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Abstract: In this paper, a novel design method of circularly polarized folded transmitarray antenna
(CPFTA) is presented by applying sequential rotation technology. Compared with the general design
method, the novel design method can reduce the design difficulty and improve the axis ratio (AR)
bandwidth significantly without adding any additional structure. To verify the proposed method,
both a general CPFTA (GCPFTA) and a novel CPFTA (NCPFTA) are designed, fabricated, measured
and compared. Good agreements between simulated and measured results are obtained. Thanks to
the creative design, the integrated radiation and scattering control of the CPFTA is realized for the
first time. The proposed NCPFTA has the advantages of broadband, high gain, planar structure, low
profile, convenience in installation and low radar cross section (RCS), which has potential application
in mobile satellite communication.

Keywords: high-gain antenna; low RCS; axis ratio bandwidth; beam pattern

1. Introduction

Metasurfaces play an important role in the manipulation of amplitude [1,2] phase [3,4]
and polarization [5,6] of electromagnetic wave. Reflectarray and transmitarray antennas [7–10]
based on metasurfaces possess the advantages of high gain, low mass and simple feed.
Compared with the reflectarray antenna, transmitarray antenna eliminates the shortcom-
ing of feed blockage. However, the focal length of transmitarray antenna increases its
own volume.

Folded transmitarray antenna (FTA) [11–13] based on path multiple reflection provides
a feasible solution to obtain low profile. Nevertheless, it’s a challenge for FTA to achieve
wideband operation. Moreover, the choice of feed antenna is also a critical factor for FTA
design. Undoubtedly, choosing a wideband horn antenna will inevitably increase the
volume of FTA. Alternatively, the co-planar integrated design of feed antenna can realize
compact structure and reduce the profile of FTA. However, the bandwidth of planar antenna
is usually limited. Therefore, there are few compact FTAs in the published literature. It is
pivotal to design an efficient FTA with integrated wideband planar feed antenna.

Circularly polarized electromagnetic wave has good characteristics of anti-Faraday
rotation and anti-interference [14,15], and is widely used in satellite communication system.
Circularly polarized folded transmitarray antenna (CPFTA) [16,17] can meet the require-
ments of high gain, light weight and compact structure. It has great potential applications
in satellite communication and point-to-point communication. Compared with FTA, the
design difficulty of CPFTA increases significantly.

Stealth technology has attracted the attention of many countries. Radar cross section
(RCS) is an important criterion to evaluate stealth performance. RCS reduction of antenna
has always been a research hotspot [18–20]. Furthermore, it is meaningful to improve
the radiation and scattering performance of the antenna simultaneously [21–23]. CPFTA
has great potential applications in military fields, so it is valuable to design it with the
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integrated control of radiation and scattering. To the author’s knowledge, there is no
published literature on the integrated radiation and scattering performance of CPFTA. We
aim to design a high-gain, low-profile, and low-RCS transmitarray antenna, which has
application in mobile satellite communication.

In this paper, the novel circularly polarized folded transmitarray antenna (NCPFTA)
with integrated radiation and scattering performance is proposed and successfully proved
by experiments. Compared with general circularly polarized folded transmitarray antenna
(GCPFTA), the novel design can improve the axis ratio (AR) bandwidth significantly and
reduce RCS simultaneously without adding any additional structure. The NCPFTA has
the advantages of broadband, high gain, planar structure, low profile, convenience in
installation and low RCS.

2. The Principle and Components of CPFTA
2.1. Principle of CPFTA

Figure 1 illustrates the configuration of the CPFTA, which consists of linearly polarized
feed antenna, reflectarray and transmitarray. The planar reflectarray and transmitarray
are placed in parallel. The reflectarray can realize the cross-polarized reflection. For
different linearly polarized incident waves, the transmitarray can realize dual different
functions—co-polarized reflection and circularly polarized transmission.
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Figure 1. The configuration of the CPFTA in side-view.

In Figure 1, folded electromagnetic wave path is presented to illustrate the principle
of CPFTA.

