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Anovel clinical decision support system is proposed in this paper for evaluating the fetal well-being from the cardiotocogram (CTG)
dataset through an Improved Adaptive Genetic Algorithm (IAGA) and Extreme Learning Machine (ELM). IAGA employs a new
scaling technique (called sigma scaling) to avoid premature convergence and applies adaptive crossover and mutation techniques
with masking concepts to enhance population diversity. Also, this search algorithm utilizes three di	erent 
tness functions (two
single objective 
tness functions and multi-objective 
tness function) to assess its performance. �e classi
cation results unfold
that promising classi
cation accuracy of 94% is obtained with an optimal feature subset using IAGA. Also, the classi
cation results
are compared with those of other Feature Reduction techniques to substantiate its exhaustive search towards the global optimum.
Besides, 
ve other benchmark datasets are used to gauge the strength of the proposed IAGA algorithm.

1. Introduction

In clinical practice, cardiotocography (CTG) was introduced
in the late 1960s, which is a noninvasive and cost-e	ective
technique for evaluating the fetal well-being. �is technique
has been widely used by obstetricians for examining the
fetal well-being (inside the mother’s uterus) as the fetus is
not available for direct observations. �e baby’s fetal heart
rate (FHR) and the mother’s uterine contractions (UC) are
recorded on a paper trace known as cardiotocograph. �e
CTG technique is highly instrumental in the early identi
ca-
tion of a pathological state (i.e., congenital heart defect, fetal
distress, or hypoxia) and it helps the obstetrician to predict
future complications.

During the critical period of labor, these FHR signals
are used as a denotation of the fetal condition and as a
warning of possible fetal and neonatal compromise, namely,
metabolic acidosis. Severe hypoxic injury of the fetus can
result in the neurodevelopmental disability and cerebral palsy
or even death [1]. Hence, such FHR patterns are devised in

such a way that such risky conditions of the fetus need to be
identi
ed in earlier stages, in order to alert the obstetricians
to intervene before there is an irreversible damage to the
fetus. Although the FHR signals interpret and provide early
estimations and warnings about the fetal condition [2], still,
there has been lot of scepticism as there is inconsistency
in such interpretation and the increase of false positive
diagnosis. On one hand, advances in signal processing and
pattern recognition techniques have paved theway to develop
an e�cient medical diagnosis system to analyze and classify
the FHR signal appropriately [3].

In this paper, a clinical decision support system called
Improved Adaptive Genetic Algorithm (IAGA) has been
developed to discern the FHR signals of the CTG recordings
into their respective groups. For this purpose, the CTG
dataset has been acquired from the UCI machine learning
repository for experimentation. �is dataset consists of 2126
CTG samples and each of these samples has a feature length
of 21. Out of these 2126 samples, 1655 samples belong to
the normal state, 176 samples belong to the pathological
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Table 1: List of features in CTG dataset.

S.
number

Name of the
features

Description

1 LB FHR baseline (beats per minute)

2 AC Number of accelerations per second

3 FM Number of fetal movements per second

4 UC Number of uterine contractions per second

5 DL Number of light decelerations per second

6 DS Number of severe decelerations per second

7 DP
Number of prolonged decelerations per
second

8 ASTV
Percentage of time with abnormal short
term variability

9 MSTV Mean value of short term variability

10 ALTV
Percentage of time with abnormal long term
variability

11 MLTV Mean value of long term variability

12 Width Width of FHR histogram

13 Min Minimum of FHR histogram

14 Max Maximum of FHR histogram

15 Nmax Number of histogram peaks

16 Nzeros Number of histogram zeros

17 Mode Histogram mode

18 Mean Histogram mean

19 Median Histogram median

20 Variance Histogram variance

21 Tendency

Histogram tendency:−1 = le� asymmetric;
0 = symmetric;
1 = right asymmetric

state, and 295 samples belong to the suspect state. Features
of this CTG dataset used for experimentation have been
explained in Table 1. Single and multiobjective 
tness func-
tions have been used to gauge the e�cacy of the IAGA.
Several classi
ers like �-NN (�-Nearest Neighbor), SVM
(SupportVectorMachine), BN (BayesianNetwork), andELM
(Extreme LearningMachine) have been used to discern these
features.

