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A Novel CNN-Based CAD 
System for Early Assessment of 
Transplanted Kidney Dysfunction
Hisham Abdeltawab1, Mohamed Shehata  1, Ahmed Shalaby1, Fahmi Khalifa  1, 

Ali Mahmoud1, Mohamed Abou El-Ghar2, Amy C. Dwyer3, Mohammed Ghazal4,1, 

Hassan Hajjdiab4, Robert Keynton1 & Ayman El-Baz  1

This paper introduces a deep-learning based computer-aided diagnostic (CAD) system for the early 

detection of acute renal transplant rejection. For noninvasive detection of kidney rejection at an early 

stage, the proposed CAD system is based on the fusion of both imaging markers and clinical biomarkers. 

The former are derived from diffusion-weighted magnetic resonance imaging (DW-MRI) by estimating 
the apparent diffusion coefficients (ADC) representing the perfusion of the blood and the diffusion of the 
water inside the transplanted kidney. The clinical biomarkers, namely: creatinine clearance (CrCl) and 

serum plasma creatinine (SPCr), are integrated into the proposed CAD system as kidney functionality 

indexes to enhance its diagnostic performance. The ADC maps are estimated for a user-defined region 
of interest (ROI) that encompasses the whole kidney. The estimated ADCs are fused with the clinical 
biomarkers and the fused data is then used as an input to train and test a convolutional neural network 

(CNN) based classifier. The CAD system is tested on DW-MRI scans collected from 56 subjects from 
geographically diverse populations and different scanner types/image collection protocols. The overall 
accuracy of the proposed system is 92.9% with 93.3% sensitivity and 92.3% specificity in distinguishing 
non-rejected kidney transplants from rejected ones. These results demonstrate the potential of the 

proposed system for a reliable non-invasive diagnosis of renal transplant status for any DW-MRI scans, 
regardless of the geographical differences and/or imaging protocol.

Chronic kidney disease (CKD) is the gradual loss of the kidney’s ability to remove waste and excess �uids from 
blood. In the U.S., approximately 30 million patients have CKD1, which if it remains untreated, will result in pro-
gressive damage of the kidney until it develops a fatal condition called end stage renal disease (ESRD). In 2014, 
the estimated number of ESRD patients in the U.S. was 780,0001. ESRD is treated by blood dialysis and eventually 
by kidney transplant. While dialysis helps the patient stay alive, it performs only 10% of the kidney’s function 
which leads to dangerous health conditions. Meanwhile, transplantation is considered a long-term treatment as it 
prolongs patients’ lives. However, organ procurement and transplantation is a challenging process. Each month, 
more than 3,000 patients are added to the kidney transplant waiting list2. During the �rst 5 years a�er transplan-
tation, there is a 15% chance that the immune system will reject the foreign organ, leading to kidney dysfunction3. 
�erefore, the salvation of the transplanted kidney is of a great medical importance. �e types of renal rejection 
include: hyper-acute, acute, and chronic. Acute rejection (AR) is the leading cause of gra� dysfunction4, and is 
therefore the focus of this study. Measuring the glomerular �ltration rate (GFR) a�er renal transplantation has 
been accepted by the National Kidney Foundation as a diagnostic methodology for assessing renal gra� function5. 
However, this method is a late indicator and su�ers from low sensitivity. Renal biopsy is the gold standard for 
gra� function evaluation and can determine the root cause and the type of gra� dysfunction4. However, surgical 
biopsies are expensive and are invasive methods that carry a risk for serious complications, such as bleeding and 
kidney injury. Moreover, it can underestimate the severity of the problem due to the fact that it only tests a small 
portion of the kidney6.
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Medical imaging modalities have provided an accurate, non-invasive way to detect AR and its underlying 
cause. For example, radionuclide imaging is successful in assessing gra� function due to its ability to capture 
tissue function7. Nevertheless, the exposure to radiation is associated with health risks. �e emerging technique 
of helical computed tomography (CT) that uses less nephrotoxic contrast has been proven successful in the diag-
nosis of post-transplant complications8. Although this technique is safer than radionuclide imaging, it has a low 
speci�city, and the usage of contrast agents still adds some nephrotoxicity. Ultrasound (US) imaging is used to 
detect allogra� dysfunction and it is better than other imaging techniques in terms of cost, ease of use, and health 
risks. However, this method has shadowing artifacts and low signal-to-noise ratio, and there has been a debate 
about the validity of the measures used in this method9,10.