(1) Wave path A: the feed antenna radiates y-polarized waves at incident angle β1.
(2) Wave path B: the y-polarized waves are reflected by the transmitarray at angle β2.
(3) Wave path C: the y-polarized waves are converted into x-polarized waves by the

reflectarray at angle β4.
(4) Finally, the transmitarray compensates the phase of x-polarized spherical waves and

radiates circularly polarized quasi-plane waves.

Based on Fresnel reflection law, the incident angle equals to the reflection angle, i.e.,
β1 = β2 or β3 = β4. According to the geometrical relationship shown in Figure 1, we can
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further derive that β1 = β2 = β3 = β4. Therefore, the total path after two reflections is
equivalent to the path from the focus (F) and the profile of FTA is reduced to F/3.

2.2. The Unit Cell of Transmitarray

The receiver-transmitter structure is adopted to construct transmitarray. The schematic
geometry of the unit cell is shown in Figure 2. The unit contains three metallic layers
separated by two identical substrates (TACONIC-TLX-8). The substrates are bonded
together with ROGST-4450F. The top and bottom metallic layers are connected by metallic
via. The middle layer is a metallic ground etched with circular hole. The periodicity (p) of
the unit cell is 10 mm (about 0.33 λ at 10 GHz) and the profile of the unit cell is 3.1 mm
(about 0.1 λ at 10 GHz). The parameters are tabulated in Table 1.
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Table 1. Parameters of transmitarray unit cell.

Parameter w l l1 w1 r2 r1

Value (mm) 8 7.8 2 1.8 1.4 0.9

Parameter r3 w2 dh dl h p

Value (mm) 1.4 1.1 0.1 3.6 1.5 10

The structure of the unit cell can be regarded as back-to-back combination of two
microstrip antennas. The bottom metallic layer is a E-shaped patch used to be a linearly
polarized receiving antenna. The top metallic layer is an anisotropic patch used to be a
circularly polarized transmitting antenna. The transmitarray works as follows. Firstly, the
bottom E-shaped patch receives the linearly polarized electromagnetic wave radiating from
the feed antenna. Then, the electromagnetic energy is transferred to the top anisotropic
patch by the metallic via. Finally, the top anisotropic patch radiates circularly polarized
electromagnetic wave.

Under x-polarized incident waves, Txx and Tyx, represent the components of co-
polarized and cross-polarized transmission, respectively. Analogously, Rxx and Ryx rep-
resent the components of co-polarized and cross-polarized reflection. ∆ϕ represents the
phase difference between Tyx and Txx. Defining AR [24] of circularly polarized waves and
transmission ratio (TR) of the unit cell as:

AR =

∣∣∣∣∣20log10 tan

[
0.5arcsin

(
2TxxTyx

T2
xx + T2

yx
sin∆ϕ

)]∣∣∣∣∣ (1)

TR =

(
Tyx

2 + Txx
2)(

Tyx2 + Txx2 + Rxx2 + Ryx2
) (2)
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Figure 3a plots the reflection and transmission amplitudes under x-polarized incident
waves. Two obvious resonance frequencies of Rxx are observed at 9.4 GHz and 10.8 GHz.
The two resonance frequencies correspond to two TR peaks, as shown in Figure 3c. Around
9.2 GHz, the amplitude of Txx and Tyx are equal, which satisfies the amplitude condition
for generating circularly polarized waves. Similarly, Tyy, Txy, Ryy and Rxy can be obtained
under y-polarized incident waves. Since the polarization direction of incident waves is
orthogonal to the E-shaped patch, the E-shaped patch hardly receives energy [25]. Hence,
Figure 3b shows that the y-polarized incident waves are totally reflected.
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Figure 3. The reflection and transmission amplitudes of the unit cell under (a) x-polarized and
(b) y-polarized incident waves. Simulated (c) AR and (d) TR under x-polarized incident waves.

The AR and TR are calculated under x-polarized incident waves, as shown in the
Figure 3c,d. In the range of 8.9–9.5 GHz, the x-polarized incident waves are converted to
circularly polarized transmission waves with the AR less than 3-dB. Furthermore, the TR
of oblique incident waves is also studied. The simulated results show that the TR is larger
than 80% in the range of 8.9–11.4 GHz with incident angle less than 45◦.