With the objective of proving the robustness of this
search algorithm, apart from the CTG dataset, 
ve other
benchmark datasets, that is, MEEI voice dataset, Parkin-
son’s (PD) dataset, Cleveland Heart Disease (CAD) dataset,
Erythemato-Squamous (ES) dataset, and Breast Tissue (BT)
dataset, have been taken from the UCI machine learning
repository for experimentation and tested with this algo-
rithm. �e main aim is to select the best clinical features of
these datasets through the proposed IAGAmethod, which, in
turn, attains promising classi
cation accuracywith aminimal
number of features.

�e rest of this paper is organised as follows. Section 2
describes the literature works done in this speci
c problem
domain. Section 3 explains about the feature selection carried
out using IAGA. Section 4 presents the classi
ers employed

and the performance measures. Section 5 enunciates the dis-
cussion of the classi
cation results of CTG dataset. Section 6
elaborates the classi
cation results of other datasets and
Section 7 concludes the entire work.

2. Previous Works on CTG Dataset

Numerous approaches have been investigated using conven-
tional and arti
cial intelligence techniques for feature extrac-
tion and also to come out with diagnostic systems [4]. In
[3], the automatic classi
cation of FHR signal which belongs
to hypoxic and normal newborns has been carried out
through a hidden Markov models (HMM) based approach.
Yet again, an ANBLIR (arti
cial neural network based on
logical interpretation of fuzzy if-then rules) system is used
to evaluate the risk of low-fetal birth weight as normal or
abnormal using CTG signals recorded during the pregnancy
in [5].

2.1. Basic GA. As an expeditious search strategy, GA has
been utilized in the assessment of the fetal well-being.
For example, Ocak (2013) reported that a genetic based
optimization followed by SVM classi
cation helps in pre-
dicting the substantial features for assessing the fetal state.
�e classi
cation accuracy with FHR data set obtained was
99.23%with 13 features [6]. An adaptive neurofuzzy inference
system (ANFIS) has been proposed for the prediction of fetal
status from theCTG recordings as normal or pathological [7].

Yılmaz and Kılıkçıer have suggested a combined scheme
of binary decision tree (BDT) and particle swarm opti-
mization (PSO) for handling this speci
c classi
cation task.
�rough least squares support vector machine (LS-SVM),
a good classi
cation accuracy rate of 91.62% was achieved.
Besides, this experimentation has resulted in the three-class
classi
cation of the CTG dataset using receiver operation
characteristic analysis and Cobweb representation [8]. How-
ever, the problem of design of a better genetic based search
heuristic that provides higher classi
cation accuracy along
with a reduced number of voice features in this speci
c prob-
lem domain is still open. In other words, the reduced optimal
feature subset must be su�cient enough to classify the data
samples into their respective classes than the previous works.

Basic GA deals with candidate solutions which are
represented by individuals (or chromosomes) in a large
population. It starts with the random generation of ini-
tial set of chromosomes followed by their corresponding

tness evaluation. �e successive generations are created
(iteratively) by the picking of the highly 
t individuals of
the current generation. On achieving the eligible individual
that satis
es our constraint, the GA cycle is stopped using
the termination criteria and this individual becomes the
solution of the problem. �ere are three signi
cant genetic
operators called selection, crossover, and mutation, which
help in the reproduction process of the chromosomes [9].
Ideally, a GA cycle takes place using these genetic operators
and such genetic parameters in�uencing this process tend to
produce good individuals. Such a basic GA cycle is depicted
in Figure 1.
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Figure 1: Basic GA cycle.

3. An Improved Adaptive Genetic Algorithm
(IAGA) for Feature Selection

To begin with, initially, the input data of the CTG dataset
is extracted from the FHR signals. IAGA selects the best
optimal feature subset which is then fed as inputs to the
classi
ers and these classi
er inputs are distinguished into
their respective number of classes. �e classi
cation results
are presented in terms of performance measures like Positive
Prediction, Negative Prediction, Sensitivity, Speci
city, Area
Under Receiver Operating Curve (AUC), Overall Accuracy,�-measure, �-mean, and Kappa statistic, and so forth.
Besides, the performance of the IAGA method has been
compared with three existing feature reduction and feature
selection methods (PCA, SFS, and SBS) so as to a�rm the
strength of proposed search algorithm.

