Implementation of the circuit on a breadboard is shown in
Figure 9.We havemeasured signals in the real circuit by using
oscilloscope. Experimental results are reported in Figure 10,
which display a good agreement with numerical results in
Figure 2.

5. Conclusions

�e present study provides an additional system without
equilibrium, which has received signi�cant attention in
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Figure 7: Time series of the master system (blue solid) and the slave
systems (red dashed): (a) �1 and �2, (b) �1 and �2, and (c) �1 and �2.

the research community recently. Dynamics of the pro-
posed system are studied by numerical tools and physical
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Figure 9: Physical realization of the theoretical system by using common electronic components.
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(a) (b) (c)

Figure 10: Captured chaotic attractors of the designed circuit in (a)�-� plane, (b)�-� plane, and (c) �-� plane.

implementation. It is interesting that the system can generate
chaotic signals despite the fact that there is an absence of
equilibrium. �e system is realized easily by using common
electronic components; therefore, it would be interesting to
assess the practical application of the new system. Further
studies related to the possible real-time applications of the
system will be investigated in our future works.
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[22] J. Lü and G. Chen, “Generating multiscroll chaotic attractors:
theories, methods and applications,” International Journal of
Bifurcation and Chaos in Applied Sciences and Engineering, vol.
16, no. 4, pp. 775–858, 2006.

[23] X. Wang and G. Chen, “A chaotic system with only one
stable equilibrium,” Communications in Nonlinear Science and
Numerical Simulation, vol. 17, no. 3, pp. 1264–1272, 2012.

[24] X. Wang and G. Chen, “Constructing a chaotic system with any
number of equilibria,” Nonlinear Dynamics, vol. 71, no. 3, pp.
429–436, 2013.

[25] L. P. Shilnikov, “A case of the existence of a countable number
of periodic motions,” Soviet Mathematics. Doklady, vol. 6, pp.
163–166, 1965.

[26] L. Shilnikov, A. Shilnikov, D. Turaev, and L. Chua, Methods
of Qualitative �eory in Nonlinear Dynamics, World Scienti�c,
Singapore, 1998.

[27] S. Jafari, J. C. Sprott, and S. M. R. H. Golpayegani, “Elementary
quadratic chaotic 
ows with no equilibria,” Physics Letters A,
vol. 377, no. 9, pp. 699–702, 2013.

[28] A. Sommerfeld, “Beitrage zum dynamischen ausbau der fes-
tigkeitslehre,” Zeitschri des Vereins Deutscher Ingenieure, vol.
46, pp. 391–394, 1902.

[29] R. Evan-Iwanowski, Resonance Oscillations in Mechanical Sys-
tems, Elsevier, Amsterdam, �e Netherlands, 1976.

[30] M. Eckert,Arnold Sommerfeld: Science, Life andTurbulent Times
1868–1951, Springer, New York, NY, USA, 2013.
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