Due to the feature of the receiver-transmitter structure, the top and bottom metallic
layers are relatively independent. Hence, rotating the bottom E-shaped metallic patch
with 180◦ can realize 1-bit transmission phase adjustment. This is the key for radiation
beam focusing.

To better understand the working mechanism of the cell, the current distributions
on bottom E-shaped patch at the two resonant frequencies are analyzed in Figure 4. At
9.4 GHz, the resonance is mainly formed by bended arms. Compared with Figure 4b,
the current path is longer, and the current intensity is higher in Figure 4a. Therefore, the
cell has lower amplitude of Rxx, as seen in Figure 3a. While at 10.8 GHz, the direction of
currents is consistent. Figure 4b shows that the E-shaped patch works such as ordinary
microstrip antenna.
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In addition, the current distributions of top anisotropic patch with phases of 0◦, 90◦,
180◦ and 270◦ are simulated at 9.2 GHz. Figure 5 depicts that the direction of current
changes along the left-hand rotation. Therefore, the transmitarray radiates left-handed
circularly polarized waves.
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2.3. The Unit Cell of RA

The schematic geometry of reflectarray unit cell is shown in Figure 6. The unit is
composed of top fractal metallic patch, substrate (TACONIC-TLX-8) and bottom metallic
ground. The periodicity (p2) of the unit is 7 mm (about 0.23 λ at 10 GHz). Detailed
structural parameters are h2 = 2.5 mm (about 0.083 λ at 10 GHz), m = 1.6 mm, l2 = 1.4 mm,
n = 2.4 mm and k = 1.8 mm. The top fractal metallic patch is symmetrical along the u-axis
and v-axis, respectively.

The reflectarray can realize cross-polarized reflection of linearly polarized incident
waves. Defining polarization convert ratio (PCR) of cross-polarized reflection as:

PCR =

(
Ryx
)2[

(Rxx)
2 +

(
Ryx
)2
] (3)
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Figure 7a shows that the PCR is more than 95% in the range of 8.2–11.2 GHz with
incident angle less than 30◦.
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Figure 9a depicts the reflection coefficients (S11) and realized gains of the proposed 
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measured −10-dB S11 bandwidth is from 8.5 GHz to 10.7 GHz. The realized gain is stable 

in the operation bandwidth. The radiation patterns at the two resonant frequencies are 

plotted in Figure 9b,c, which are almost coincident within −10-dB beam width. The prox-

imity of the first branch of the feeding line and the patch sides affects antenna radiation 

performance. As a result, the radiation patterns of 8.7 GHz and 10 GHz deviate from the 

broadside −5° on phi = 0° plane. The second branch of the feeding line cause the cross 

Figure 7. (a) The PCR of reflectarray with incident angle less than 30◦. (b) The reflection amplitudes
and phases in u-v coordinate.

The principle of cell can be analyzed in u-v coordinate. Suppose that the x-polarized
incident waves are decomposed into u-polarized and v-polarized waves in same phase.
When the incident waves are u-polarized, Ruu and Rvu represent co-polarized and cross-
polarized reflection, respectively. Similarly, Rvv and Ruv represent co-polarized and cross-
polarized reflection of v-polarized incident waves. Since the cell is symmetric along the u-v
coordinate, the u-polarized and v-polarized incident waves will realize co-polarized total
reflection, as shown in Figure 7b. Moreover, the phase difference between the co-polarized
reflection of u-polarized and v-polarized waves are around 180◦. Therefore, the u-polarized
and v-polarized reflected waves are combined into the y-polarized waves.

2.4. Planar Feed Antenna

In order to integrate the feed antenna and reflectarray, a planar four element microstrip
antenna with U-shaped gap is designed, as shown in Figure 8. The substrate is identical to
the reflectarray. The detailed parameters of the feed antenna are as follows: p3 = 14 mm,
w3 = 10.4 mm, l3 = 8 mm, w4 = 1.9 mm, l4 = 6.1 mm, and w5 = 3.8 mm.
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broadside −5° on phi = 0° plane. The second branch of the feeding line cause the cross 

Figure 8. (a) The schematic geometry of planar feed antenna. (b) The fabricated planar feed antenna.