Despite the algorithm of Basic GA being applied to this
CTG dataset, IAGA is implemented in two di	erent ways
with certain modi
cation in the crossover and mutation
probabilities and their mode of usage during the search
procedure. Totally, three types of FS (Basic GA, IAGA-
method 1, and IAGA-method 2) have been performed on
this dataset followed by feature classi
cation. Initially, Basic
GA is employed to this CTG dataset for optimizing the
features, which was mentioned earlier in Section 2. �is is

further improved as IAGA for the same purpose, which varies
from Basic GA in terms of selection function, crossover and
mutation rates, and 
tness functions. �ree di	erent 
tness
functions have been formulated as the evaluation measures
of IAGA.

3.1. Stochastic Universal Sampling. �e proposed IAGA
method employs the stochastic universal sampling (SUS)
technique for selecting the 
ttest chromosomes. �is tech-
nique was developed by Baker in 1987 [10]. Based on this
random search, the SUS function utilizes a single random
value to sample the chromosomes. It makes use of several
strategies of GA to select the best parent chromosomes for
reproduction. Also, it ensures that these chromosomes are
highly capable of being reproduced. �rough this selection
scheme, the genetic diversity of the population is highly
maintained.

3.2. Sigma Scaling. An important parameter that must be

ne-tuned during the genetic search is the selection pressure
(SP), that is, the degree to which the selection emphasizes
the better chromosomes. When this SP is very low, it will
result in the low convergence rate of the search algorithm. On
the other hand, a higher SP will make the search procedure
to attain premature convergence easily. Hence, to overcome
such conditions, various 
tness scaling methods (a method
used to adjust the chromosomal 
tness) have been proposed
to prevent GA from attaining the premature convergence.
Sigma scaling is one such a method that maintains a constant
SP throughout the entire generation and it is used in this
IAGA method for the reorientation of chromosomal 
tness.
Suppose�(�)� is the 
tness of some individual � of generation �
and suppose the average 
tness and standard deviation (SD)
of the 
tness of the individuals in generation � are given by�(�) and �(�), respectively; then the adjusted 
tness of � in
generation � is given as follows:

ℎ(�)� = {{{{{
min(0, 1 + �(�)� − �(�)

�(�) ) , �(�) ̸= 0
1, �(�) = 0.

(1)

3.3. Adaptive Crossover andMutationwithMasking. Uniform
crossover is applied in the search procedure of IAGA with
a crossover rate (��) of 0.9. During uniform crossover, each
gene in the o	spring is created by copying the corresponding
gene from one or the other parent, chosen according to a
randomly generated crossovermask. A single crossovermask
is randomly generated during the search of IAGA for each
pair of parents (P1—
rst parent and P2—second parent), in
which every “1” and “0” in the mask imply the copied gene
from the 
rst parent and second parent, respectively [11].
�e o	spring produced in this way constitutes a collection of
genes from both the parents.

Flip-bit mutation is applied with a mutation rate (��) of
0.03. �e mutation operator makes use of a random mask.
It changes those corresponding bits which imply “1” in the
mask. Depending upon this random nature of the mask, the
value of �� is determined and this highly in�uences the
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random behavior of the �� value [12]. However, it is good to
vary the mutation rate between 0.1 and 0.001.

3.4. Fitness Functions

3.4.1. Objective Function I. �ree 
tness functions have been
devised to assess the chromosomal quality and they are given
below

Objv1 = Accuracy. (2)

3.4.2. Objective Function II. During the classi
cation of
binary and multiclass problems, error rate and classi
cation
accuracy are the two popular measures used for evaluating
the classi
er performance. Generally, the classi
er’s accu-
racy is determined as its performance measure in balanced
datasets [13]. But when dealing with imbalanced data, accu-
racy is known to be unsuitable to measure the classi
cation
performance, as it may mislead the classi
cation process due
to the emphasis on the in�uence of the majority class.

In order to overcome this convenience, a very fewmetrics
have been devised as 
tness functions and they are geometric
mean (�-mean), AUC (area under ROC curve), and �-
measure. In this approach of IGA, geometric mean (�-mean)
has been chosen as an objective function as it is one of the
most popular measures for handling imbalanced data and
easier to calculate than �-measure and AUC. In this regard, a
new 
tness function (Objv2) has been devised to evaluate the

tness, where the classi
cation performancewill be evaluated
through geometric mean and its equation is de
ned as

Objv2 = �∏
�=1

(��)1/� , (3)

where

�� = Number of correctly classi
ed samples

Total number of samples

� = number of classes in the dataset.
(4)

For binary class, the value of � = 2 and it corresponds to
classify the data into two groups. For multiclass, the value of� = 1, 2, 3, . . . , � and it corresponds to classify the data into� number of classes.