A variety of advanced magnetic resonance imaging (MRI) techniques have gained considerable attention in 
kidney transplant function assessment or diagnosing structural kidney disease due to superior so� tissue con-
trast. For example, dynamic contrast enhanced (DCE) MRI uses contrast agents such as gadolinium to evaluate 
tissue perfusion, which is indicative of renal function11. While DCE-MRI provides good anatomical and func-
tional information, gadolinium may adversely a�ect the kidney and cause nephrogenic systemic �brosis12 when 
GFR < 30 ml/min per 1.73 m2. Blood oxygen level dependent (BOLD) MRI that evaluates renal oxygenation sta-
tus has also been used in the detection of AR13. However, BOLD-MRI has several limitations such as bowel gas 
artifacts and susceptibility to breathing motion artifacts14,15.

Di�usion weighted (DW) MRI, which is an imaging sequence that does not use contrast agents, has been 
sucessful in many applications, such as tumor detection and characterization, neuroimaging, and kidney function 
assessment16. It measures the motion of water molecules inside the tissue, and thus helps to assess the di�usion 
characteristics of the tissue. Quantitative maps, known as apparent di�usion coe�cient (ADC), that represent 
the di�usion can be obtained at di�erent magnetic �eld strengths and duration (b-value)16. �e feasibility of 
using DW-MRI in assessing kidney allogra� function has been investigated in several studies17–27. �e ADC was 
utilized as a discriminatory feature to di�erentiate between biopsy proven stable renal allogra� and pathological 
allogra�s with issues such as AR or acute tubular necrosis (ATN). �e results in those studies showed that normal 
functioning kidneys had higher ADC values compared to kidneys with deteriorated function. Also, most of the 
studies showed a positive correlation between the ADC values and the estimated GFR. However, those studies 
have multiple shortcomings. First, they estimated the average ADCs from the middle or the largest cross-section 
at certain b-values only. Second, they did not investigate the e�ect of integrating the imaging and clinical bio-
markers to di�erentiate between stable and AR allogra�s. Finally, the bene�t of applying advanced machine 
learning (ML) techniques was not utilized as a valuable tool for image classi�cation and diagnosis.

To partially overcome those limitations, recent studies have utilized various ML techniques to improve the 
diagnostic accuracy of the CAD systems by extracting more learnable features from the underlying data. ML has 
shown signi�cant success in many diverse medical imaging applications, such as pattern classi�cation, anomaly 
detection, and image segmentation and registration28. �us, ML methods are indispensable tools in modern CAD 
systems that assist in making decisions regarding medical diagnosis. Traditional ML approaches depend heavily 
on feature engineering to convert the data into suitable patterns, which is a tedious task as it requires time and 
�eld domain expertise to determine the best features to extract29. Recently, deep learning (DL) has evolved as an 
exciting �eld, inspired by arti�cial neural networks (ANN) in which the network has many hidden layers29. �is 
technique builds a hierarchical data representation (i.e. from less to more abstracted representations), and thus 
has the power of learning high-level features from the underlying data and avoids the burden of extracting the 
relevant features30.

In literature, there has been limited work in the area of applying CNN for kidney diagnosis and classi�cation 
purposes. Kidney diseases can be diagnosed by detecting and evaluating the tissue regions corresponding to glo-
meruli. Pedraza et al.31 proposed a CNN model that is based on a pre-trained AlexNet32 to classify between glo-
merular and non-glomerular tissue. �eir network was fed by images from tissue slides which were adapted from 
kidney biopsies, and it subsequently achieved a performance of 0.999 (F-score). Also, the glomerulus detection 
accuracy of CNNs fed with whole-slide kidney images surpassed the histogram of oriented gradients classi�ers33. 
Yang et al.34 used CNNs to classify the histological kidney images generated from tissue microarrays that have 
been obtained using biopsies from tumors and normal cases. �ey achieved a high classi�cation accuracy of 97– 
98%. Kolachalama et al.35 investigated the potential of CNNs in the prediction of the CKD stage, baseline serum 
creatinine, and nephrotic-range proteinuria from the processing of trichrome-stained images generated from 
renal biopsy samples. �ey reported that the proposed CNN had the same performance as an expert nephrop-
athologist. Most recently, March et al.36 extended a pre-trained CNN model to classify between non-sclerosed and 
sclerosed glomeruli in frozen sections adapted from kidney biopsies. �e goal of their work was to evaluate the 
eligibility of donated kidneys prior to transplantation to minimize post-transplantation complications. Despite 
the success of the aforementioned studies31,33–36 in building computational models that assess kidney function, 
they are predicted upon an invasive procedure, i.e. biopsy.