Figure 9a depicts the reflection coefficients (S11) and realized gains of the proposed
planar feed antenna. There are two resonant frequencies at 8.7 GHz and 10 GHz. The
measured −10-dB S11 bandwidth is from 8.5 GHz to 10.7 GHz. The realized gain is
stable in the operation bandwidth. The radiation patterns at the two resonant frequencies
are plotted in Figure 9b,c, which are almost coincident within −10-dB beam width. The
proximity of the first branch of the feeding line and the patch sides affects antenna radiation
performance. As a result, the radiation patterns of 8.7 GHz and 10 GHz deviate from the
broadside −5◦ on phi = 0◦ plane. The second branch of the feeding line cause the cross
polarized component at phi = 90◦, as shown in Figure 9b,c. The planar feed antenna has
the advantage of broadband, low profile and easy integration.
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3. The General Circularly Polarized Folded Transmitarray Antenna Design
3.1. Design of GCPFTA

The schematic of GCPFTA is shown in the Figure 10. To realize low profile, the ratio of
focal length to aperture (F/D) of GCPFTA is selected as 0.45. The transmitarray contains
24 × 24 cells with total size of 240 mm × 240 mm × 3.1 mm (8 λ × 8 λ × 0.1 λ). Hence,
the equivalent focal length (F) is 108 mm. According to the principle of FTA described
in Section 2, the profile of FTA is reduced to F/3. Therefore, the height (H) between
transmitarray and reflectarray is 36 mm.
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Figure 10. The schematic of GCPFTA.

The reflectarray contains 34 × 34 cells with total size of 238 mm × 238 mm × 2.5 mm
(8 λ × 8 λ × 0.1 λ). 4 × 4 cells are replaced by planar feed antenna in the middle of
reflectarray, as shown in Figure 10.

The anisotropic patches on the top layer of the transmitarray are uniformly arranged,
as shown is Figure 11a. As mentioned in Section 2, rotating the bottom E-shaped metallic
patches of transmitarray can realize 1-bit transmission phase adjustment. f 0 is the center
working frequency of the feed antenna, and c0 is light speed. (m, n) is used to represent
the position of the transmitarray cell. The compensation phase of the unit (m, n) can be
expressed as:

φ(m, n) =
2π f0

c0
· (Fmn − F) (4)
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3.2. Simulated and Measured Results 

The simulated and measured results of GCPFTA are shown in Figure 13. The 

GCPFTA obtains S11 bandwidth at range of 8.5–10.6 GHz and the 3-dB realized gain band-

width of 8.8–10.3 GHz. Comparatively, the 3-dB AR bandwidth is narrow at range of 9.0–

Figure 11. (a) The arrangement of 24 × 24 anisotropic patches on the top layer of transmitarray with
size of 240 mm × 240 mm. (b) The arrangement of 24 × 24 E-shaped patches on the bottom layer of
transmitarray with size of 240 mm × 240 mm.
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Fmn is the distance from focus to cell (m, n), and F is the equivalent focal length. The
compensation phase of the cell (m, n) can be discretized by the formula:

C(m, n) =
{

0◦, −90◦ < mod[φ(m, n), 360◦] ≤ 90◦

180◦, 90◦ < mod[φ(m, n), 360◦] ≤ 270◦
(5)

Consequently, the obtained arrangement of E-shaped patches on the bottom metallic
layer is illustrated in Figure 11b.

The GCPFTA based on low-cost printed circuit board technique is fabricated and
assembled, as shown in Figure 12. The height between transmitarray and reflectarray
is controlled by dielectric cylinders. The measurement of GCPFTA is carried out in an
anechoic chamber and the data was processed by averaging multiple measurements.
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Figure 12. (a) The fabricated GCPFTA. (b) The measurement of GCPFTA in anechoic chamber.
(c) The integrated reflectarray and planar feed antenna with total size of 238 mm × 238 mm × 2.5 mm.
(d) The E-shaped patches on the bottom layer of transmitarray with size of 240 mm × 240 mm.
(e) The anisotropic patches on the top layer of transmitarray with size of 240 mm × 240 mm.