3.4.3. Objective Function III. Eventually, in this IAGA
approach, a single objective 
tness function (Objv2) has been
combined with a multiobjective 
tness function (number of
zeros in the chromosome) to bias the genetic search towards
the global optimum and it is de
ned as

Objv3 = (�)Objv2 + (1 − �) ( ��) , (5)

where Objv2 corresponds to the �-mean value and � (0 <� < 1) is the equalizing factor, which adjusts the signi
cance
of �-mean, � implies the number of zeros in the chromo-
some, and� implies the length of the chromosome.

3.5. Methods of IAGA

3.5.1. IAGA-Method 1. �e adaptive approach of IAGA has
been devised in two di	erent ways. In basic GA, when the
values of�� and�� aremaintained constantly throughout the
entire search procedure, there will be no improvement in the
individuals’ 
tness or it may result in premature convergence,
owing to attain a suboptimal solution.�is not only will a	ect
the performance of search algorithm but also fails to achieve
the desired solution expeditiously. �is can be avoided by
modifying the values of �� and �� in an adaptive manner
in accordance with the chromosomal 
tness in their speci
c
generations [14].

Based on the convergence to the optimum, this IAGA-
method 1 (IAGA-M1) determines the adaptive crossover
and mutation rates. �is is done with the help of certain
measures like average 
tness value (�avg) and maximum

tness value (�max) of the population, respectively. � gives
this relationship between the maximum and average 
tness
as follows:

� = �max − �avg. (6)

However, when GA converges to local optimum, that is,
when the value of� decreases, the values of�� and�� have to
be increased. Inversely, when the value of � increases, these
values have to be decreased. Besides, when GA converges to a
locally optimal or even globally optimal solution, the increase
being done in the values of �� and �� will disrupt the near-
optimal solutions [14]. Due to this e	ect, the population may
never converge to the global optimum and the performance
of GA will be diminished considerably.

In order to overcome these issues, two more 
tness
measures called �� and ��� have been taken into account in
such a way that these measures help to preserve the excellent
individuals of the population. �� is the bigger 
tness of the
two crossover chromosomes and ��� is the 
tness value of the
individual that has to be mutated. �ese measures are highly
instrumental in overcoming the premature convergence and
preserving the excellent individuals. Previously, the values of�� and �� are varied depending upon the � value. But now,
we can conclude that �� and �� are not only related to � but
also related to �max −�� and �max −��� [15]. Eventually, the ��
and�� values are determined using the following equation as

�� =
{{{{{{{

�1 (�max − ��)
(�max − �avg) �� ≥ �avg
0.9 �� < �avg

�� =
{{{{{{{

�2 (�max − ���)
(�max − �avg) ��� ≥ �avg

0.03 ��� < �avg.

(7)

For both these equations in (7), �1 and �2 are predeter-
mined values that are less than 1.0 considering the probability
formutation and crossover [14]. In this experiment, the values
of �1 and �2 have been empirically determined and 
xed as
0.4 and 0.1, respectively.
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3.5.2. IAGA-Method 2. In IAGA-method 2 (IAGA-M2), the
values of �� and �� are devised with their maximum and
minimumprobabilities; that is, instead of applying two values
for �� and ��, four values, namely, ��max, ��min, ��max,
and ��min are infused. �is adaptive approach has been
followed in order to maintain diversity, thereby sustaining
the convergence capacity of IAGA [16]. Hence, the crossover
and mutation rates are chosen as described in the following
equation:

��

= {{{{{{{

��max − (��max − ��min)(1 + exp ( ((�� − �avg) / (�max − �avg)))) �� ≥ �avg
��max �� < �avg

��

= {{{{{{{

��max − (��max − ��min)(1 + exp ( ((�� − �avg) / (�max − �avg)))) �� ≥ �avg
��max �� < �avg,

(8)

where �max is the maximum 
tness, �avg is the average 
tness
of the population, �� is the bigger 
tness of the two crossover
chromosomes, and ��� is the 
tness value of the individual
that has to bemutated;��max and��min are themaximum and
minimum probabilities of crossover,��max and��min are the
maximum and minimum probabilities of mutation [16], and
lambda is a constant ( = 2).