To overcome those shortcomings, we propose an automated framework, shown in Fig. 1, that combines the 
advantages of both DW-MRIs and DL to classify renal allogra�s into non-rejection (NR) and AR status by using 
data generated from the fusion of voxel-wise ADCs and the clinical biomarkers. To the best of our knowledge, this 
is the �rst automated non-invasive CAD system of its kind to assess renal transplant status using the integration 
of the DW-MR image markers and clinical biomarkers along with CNN.

Materials and Methods
In this study, a DW-MRI dataset of 56 individuals (with associated clinical biomarkers), who had renal trans-
plantation, was used for the evaluation of the proposed CAD system. All experimental protocols were approved 
by by the Institutional Review Boards (IRB) of the University of Michigan, USA; University of Louisville, USA; 
and University of Mansoura, Egypt. �e methods were carried out in accordance with the relevant guidelines 
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and regulations. All participants and/or their legal guardians were fully informed about the aims of the study and 
provided their written and/or verbal consent. �irty-eight of the participants were males and 18 were females, 
and they had an average age of 34 ± 15.62 with a range of 12–65. �ese subjects were divided into two groups: 
individuals with stable gra� functionality or the NR group (N = 26), and participants who had been diagnosed 
with gra� dysfunction or the AR group (N = 30).

Seventeen of the DW-MRI scans in this dataset were acquired in the USA using a 3T scanner: MRI Ingenia, 
Philips Medical System, Amsterdam, Netherlands; a body coil and a gradient single-shot spin-echo echopla-
nar sequence; TR/TE: 8000/93.7; slice size: 256 × 256 pixels; section thickness: 4 mm; inter-section gap: 0 mm; 
FOV: 360 × 360 × 152 mm3. A total of 38 coronal cross-sections were obtained for a total acquisition time of 60 s 
to cover the whole kidney. In dditiona, 5 scans were acquired in Egypt using a 3 T scanner with the following 
characteristics: MRI Ingenia, Philips Medical System, Amsterdam, Netherlands using a body coil and a gradi-
ent single-shot spin-echo echoplanar sequence; TR/TE: 4400/82; slice size: 176 × 176 pixels; section thickness: 
4 mm; intersection gap: 0 mm; FOV: 220 × 195 × 96 mm3. A total of 24 coronal cross-sections were obtained at 
each b-value for an acquisition time of 30– 60 s to cover the whole kidney. In addition, 34 scans were acquired in 
Egypt using a 1.5T scanner: SIGNA Horizon, General Electric Medical Systems, Milwaukee, WI using a body coil 
and a gradient single shot spin-echo echoplanar sequence; TR/TE: 8000/61.2; slice size: 256 × 256 pixels; section 
thickness: 4 mm; intersection gap: 0 mm; FOV: 360 × 360 × 152 mm3. Approximately 50 coronal cross-sections 
sections were obtained in 60–120 s to cover the entire kidney. �e DW-MRIs, clinical biomarkers, and biopsies 
were included in the �nal analysis and examined by a nephrologist and a radiologist.

From a clinical point of view, the renal allogra� motion is not challenging because the allogra� is implanted 
in the iliac region, and thus, a transplanted kidney is less a�ected by respiration than a native kidney. Moreover, 
patients were asked to hold respiration (breath) during the study to reduce possible respiratory motion e�ects. 
�erefore, in this speci�c application, we not only believe that a single direction will lead to an accurate esti-
mation of the ADCs, but also will reduce the acquisition time (≈12 min for the single-direction compared to 
≈31 min for the three-direction). �is in turn provides the ability for acquiring a 12 b-value scan (lower b-values 
capture the blood perfusion e�ect and higher b-values capture the water di�usion e�ect), which will provide a 
more accurate �nal diagnostic performance (�nal decision is based on the integration of the decisions from all of 
the individual b-values).

In this study, every sequence of the aforementioned sequences is a single DW-MRI direction noted by direc-
tion cosines “X, Y, Z = [1, 1, 1]”. �at is, all three gradient channels were run simultaneously at equal amplitude. 
�is sequence acquired b-values = 0, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000 s mm−2.