3.2. Simulated and Measured Results

The simulated and measured results of GCPFTA are shown in Figure 13. The GCPFTA
obtains S11 bandwidth at range of 8.5–10.6 GHz and the 3-dB realized gain bandwidth of
8.8–10.3 GHz. Comparatively, the 3-dB AR bandwidth is narrow at range of 9.0–9.6 GHz,
which is basically in accordance with the circularly polarized narrow bandwidth of transmi-
tarray shown in Figure 3c. Ultimately, the narrow 3-dB AR bandwidth limits the working
bandwidth of GCPFTA.
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Figure 13. Simulated and measured results of GCPFTA (a) S11, realized gain and (b) AR. 
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4.1. Design of NCPFTA 

Generally, it’s a challenge to design wideband cell of transmitarray for CPFTA, since 

the transmitarray cell should possess four characteristics: 

(1) High transmission ratio: the energy of the feed can be radiated through the trans-

mitarray and the impedance match is acceptable. 
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difference from feed antenna. 
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The rotationmn is the feeding phase of sequential rotation in unit (m, n). The bottom E-
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of E-shaped patch is shown in Figure 14b. Based on the above descriptions, NCPFTA is 

fabricated, assembled and tested, as illustrated in Figure 15. 
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4. The Novel Circularly Polarized Folded Transmitarray Antenna Design
4.1. Design of NCPFTA

Generally, it’s a challenge to design wideband cell of transmitarray for CPFTA, since
the transmitarray cell should possess four characteristics:

(1) High transmission ratio: the energy of the feed can be radiated through the transmi-
tarray and the impedance match is acceptable.

(2) The manipulation of transmission phase: compensating the phase of the spatial path
difference from feed antenna.

(3) Polarized conversion: linearly polarized incident waves are converted into circularly
polarized transmission waves.

(4) Selectively polarized transmission: x-polarized waves can be transmitted while the
y-polarized waves will be totally reflected.

To simplify the requirements for the cell of transmitarray, sequential rotation tech-
nique [26,27] is applied to design CPFTA for the first time. It is worth noting that the
only difference between the proposed GCPFTA and NCPFTA is different arrangements
of transmitarray. The novel design method can simplify the design difficulty significantly
without adding any additional structure.

2 × 2 sub-array second-order sequential rotation is adopted [28], and the anisotropic
patches of the transmitarray are arranged as shown in the Figure 14a. In order to realize
radiation beam focusing, both the compensation of spatial path difference and sequential ro-
tation phase are considered simultaneously. Based on Formula (4), the phase compensation
can be expressed as:

φ(m, n) =
2π f0

c0
· (Fmn − F) + rotationmn (6)
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Figure 16. Simulated and measured results of NCPFTA (a) S11, realized gain and (b) AR. 

Figure 14. (a) The arrangement of 24 × 24 anisotropic patches with size of 240 mm × 240 mm. (b) The
arrangement of 24 × 24 E-shaped patches with size of 240 mm × 240 mm.

The rotationmn is the feeding phase of sequential rotation in unit (m, n). The bottom
E-shaped patches of transmitarray are used for 1-bit phase compensation. The arrangement
of E-shaped patch is shown in Figure 14b. Based on the above descriptions, NCPFTA is
fabricated, assembled and tested, as illustrated in Figure 15.
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Figure 16. Simulated and measured results of NCPFTA (a) S11, realized gain and (b) AR. 

Figure 15. (a) The fabricated NCPFTA. (b) The measurement of NCPFTA in microwaves anechoic
chamber. (c) The integrated reflectarray and planar feed with total size of 238 mm × 238 mm × 2.5 mm.
(d) The bottom layer of transmitarray with size of 240 mm × 240 mm. (e) The top layer of transmitar-
ray with size of 240 mm × 240 mm.