While modifying the crossover and mutation rates, the
values of ��max and ��min are chosen as 0.9 and 0.6 on the
basis of empirical methods. Similarly, the values of��max and��min are also chosen as 0.1 and 0.001 based on empirical
methods, respectively. Hence, when the chromosomes are
subjected to crossover and mutation, the values of �� and�� are modi
ed adaptively and then masking is applied. �e
speci
cations of IAGA are tabulated in Table 2 and Figure 2
shows the entire genetic cycle using the two methods of
IAGA.

4. Experimental Setup

4.1. Classi	ers. �e performance of the classi
ers employed
in this work is examined by 10-fold cross validation scheme,
which have served as an evaluator of this proposed IAGA
algorithm. For the classi
cation of selected features, four lin-
ear and nonlinear classi
ers like �-NN, SVM, BN, and ELM
are applied. For performing binary classi
cation, both �-NN
and SVM are used, in which SVM gives better classi
cation
results. For multiclass classi
cation, �-NN, BN, and ELM
are employed, wherein ELM achieves better classi
cation
performance. A detailed description of these classi
ers is
discussed below.

4.1.1. Support Vector Machine. Support vector, machine
(SVM) is an acknowledged classi
cation technique, being
widely used for solving classi
cation problems. In general,

Table 2: Speci
cations of IAGA.

Parameters Speci
cations

Probability of crossover, �� 0.9

Type of crossover Uniform crossover

Probability of mutation, �� 0.03

Type of mutation Flip-bit mutation

Selection method Stochastic selection

Number of runs 30

Length of chromosome 22

Population size 21

Number of elites 1

Maximum probability of crossover 0.9

Minimum probability of crossover 0.6

Maximum probability of mutation 0.1

Minimum probability of mutation 0.001

SVM separates the classes with a decision surface that
increases themargin between the classes.�e surface is called
the optimal hyperplane and the data points closest to this
hyper plane are called support vectors [17]. �e data used in
this work is not linearly separable. Hence, nonlinear kernel
functions are employed to transform the data into a new
feature space where a hyperplane tends to separate the data.
�e optimal separating hyperplane is being searched by these
kernel functions in a new feature space to increase its distance
from the closest training point. Due to a better generalization
capability and low computational cost, RBF kernel has been
applied in this work for separating the optimal hyperplane
and the equation of the kernel function is given below

!(�, ��) = exp(− """"� − ��""""22�2 ) . (9)

�ere are two signi
cant parameters called regularization
parameter (#) and squared bandwidth of the RBF kernel(�2), which should be optimally selected to obtain promising
classi
cation accuracy. By trial and error, the value of sigma(�2) and gamma (#) for the RBF kernel was set to 0.4 and 90,
respectively.

4.1.2. Extreme Learning Machine. A new learning algorithm
for the single hidden layer feed forward networks (SLFNs)
[18] called extreme learning machine (ELM) was proposed
byHuang et al. It has beenwidely used in various applications
to overcome the slow training speed and over
tting problems
of the conventional neural network learning algorithms [19].
For the given � training samples, the output of a SLFN
network with $ hidden nodes can be expressed as the
following:

�� (�	) = �∑
�
&�' (�� ⋅ �	 + -�) , 4 = 1, 2, 3, . . . , �. (10)

It can be described as �(�) = ℎ(�)&, where �	, ��, and-� are the input training vector, input weights, and biases to
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Figure 2: Genetic cycle using IAGA-methods 1 and 2.

the hidden layer, respectively. &� is the output weights that
links the 5th hidden node to the output layer and '(⋅) is the
activation function of the hidden nodes.

Training an SLFN is simply 
nding a least square solution
by using Moore-Penrose generalized inverse:

&̂ = 7†8, (11)

where 7† = (7�7)−17� or 7�(77�)−1, depending on
the singularity of 7�7 or 77�. Assume that 7�7 is not a
singular and the coe�cient 1/: (: is positive regularization
coe�cient) is added to the diagonal of7�7 in the calculation
of the output weights &�. Hence, more stable learning system
with better generalization performance can be obtained. �e
output function of ELM can be written compactly as

� (�) = ℎ (�)7� (1: + 77�)
−1 8. (12)

During the implementation of ELM kernel, the hidden
layer feature mappings need not to be known to users and
RBF kernel has been employed in this work. Best values

for positive regularization coe�cient (:) as 4 and RBF
kernel parameter as 1 were found empirically a�er several
experiments.