A fully automated CAD system based on a CNN classi�er for the early detection of acute renal transplant 
rejection was developed in this study. To obtain the �nal diagnostic results as NR or AR renal allogra�s, three 
main processing steps are performed: (i) data prepossessing and ROI selection; (ii) extraction/estimation of 3D 
ADC maps for the selected ROI and its fusion with the clinical biomarkers (i.e., the CrCl and SPCr) to be used as 
discriminatory features for allogra�s classi�cation; and (iii) classi�cation of transplant status by using the fused 
markers as input to a CNN-based classi�er. Details of these steps are presented in the following sections.

Data Preprocessing and Region-of-Interest (ROI) Selection. �e DW-MRI data were �rst preproc-
essed by performing a histogram equalization (i.e. intensity normalization) with a non-parametric bias �eld 
correction37 in order to reduce the noise and inconsistencies due to low-frequency non-uniformity, or inhomo-
geneity of intensities. Following preprocessing, an ROI enclosing the kidney was constructed in each subject. �e 
size of the ROI was determined based on the largest kidney volume in our database and was held constant for 
all subjects. �en, the slice containing the largest cross-section of the kidney was selected, and a so�ware user 
identi�ed the approximate centroid of the cross-section in order to localize a rectangular ROI that encompasses 
the whole kidney. For each subject, the DW-MRI kidney volumes were cropped at all b-values based on this 

Figure 1. �e proposed convolutional neural network (CNN)-based framework for early detection of renal 
transplant rejection using di�usion-weighted (DW) MRI. �is system consists of three main processing steps. 
In the �rst step, the histogram of input DW-MRI data is equalized to reduce the noise and inhomogeneity 
of intensities. �en, an ROI enclosing the kidney in each subject is constructed. In the second step, the 3D 
ADC maps are estimated for the selected ROI and then fused with the clinical biomarkers, i.e., the creatinine 
clearance (CrCl) and serum plasma creatinine (SPCr), for allogra�s classi�cation. In the �nal step, the fused 
markers are fed as a 3D input of size 150 × 150 × 24 voxels to the proposed CNN-based classi�er to classify renal 
allogra�s into non-rejection (NR) and acute rejection (AR).
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rectangular ROI. �is step essentially has two advantages. First, it reduces the complexity of the proposed pipeline 
by avoiding complex segmentation and registration methods. Second, this also has the advantage of reducing the 
time needed for the classi�cation steps, as the volumes used for training and testing are largely reduced. In our 
experiment below, the original kidney volumes range in size from 176 × 176 × 24 to 256 × 256 × 38 voxels, while 
the cropped ROI-kidney volume used was 150 × 150 × 24 voxels.

ADC Maps. �e di�usion, or Brownian motion of water molecules in the human tissue, depends on its 
micro-structure and function. �erefore, the presence of an abnormality in the tissues is characterized by a 
change in the normal di�usion pattern16. �us, the evaluation of the kidney di�usion pattern gives us a quantita-
tive insight into the di�usion characteristics of that tissue (i.e. renal tissue) and insight about its current state and 
potential pathologies18. �e contrast in a DW image is created from the variations in random motion of water 
molecules within the tissue. In a given DW-MRI sequence, the recorded signal is attenuated in accordance with 
the Stejskal-Tanner equation16:

= − ⋅S S e (1)b
b

0
ADC

where b, Sb, S0, and ADC are the di�usion gradient strength and duration (b-value), signal intensity at b, baseline 
signal intensity (b = 0 s mm−2), and apparent di�usion coe�cient. �e b-value is determined by16:
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γ is the gyro-magnetic ratio of hydrogen, equal to 42.58 MHz/T; G and δ are the magnitude and duration of the 
gradient magnetic �eld; ∆ is the time interval between gradient pulses; and S0 is the signal intensity in the absence 
of a gradient. It can be drawn from Eq. (1) that the higher the b-value, the more signal attenuation. An ADC map, 
illustrated in Fig. 2, that quanti�es the di�usion at a speci�c b-value, can be obtained from two DW images, one 
at b = 0 and the other at that speci�c b-value by:
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ADC maps have several advantages over raw DW images: (1) the e�ects of T1 and T2 contrast and T2 shine 
through are removed; (2) ADC maps represent only the di�usion inside the tissues; and (3) the ADC values are 
directly proportional to di�usion. Since the AR group has lower ADC values18, the estimation of ADC maps for 
renal allogra�s gives more insight into its functional state and will help us di�erentiate between the NR and the 
AR groups.