4.2. Simulated and Measured Results

The simulated and measured results of NCPFTA are shown in Figure 16. The results
show that NCPFTA maintains S11 bandwidth at range of 8.5–10.6 GHz. The 3-dB realized
gain bandwidth is from 8.9 GHz to 10.5 GHz (relative bandwidth 16.5%), and the peak gain
is 22.4 dBi with the aperture efficiency 23.9%. Moreover, the 3-dB AR of NCPFTA shows
ultra-wideband at range of 8.6–10.9 GHz (relative bandwidth 23.6%), which obviously
proves the effectiveness of the proposed design method.
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Figure 17 shows the simulated and measured radiation patterns of NCPFTA in phi = 0◦,
phi = 45◦, phi = 90◦ and phi = 135◦. The amplitude of left-hand circularly polarized (LHCP)
and right-hand circularly polarized (RHCP) differ greatly in the direction of main beam.
Stable high gain pencil-shaped radiation patterns are observed at 8.7 GHz, 9.7 GHz and
10.1 GHz. The measured results are in good agreements with the simulated results.
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Figure 17. Simulated and measured radiation patterns in the phi = 0°, phi = 45°, phi = 90° and phi = 

135° at (a) 8.7 GHz, (b) 9.7GHz and (c) 10.1GHz. 
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Figure 17. Simulated and measured radiation patterns in the phi = 0◦, phi = 45◦, phi = 90◦ and
phi = 135◦ at (a) 8.7 GHz, (b) 9.7 GHz and (c) 10.1 GHz.

Compared with the ideal directivity of the aperture, multiple factors lead to gain loss
of the fabricated NCPFTA. A detailed gain loss analysis is summarized in Table 2. The
overall gain loss mainly comes from transmitarray, including 1-bit phase quantization loss,
taper loss, transmission and reflection loss of transmitarray. Other losses are composed of
fabrication loss, assembly and measurement error.

Table 2. Gain loss analysis of the proposed NCPFTA.

Aperture Size 240 mm × 240 mm
Measured Gain 22.4 dBi (23.9%)
Ideal Directivity 28.6 dBi

Total Loss 6.2 dB
Spillover Loss 0.7 dB

Taper Loss 0.6 dB
Transmission Loss of TA 1.0 dB

Reflection Loss of TA 0.2 dB
Reflection Loss of RA 0.3 dB

Other Losses 0.6 dB
Phase quantization Loss 2.8 dB

5. Performance Discussion

The integrated radiation and scattering performance of the NCPFTA are discussed in
this section. The radiation performances of planar feed antenna, feed antenna with RA,
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GCPFTA and NCPFTA are compared. On the other hand, the scattering performances of
GCPFTA, NCPFTA and the same size metallic board are analyzed.

5.1. Radiation Performance

Figure 18a plots the measured S11 of four antennas. The impedance match of the planar
feed antenna is slightly affected by the reflectarray and transmitarray. Both the GCPFTA
and NCPFTA still maintain the broad band from 8.5 GHz to 10.6 GHz. Therefore, the broad
band of the planar feed antenna and the well match of the transmitarray are proved.
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Figure 18. (a) The measured S11 of antennas. (b) The measured realized gain of antennas.

Furthermore, the measured realized gain is compared and analyzed, as shown in
Figure 18b. Compared with the planar feed antenna, the realized gain of the feed with
reflectarray fluctuates slightly, which is caused by the coupling between the planar feed
and the RA, as shown in Figure 10. Similarly, the realized gain of the GCPFTA and NCPFTA
show slight fluctuations.

Comparing the 3-dB AR of GCPFTA and NCPFTA, Figures 13b and 17b show that the
bandwidth of NCPFTA is greatly widen.

At present, there are little open literature focusing on the CPFTA. To further demon-
strate the advantages of our work, some literature is selected for comparison, as listed in
the Table 3 below. It can be seen that the proposed NCPFTA in this paper has appropriate
radiation performance.

Table 3. Comparison between the proposed CPFTA and some literature.

Ref. Type Pol. Feed
Type

Feed
Integration H/D Center Fre.