4.2. Implementation of the IAGA with Benchmark Datasets.
�e implementation of the proposed IAGA methods along
with the respective FS and FR methods has been elaborated
in this section. �e entire process takes place in three major
steps which are

(i) feature reduction/selection using four existing meth-
ods,

(ii) optimization using IAGA method,

(iii) classi
cation through �-NN, SVM, BN, and ELM.

Initially, PCA is applied to the data samples of the
concerned dataset and their dimensionality is reduced to the
desired range. From PCA, only the principal components
of having 98% of the variability are selected as features.
Simultaneously, SFS and SBS are employed with the same
dataset to select the minimized feature subset. In SBS and
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SFS, only 50% of the features are selected from optimally
ordered set of all features of the six datasets. �e reduced
feature subsets of both these methods are individually fed as
inputs to the classi
ers.

Secondly, the proposed IAGA method is applied for
choosing the best features of the speci
c dataset.�ismethod
involves certain signi
cant levels of the genetic process like
population initialization, chromosome selection using SUS
with sigma scaling, applying crossover and mutation using
masking techniques, 
tness evaluation using the three 
tness
functions (Objv1, Objv2, and Objv3), and satisfying the
termination criteria. �e selected feature subset obtained
through this optimization technique is fed as inputs to
the classi
ers. Hence, three types of inputs are sent to the
classi
ers (inputs from PCA, inputs from SFS and SBS, and
reduced inputs from IAGA).

Finally, the classi
er tends to classify the inputs into their
respective binary or multiclass groups based on the number
of the classes of the concerned dataset. For instance, when
CTG dataset is subjected to the aforementioned processes,
classi
ers like �-NN, BN, and ELM will classify the data
samples into pathological, suspect, and normal samples.
Similarly, whenPDdataset is subjected to the aforementioned
processes, the �-NN and SVM classi
ers will classify the
data samples into pathological and normal samples. Figure 3
describes the implementation of the proposed IAGAmethods
along with the benchmark datasets.

4.3. Performance Measures-Confusion Matrix. A confusion
matrix is a plot used to evaluate the performance of a
classi
er. As the proposed IAGA algorithm deals with both
binary andmulticlass classi
cation problems, the experimen-
tal results are presented in terms of several performance
measures. Among these measures, the classi
cation results
of binary classi
cation are explained in terms of Sensitivity,

Speci
city, AUC, Overall Accuracy, �-measure,�-mean, and
Kappa statistic. �e experimental results of multiclass classi-

cation are described in terms of Accuracy and�-mean. True
positive (TP), true negative (TN), false positive (FP), and
false negative (FN) are the four basic elements of a confusion
matrix and the aforementioned performance measures are
evaluated from these elements, which are explained below.

Sensitivity (SE):

SE = 100 × TP

TP + FN
. (13)

Speci
city (SP):

SP = 100 × TN

TN + FP
. (14)

Accuracy (ACC):

ACC = 100 × TP + TN

TP + TN + FP + FN
. (15)

�-measure:

�-measure = 2 × precision × recall

precision + recall
, (16)

where

precision = TP

TP + FP
, recall = TP

TP + FN
. (17)

Area under ROC:

ROC = SE + SP2 . (18)
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Figure 4: Classi
cation accuracies of all the FR/FS methods using
CTG dataset.

Kappa statistic:

KS = �0 − ��1 − �� , (19)

where �0 is the total agreement probability and �� is
the hypothetical probability of chance agreement.

�-mean:

�-mean = �∏
�=1

(��)1/� . (20)

5. Results and Discussion

5.1. Classi	cation Results of CTG Dataset. Pattern classi
-
cation is performed on the CTG data by employing IAGA
methods to perform FS. In addition, this dataset is also
treated with the three existing FS methods like PCA, SFS,
and SBS and their simulation results are compared with
those of the IAGAmethods. Table 3 presents the comparison
of simulation results obtained a�er applying the proposed
IAGAmethods and three existing FS methods. It can be seen
from this table that, from PCA, 16 principal components
containing 98% of the variability are selected.