Clinical Biomarkers. Di�erent biomarkers of kidney function are used in clinical practice. �ese markers 
include creatinine, which is a metabolic waste product of creatine in muscle. SPCr and CrCl tests measure the 
level of creatine in the patient’s blood and urine, respectively. �erefore, these tests can be used as indicators for 
kidney function and GFR. �e SPCr and CrCl laboratory values are usually measured for patients a�er the trans-
plantation procedure4.

Data Preparation: ADCs and Biomarkers Fusion. In order to train our ML model with data that have 
high discriminatory power, the estimated ADC maps were fused with the CrCl and SPCr values obtained dur-
ing routine post-transplantation monitoring. �e clinical biomarkers of each subject were added to the ADC 
maps at all of the b-value scans as shown in Fig. 3, and the fused data are abbreviated as FBio. To highlight the 
advantages of the fusion process of both markers, two main scenarios were employed. First, the constructed 
ADC maps were used alone to assess the functionality of the allogra�. Second, clinical biomarkers were fused 

Figure 2. Illustration of the voxel-wise ADC calculations at a voxel (x; y; z) at b-value of 500 s mm−2: (a) the 
ROI-kidney regions at b0, (b) the ROI-kidney regions at b500, and (c) the constructed ADC maps for the de�ned 
ROI.
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with the constructed ADC maps to build the FBio maps, which in turn were used to assess the functionality of 
the allogra�. In both scenarios, these maps were constructed at the 11 di�erent b-values from the available 56 
subjects (26 NR and 30 AR). �en, both types of maps were input to train and test a CNN-based classi�er using 
a leave-one-subject-out (LOSO) cross-validation approach. Details about the proposed CNN-based classi�er are 
discussed in the following section.

Convolutional Neural Networks (CNN). CNN is a machine learning model that is inspired by deep 
ANN38. CNNs have gained a lot of attention in medical image analysis due to their ability to maintain spatial 
relationships of processed images, which gives them an advantage over the traditional ANNs30. �e basic building 
units of the CNN are convolution layers, non-linearity layers, pooling layers, and fully connected (FC) layers. �e 
�rst layer is the convolution layer in which the input image or volume is convolved with a set of learned �lters, as 
illustrated in Fig. 4. �e output of the convolution layer is a set of feature maps equal in number to the �lters. Each 
map represents the places of strong activations associated with a speci�c �lter. �e convolution operation between 
an image I of size M × N and a �lter W of size A × B that results in a feature map s is de�ned by the following dot 
product:

∑∑= . − −s I a b W m a n b( , ) ( , )
(4)a b

�e non-linearity layer accounts for the interaction e�ects between the factors that in�uence the predic-
tion. Also, it introduces a non-linearity into the model because it is expected that the real-world problems are 
non-linear. In our CNN, we used the popular rectifying linear unit (ReLU)32 that operates element-wise on the 
feature map to produce an activation map as follows:

=f x max x( ) (0, ) (5)

where x refers to an input to a neuron. �e advantages of using ReLU over traditional activation functions (logis-
tic and hyperbolic tangent functions) are that it reduces the required training time by avoiding the “vanishing 
gradient problem”. �e pooling layer reduces the spatial resolution of the activation map and keeps the spatial 
relationships among the features of high activation. �erefore, it decreases the computational cost by decreas-
ing the number of parameters and produces abstract representation that helps avoid over-�tting. Pooling types 
include max-pooling and average-pooling. �e max-pooling replaces the pixels inside a window with the maxi-
mum value whereas the average-pooling replaces the pixels with the average value. �e FC layers are the �nal lay-
ers in a CNN, and there can be one layer or many layers. �e phrase fully connected means that every neuron in a 
previous layer is connected to all neurons in the next layer as with the traditional ANN. Tuning the CNN’s param-
eters to a particular problem is a quite challenging task because there are many hyper-parameters related to the 
network architecture and training. �e following section discusses our procedure to tune our CNN parameters.