(GHz)
Peak Gain

(Dbi)

S11
BW
(%)

3-dB
AR BW

(%)

3-dB
Gain

BW (%)

RCS
Analysis

[11] FTA LP horn NO 0.3 27.5 25.2 21.6 —— 18 NO
[12] FTA LP horn NO 0.33 21 21.9 >9.5 —— 6.7 NO
[16] FTA CP Microstrip YES 0.16 10.3 21.8 16.3 23.2 11.6 NO
[29] FRT CP Array YES 0.29 5.3 22.8 15.1 >11.3 13 NO

GCPFTA FTA CP Microstrip YES 0.15 9.5 21.4 21.1 6.5 15.7 YES
NCPFTA FTA CP Microstrip YES 0.15 9.5 22.4 21.1 23.6 16.5 YES

5.2. Scattering Performance

To the authors’ best knowledge, the scattering performance of CPFTA is studied for
the first time in this paper. In order to make a comparison, the RCS of the same size metallic
board is simulated and measured. Due to the limitation of experimental conditions, RCS at
X-band was measured, as shown in Figure 19a. For the detection wave in the broadside
direction, the NCPFTA presents the effect of diffuse scattering, as shown in Figure 1. The
total RCS of the NCPFTA and GCPFTA in normal direction are shown in Figure 19b,c. Both
under x-polarized and y-polarized detection waves, the NCPFTA has lower RCS in broad



Sensors 2022, 22, 5503 14 of 16

band. For y-polarized detection waves, the NCPFTA shows obvious RCS reduction at
7.7–12.7 GHz. Compared with GCPFTA, the maximum RCS reduction is 12.9 dB at 9.4GHz.
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Figure 20. The amplitudes of co-polarized reflection, cross-polarized reflection, co-polarized trans-

mission and cross-polarized transmission under (a) x-polarized and (b) y-polarized detection 

waves. 

For the GCPFTA, the frequency of high transmission amplitude is basically con-

sistent with the frequency of small RCS, as shown in Figures 19 and 20. Compared with 

Figure 19. (a) The RCS measurement in microwaves anechoic chamber. The simulated and measured
total RCS of the NCPFTA and the GCPFTA under (b) x-polarized and (c) y-polarized detection waves.

In order to further explore the reasons for RCS reduction, the cell of transmitarray is
simulated under x-polarized and y-polarized detection waves. The amplitudes of reflection
and transmission are shown in Figure 20. The transmitarray cells of GCPFTA are uniformly
arranged, as shown in Figure 11a. In addition, the cell shows different electromagnetic
responses to x-polarized and y-polarized detection waves, as shown in Figure 20. Hence,
the total RCS of the GCPFTA is different obviously under the different polarized detection
waves, as shown in Figure 19b,c. However, because of the sequential rotation technique of
the NCPFTA, the cell arrangement of transmitarray is similar along the x-axis and y-axis,
as seen in Figure 14a. Therefore, the total RCS of the NCPFTA is similar under x-polarized
and y-polarized detection waves, as shown in Figure 19b,c.

Sensors 2022, 22, 5503 13 of 15 
 

 

5.2. Scattering Performance 

To the authors’ best knowledge, the scattering performance of CPFTA is studied for 

the first time in this paper. In order to make a comparison, the RCS of the same size me-

tallic board is simulated and measured. Due to the limitation of experimental conditions, 

RCS at X-band was measured, as shown in Figure 19a. For the detection wave in the 

broadside direction, the NCPFTA presents the effect of diffuse scattering, as shown in 

Figure 1. The total RCS of the NCPFTA and GCPFTA in normal direction are shown in 

Figure 19b, 19c. Both under x-polarized and y-polarized detection waves, the NCPFTA 

has lower RCS in broad band. For y-polarized detection waves, the NCPFTA shows obvi-

ous RCS reduction at 7.7–12.7 GHz. Compared with GCPFTA, the maximum RCS reduc-

tion is 12.9 dB at 9.4GHz. 