When FS is performed using SBS and SFS, 
rst 11 features
(50% of the features) are selected from the optimally ordered
set of 22 features. Totally, the simulation results unfold
that the three existing FS methods have brought out a best
average classi
cation accuracy of 92.14%, 92.10%, and 92.71%,
respectively. In the view of comparing the classi
cation
performance of the IAGA methods directly with that of
the three existing FS methods (PCA, SBS, and SFS), 
rst
6 features are chosen and classi
cation experiments are
conducted. �e classi
cation accuracy obtained by selecting
the 
rst 6 features using PCA, SBS, and SFS is 89.84%, 91.44%,
and 90.64%, respectively.

Figures 4 and 5 show the comparative view of the clas-
si
cation accuracies and number of selection features using
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Figure 5: Number of selected features using all the FR/FS methods
for CTG dataset.

Table 3: Classi
cation accuracies of all FS/FR methods using CTG
dataset.

FS methods
Number of selected

attributes
Accuracy obtained

using ELM

PCA
16 92.14

6 89.60

SFS
11 92.10

6 91.44

SBS
11 92.71

6 90.55

Basic GA 14 97.87

IAGA-M1 6 93.61

IAGA-M2 13 93.61

Table 4: Performance measures of CTG dataset.

Metrics
ELM

Acc. in % �-mean

PCA 92.14 80.97

SFS 92.10 83.30

SBS 92.71 83.40

Basic GA 97.87 95.07

IAGA-M1 93.61 85.57

IAGA-M2 93.61 85.88

all the FR/FS methods for the CTG dataset. �e inference
from these Figures reveals that, among all the FR/FSmethods,
the overall (best) classi
cation accuracy is yielded through
IAGA-M1 for 6 features.

Table 4 explains the performance measures of all the
FR/FS methods using this dataset. �e observations show
that the two IAGA methods have come out with a moderate
accuracy ranging between 85% and 95%. However, when the
overall performance is taken into account, the best average
classi
cation accuracy has been achieved by both IAGA-
M1 and M2 with 93.61%. But when comparing the feature
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Table 5: Classi
cation accuracies of classi
ers using CTG dataset.

Classi
er
Classi
cation accuracy

With original features A�er FS % of increase

ELM 91.03 93.61 2.64

Table 6: Confusion matrix of CTG dataset.

Method
ELM

Pathological Suspect Normal

IAGA-M1

1620 61 10

33 224 14

2 10 152

count, IAGA-M1 has accomplished better results than IAGA-
M2 by selecting only 6 CTG features and those six features
are LB (FHR baseline), AC (accelerations), UC (uterine con-
tractions), ASTV (abnormal short term variability), ALTV
(abnormal long term variability), and MLTV (mean value
of long term variability). Also, these two methods have
produced best �-mean values of 85.57% and 85.88% through
ELM classi
cation.

Table 5 represents the classi
cation results obtained
before and a�er undergoing FS procedure. At the initial stage
of classi
cation, when the original CTG samples are directly
fed into the ELM classi
er, the accuracy range obtained was
mediocre. However, when these features are selected through
IAGA, the accuracy seemed to increase by 2.64% signi
cantly.
Eventually, the maximum classi
cation accuracy of 94.01% is
obtained using IAGA-M1 for the discrimination of the CTG
samples with the SD of 0.24.

5.2. Confusion Matrix of CTG Dataset. Table 6 explicates
the simulation results of CTG dataset in the form of con-
fusion matrix for the three classi
ers. Since 3 class classi-

cations have been performed on this dataset, there seems
to be moderate amount of misclassi
cations for all the
three groups. Out of the 1655 pathological samples, 1620
samples were correctly classi
ed with remaining 35 incor-
rect classi
cations. For the 295 suspect samples, there are
224 correct classi
cations with 71 misclassi
cations. Finally,
out of 176 normal samples, 152 normal samples are cor-
rectly classi
ed with the remaining 24 incorrectly classi
ed
samples.