Figure 3. Demonstration of the e�cacy of the fusion of both image and clinical markers. In this work, the 
estimated ADC maps are fused with the one dimensional (1D) CrCl and 1D SPCr values obtained during 
routine post-transplantation monitoring. �e clinical biomarkers of each subject were �rst normalized with 
regard to the maximum values of each marker. �en, the normalized values were added to the voxel-wise ADC 
maps at all of the b-value scans. �is di�cult example di�erentiates an NR case (a) from an AR case (b). As 
illustrated in this �gure, it is very di�cult using the ADC maps alone to distinguish between the normal and 
abnormal subjects. �is can be justi�ed by the large overlap of the ADC values between these two subjects, 
which have been revealed by the color-coded maps. Visually, it is clear that the two subjects had a good color 
separation a�er the fusion process of both markers, where the dark-green color represents poor kidney function 
(i.e. low ADCs + low CrCl + high SPCr) and the orange-yellowish color represents a normal kidney function 
(i.e. high ADCs + high CrCl + low SPCr).
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�e Proposed CNN Architecture. To �nd the best CNN architecture, a total of 20 subjects (10 AR and 10 NR) 
were only used as an independent training dataset and were not used during framework validation. A grid search 
method was employed to search for the number of convolution layers (range: 2–5), number of neurons in the lin-
ear layer (range: 3–15), number of convolution kernels (range: 3–15), convolution or pooling kernel size (range: 
3–7), and kernel stride (range: 1–3) with the classi�cation accuracy as the score to be optimized until we got an 
average global accuracy of 96.4% from ten training iterations in row. We organized our network as processing 
blocks, where each block starts with a convolution layer followed by a batch-normalization layer to accelerate the 
network training39, followed by a ReLU activation layer, see Fig. 5(a). At the end of each block, there might be an 
average pooling layer based on the grid search result. Our proposed network has three processing blocks followed 
by concatenation and an FC layer, as shown in Fig. 5(a). �e input to the �rst block is the 3D fused data with the 
size of 150 × 150 × 24 voxels. �e output of the third block is concatenated to form a vector of seven neurons and 
then fed into an FC layer of two neurons for the two classes. Finally, the output from the FC layer is fed into a 
so�-max classi�er to compute a posteriori class probability. For more information about the network con�gura-
tion, see Fig. 5(a) and Table 1.

CNN Training and Testing. �e stochastic gradient descent (SGD) was used to train and test our network. �e 
learning rate was set to 0.1 and then was reduced by a factor of 10 to reach 0.0001 over 70 epochs. �e complex 
architecture of deep neural networks and convolutional networks makes them susceptible to the problem of 
over�tting, in which the network learns features peculiar to the training dataset and fails to generalize, i.e. to 
correctly analyze novel input. Dropout is one of the most e�cient techniques to override over�tting40. In dropout, 
the relationships found in the data can be modeled using various representations. �is is achieved by randomly 
deactivating a proportion of neurons in each iteration during training. By dropping the neurons, we prevent 
complex co-adaptations during training. Although the dropout technique deactivates some neurons randomly 
in each iteration, these neurons might be active in the next iteration. In our model, we used a dropout factor of 
0.5. Our network was implemented using PyTorch deep learning framework41, and all of the computations were 
performed on an NVIDIA Quadro P4000 GPU.

CNN Decision Fusion. �e proposed CNN was used to process FBio maps at 11 di�erent b-values. �en, the 
predicted probabilities assigned for each class were collected for each subject at the 11 individual b-values. To 
obtain a better classi�cation accuracy, we fused all of the 11 decisions of the individual CNNs by using a support 
vector machine classi�er (SVM). �e 22 probabilities (2 classes × 11 b-values) for each subject were fed to an SVM 
classi�er with a linear kernel to obtain the �nal classi�cation.

Experimental Results
The proposed pipeline was evaluated on the above-mentioned 56 samples using LOSO and 10-fold 
cross-validation approaches. In this study, the CrCl values for the NR group averaged 72.62 ± 17.58 ml/min, and 
the SPCr averaged 1.16 ± 0.23 mg/dl. In the AR group, CrCl values averaged 39.63 ± 11.98 ml/min and the SPCr 
averaged 2.23 ± 0.71 mg/dl. Demonstration of the e�cacy of the fusion of both image and clinical markers is 
illustrated in Fig. 3, which di�erentiates an NR case and an AR case. As demonstrated in Fig. 3, it is very di�cult 

Figure 4. Illustration of the processing of a single volume using CNN. To clarify how a single convolution layer 
of the CNN processes a 3D input volume of size 150 × 150 × 24 voxels, each 3D volume has 24 images and a 
2D convolution is applied to each image using a kernel of size K × K. �e output of an individual kernel is then 
summed to create a 2D feature map. Usually, multiple kernels are used, and the above step is applied again for 
those kernels, and di�erent feature maps are produced for respective kernels. �e �nal result is a volume of 
feature maps.
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using the ADC maps alone, shown in Table 2, to distinguish between the normal and the abnormal subjects. �is 
can be justi�ed by the large overlap of the ADC values between the two subjects, which have been easily revealed 
by the color-coded maps. To show the e�ect of fusing the clinical biomarkers with the imaging markers, the FBio 
were then used as our new input discriminatory features for the renal transplant status assessment. Visually, it is 
clear that the two subjects had a good color separation a�er the fusion process.