 

 mea. metallic board

 mea. GCPFTA

 mea. NCPFTA

 sim. metallic board

 sim. NCPFTA

 sim. GCPFTA

7 8 9 10 11 12 13
0

5

10

15

20

Frequency(GHz)

T
o
ta

l  
R

C
S

(d
B

sm
)

 

 mea. metallic board

 mea. GCPFTA

 mea. NCPFTA

 sim. NCPFTA

 sim. GCPFTA

 sim. metallic board

7 8 9 10 11 12 13
0

5

10

15

20

Frequency(GHz)

T
o

ta
l  

R
C

S
(d

B
sm

)

 

(a) (b) (c) 

Figure 19. (a) The RCS measurement in microwaves anechoic chamber. The simulated and meas-

ured total RCS of the NCPFTA and the GCPFTA under (b) x-polarized and (c) y-polarized detection 

waves. 

In order to further explore the reasons for RCS reduction, the cell of transmitarray is 

simulated under x-polarized and y-polarized detection waves. The amplitudes of reflec-

tion and transmission are shown in Figure 20. The transmitarray cells of GCPFTA are uni-

formly arranged, as shown in Figure 11a. In addition, the cell shows different electromag-

netic responses to x-polarized and y-polarized detection waves, as shown in Figure 20. 

Hence, the total RCS of the GCPFTA is different obviously under the different polarized 

detection waves, as shown in Figure 19b,c. However, because of the sequential rotation 

technique of the NCPFTA, the cell arrangement of transmitarray is similar along the x-

axis and y-axis, as seen in Figure 14a. Therefore, the total RCS of the NCPFTA is similar 

under x-polarized and y-polarized detection waves, as shown in Figure 19b,c. 

 Ryx

 Rxx

 Tyx

 Txx

7 8 9 10 11 12 13

−60

−50

−20

−10

0

Frequency(GHz)

A
m

p
li

tu
d

e(
d

B
)

 

 Ryy

 Rxy

 Tyy

 Txy

7 8 9 10 11 12 13

−60

−50

−20

−10

0

Frequency(GHz)

A
m

p
li

tu
d

e(
d

B
)

 
(a) (b) 

Figure 20. The amplitudes of co-polarized reflection, cross-polarized reflection, co-polarized trans-

mission and cross-polarized transmission under (a) x-polarized and (b) y-polarized detection 

waves. 

For the GCPFTA, the frequency of high transmission amplitude is basically con-

sistent with the frequency of small RCS, as shown in Figures 19 and 20. Compared with 

Figure 20. The amplitudes of co-polarized reflection, cross-polarized reflection, co-polarized trans-
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For the GCPFTA, the frequency of high transmission amplitude is basically consistent
with the frequency of small RCS, as shown in Figures 19 and 20. Compared with metallic
board, the reason for the RCS reduction is the transmission of detection waves. After
penetrating the transmitarray, the detection waves are converted into cross-polarized
waves by the reflectarray. Then, the waves are reflected many times in the air cavity
between the transmitarray and reflectarray, and are dispersed to multiple directions.

For the NCPFTA, there are two reasons for RCS reduction. One is the transmission of
detection waves. The other is the reflected phase cancellation of transmitarray. Figure 20
shows large reflection components. The anisotropic patches of transmitarray with different
rotation directions will possess different reflection performances. The reflected waves can
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realize reflected phase cancellation between each other. Hence, the NCPFTA possess better
stealth performance.

6. Conclusions

The sequential rotation technique is successfully applied to design a NCPFTA in this
paper. The integrated radiation and scattering design of CPFTA is presented for the first
time. Experimental results of NCPFTA show 3-dB realized gain bandwidth from 8.9 GHz
to 10.5 GHz (relative bandwidth of 16.5%), and the peak gain is 22.4 dBi with the aperture
efficiency 22.9%. Moreover, the 3-dB AR of NCPFTA shows ultra-wideband at range of
8.6–10.9 GHz (relative bandwidth 23.6%). Compared with GCPFTA, the NCPFTA possess
better stealth performance. It is worth noting that the novel design method can simplify
the design difficulty significantly without adding any additional structure. The proposed
NCPFTA has potential application in mobile satellite communication.
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