6. Classification Results of
Other Benchmark Datasets

6.1. Comparison with PreviousWorks for All the Datasets. �e
observation from Table 7 shows the comparison of the clas-
si
cation results of CTG dataset and the other 
ve datasets
with their previous works in the literature. Inferences from
the literature enunciate that the proposed IAGA technique
has achieved the best classi
cation accuracies (e.g., 93.61% for
CTG dataset) and optimal feature subset (6 clinical features)
so far. �e classi
cation performance has been achieved
similarly for the remaining datasets as well.
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Figure 6: Comparison plot of overall performance of six datasets.

6.2. Overall Classi	cation Performance. �e overall clas-
si
cation performance is displayed in the form of com-
parison plot in Figure 6 and this 
gure substantiates the
maximum classi
cation performances achieved using the
proposed search techniques. When analysing the overall per-
formance, the best classi
cation accuracy has been achieved
through IAGA-M2 for four datasets and IAGA-M1 for two
datasets.

6.3. Comparison of Fitness Functions of the IAGA Methods.
�ree 
tness functions, namely, classi
cation accuracy, �-
mean, and weighted aggregation (�-mean + sum of unse-
lected features), have been devised as the 
rst, second, and
third 
tness function, respectively. Table 8 depicts the overall
comparison between these three di	erent 
tness functions of
the proposed IAGA methods. �e overall observation from
this table implies that the third 
tness function (Objv3) (indi-
cated by the symbol √) of all the three proposed methods
has produced the maximum number of best classi
cation
accuracies for most of the datasets.

7. Conclusion

�is paper has proposed an e�cient clinical support system
called IAGA to discern the highly discriminative clinical fea-
tures from the CTG dataset through ELM classi
er to assess
the fetal well-being. �e classi
cation results indicate that
IAGAmethod has performed better in terms of classi
cation
accuracy and reduced feature count when compared with
the previous works in the literature. �e classi
cation results
are presented in terms of various performance measures like
Sensitivity, Speci
city, AUC, Overall Accuracy, �-measure,�-mean, and Kappa statistic. In order to demonstrate the
e	ectiveness of this algorithm, 
ve other benchmark datasets
have been testedwith the proposed IAGA searchmethod, and
the classi
cation results are elaborated in detail. Also, these
results are compared with other existing feature selection
and feature reduction methods to potentiate its robustness.
Observing the classi
cation results obtained, it can be con-
cluded that this decision support system has achieved the
optimal solution obtained so far and has been instrumental
for the obstetricians in predicting the fetal well-being more
accurately.
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Table 7: Comparison with previous works of all the datasets.

S. number [Reference Number] Features and methods Selected features Classi
er Accuracy

Multiclass classi
cation

CTG dataset

1 [7] ANFIS — — 97.15

2 [6] GA 13 SVM 99.23

3 [8] LS-SVM-PSO-BDT — SVM 91.62

4 Proposed study IAGA-M1 6 ELM 93.61 ± 0.42

ES dataset

1 [20] IFSFS 21 SVM 98.61

2 [21] Two-stage GFSBFS 20, 16, 19 SVM 100, 100, 97.06

3 [22] GA based FS algorithm 16 BN 99.20

4 Proposed study IAGA-M2 14 BN 98.83 ± 0.12

BT dataset

1 [23] Normalization — SVM 71.69

2 [24] Electrical impedance spectroscopy 8 92

3 [25] ACO and fuzzy system — SVM 71.69

4 Proposed study IAGA-M2 3 ELM 93.58 ± 0.42

Binary Classi
cation

MEEI dataset

1 [26] 30 acoustic features and PCA 17 SVM 98.1

2 [27] LDA based 
lter bank energies Not reported LDA 85

3 [28] 22 acoustic features and IFS 16 SVM 91.55

4 Proposed study 22 acoustic features and IAGA 8 SVM 100

PD dataset

1 [29] GA 10 SVM 99

2 [30] GA 9 k-NN 98.20

3 Proposed study IAGA-M1 8 k-NN 99.38 ± 0.22

CAD dataset

1 [31] GA 9 SVM 83

2 [32] WEKA 
ltering method 7 MLP 86

3 Proposed study IAGA-M2 3 SVM 83.23 ± 0.84

Table 8: Overall comparison of 
tness functions.

Datasets
Basic GA IAGA-method 1 IAGA-method 2

Objv1 Objv2 Objv3 Objv1 Objv2 Objv3 Objv1 Objv2 Objv3

MEEI √ √ ×
PD × √ ×
CAD × √ √
ES √ × ×
BT √ √ √
CTG √ √ ×
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