In addition to the fusion of clinical and image biomarkers, the integration of the diagnostic results obtained 
from individual b-values is expected to enhance the �nal global diagnostic accuracy. As described in Section 
2.4, training and testing of the CNN-based classi�er were performed using the ADC maps only or the FBio 
result from the fusion process. For both scenarios, these maps were constructed at the 11 di�erent b-values for 
all available subjects. �e individual accuracies at each b-value and the average global accuracy for both sce-
narios are reported and compared in Table 3. To con�rm the robustness of the proposed approach, a 10-fold 
cross-validation scenario was performed on the same data using the FBio and the same CNN-based classi�er, 
with resulting accuracy of 91%, sensitivity of 90%, and speci�city of 92%. To determine the contribution of imag-
ing vs. clinical biomarkers to overall diagnostic accuracy, the performance of the CNN using FBio was compared 
with that of using ADC maps alone, as well as that of a support vector machine (SVM) classi�er using the clinical 

Figure 5. �e architecture of the proposed convolutional neural network (CNN), where (a) illustrates the 
con�gurations of the developed CNN and its layers and (b) represents the pipeline of the fusion process using 
a support vector machine (SVM) classi�er. �e CNN is trained and validated at each b-value apart from the 
other b-values. At each b-value, we have 56 samples. Each sample is a 3D volume for a certain subject, and 
each volume is 150 × 150 × 24 voxels. Each 3D volume is fed to a CNN as one sample of the dataset. �e �nal 
classi�cation decision is obtained by combining the decisions of all CNNs’ output probabilities at all b-values. 
�is fusion is achieved by a support vector machine (SVM) where each sample has 22 features (2 probabilities 
for the two classes obtained from the CNN at a speci�c b-value × 11 b-values).

Layer Depth kernel Stride Spatial Size Parameters

Input 24 — — 150 × 150 × 24 0

1. Conv. 3 5 × 5 2 × 2 73 × 73 × 3 5 × 5 × 24 × 3

2. Conv. 3 5 × 5 2 × 2 34 × 34 × 3 5 × 5 × 3 × 3

3. Avg 3 5 × 5 2 × 2 15 × 15 × 3 0

4. Conv. 7 5 × 5 2 × 2 6 × 6 × 7 5 × 5 × 3 × 7

5. Avg 7 6 × 6 1 × 1 1 × 1 × 7 0

6. Concat. 1 — — 7 × 1 0

7. Full 1 — — 2 × 1 7 × 2

Total number of parameters = 2564

Table 1. �e proposed CNN con�guration.
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biomarkers alone, abbreviated as ClinBio, (i.e. CrCl and SPCr). �e results are summarized in Table 4 in terms of 
accuracy, sensitivity, and speci�city.

In addition to the fusion of clinical and image-derived biomarkers, the overall accuracy of the proposed 
framework is also highlighted by comparing its performance to other learning approaches. Namely, we com-
pared its performance against the autoencoding-based technique using stacked auto-encoders (SAEs) utilizing 
the cumulative distribution functions (CDFs) of the ADC maps estimated from segmented kidney objects42. �e 
comparison results at all b-values are summarized in Table 3. Additionally, the overall accuracy, sensitivity, and 
speci�city of the proposed pipeline and SAEs(CDFs) technique42 are compared in Table 4. As clearly shown in 
the reported results, the proposed CNN-based system outperforms the SAEs(CDFs) method42. �e advantage of 
the proposed method over the SAEs(CDFs) method42 is that our new renal rejection diagnostic system requires 
neither alignment nor kidney segmentation as has been done previously42, which might be challenging in some 
cases due to di�used boundaries and inter-patient anatomical di�erences; therefore, the presented renal rejection 
CAD system will have reduced computational time and complexity.

Furthermore, robustness of our CAD system has also been analyzed using the receiver operating characteristic 
(ROC). Figure 6 demonstrates the ROC curves for individual b-values as well as their fusion using the proposed 
pipeline. �e areas under the curve (AUC) for individual b-values are shown. As discussed earlier, the fusion 
of the b-values enhanced the overall accuracy, which is also documented by the AUC = 0.93. Additionally, a 
comparison between SAEs(CDFs) method42 and all scenarios studied in this paper using the ROC are shown in 
Fig. 7. In particular, the SAEs(CDFs) method42 achieved an AUC 0.05 less than the CNN method described here. 
�e above evaluation and comparison results demonstrated the higher accuracy and robustness of our developed 
framework for the detection of AR.

Discussion and Conclusions
Early detection of AR can help physicians with early intervention with appropriate treatment and thus prolong 
the renal gra� function and improve patient outcomes. Generally, there are multiple types of AR, and the selec-
tion of the appropriate treatment depends on the rejection type. For example, acute cellular rejection is treated 
with a high dose of corticosteroids, administrated intravenously as the �rst line treatment43,44. �e most popular 

ADC Maps at Individual b-values: mean(std)≈

b-value b50 b100 b200 b300 b400 b500 b600 b700 b800 b900 b1000

NR 3.0 (1.17) 2.63 (0.72) 2.59 (0.50) 2.46 (0.41) 2.43 (0.37) 2.21 (0.33) 2.10 (0.08) 2.09 (0.26) 2.05 (0.25) 1.95 (0.23) 1.90 (0.21)

AR 2.85 (1.79) 2.97 (0.98) 2.81 (0.53) 2.33 (0.42) 2.28 (0.29) 2.12 (0.25) 2.09 (0.24) 1.93 (0.22) 1.90 (0.22) 1.87 (0.19) 1.83 (0.17)

Table 2. A comparison example between a non-rejection (NR) and an acute rejection (AR) subjects based upon 

the mean and the standard deviation (std) values of the ADC maps alone at the 11 individual b-values.

Individual b-values Classi�cation Accuracy (ACC%)≈

Approach b50 b100 b200 b300 b400 b500 b600 b700 b800 b900 b1000 F11

SAEs (CDFs)42 68 50 77 68 82 68 73 64 75 86 68 86

S1 (ADC only) 59 50 64 59 59 59 68 64 77 73 68 82

S2 (FBio) 68 68 73 80 83 73 85 86 75 86 86 93

Table 3. Comparison of the approximated percentage diagnostic accuracy (ACC%) obtained at individual 
and fused b-values (F11) between the �rst scenario (S1) using the ADC maps alone with the CNN-based 
classi�cation system, the second scenario (S2) utilizing the fusion of the clinical biomarkers and the image 
markers using the same CNN-based classi�cation system, and the classi�cation using the CDFs of the ADCs 
obtained from the segmented kidney based upon use of stacked auto-encoders (SAEs)42.

Quality of the Final Diagnosis

Approach ACC%≈ SENS%≈ SPEC%≈ AUC≈

SAEs (CDFs)42 86 70 100 0.88

S1 (ADC only) 82 80 83 0.83

S2 (FBio) 93 93 92 0.93

SVM (ClinBio) 77 80 73 0.80

Table 4. Comparative diagnostic quality between the �rst scenario (S1) using the ADC maps alone with the 
CNN-based classi�cation system, the second scenario (S2) utilizing the fusion of the clinical biomarkers and the 
image markers using the same CNN-based classi�cation system as well, the clinical biomarkers (ClinBio) based 
on using a support vector machine (SVM) classi�er, and the classi�cation using the CDFs of the ADCs obtained 
from the segmented kidney based on using stacked auto-encoders (SAEs)42 in terms of accuracy (ACC%), 
sensitivity (SENS%), speci�city (SPEC%), and area under the curve (AUC) for the combined/fused decision 
from all of the individual b-values.
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regimen is the administration of methylprednisolone for three successive days43. In the case of persistent kid-
ney de�ciency with the steroid and/or antithymocyte globulin or the presence of a new defect in renal function 
a�er treatment of AR, another biopsy is recommended to discover additional causes of renal dysfunction. T-cell 
depleting antibodies are suggested for aggressive vascular cellular rejection and AR episodes that do not respond 
to steroid treatments45. On the other hand, if antibody mediated rejection is the resulting diagnosis, the following 
alternatives are suggested for treatment: plasmapheresis, immunoadsorption, intravenous immunoglobulin, or 
monoclonal antibodies46.

It is worth mentioning that most of the clinical research estimates the ADC at a few select b-values17–27, 
typically one of the lower b-values and one of the higher b-values along with the baseline (b0). In fact, blood 
flow and complex tissue microstructure create non-monoexponential DW-MRI signal attenuation. The 
maximal b-value in this study (1000 s mm−2) should not elicit excessive non-Gaussian diffusion. One usu-
ally goes to b-value > 2000 s mm−2 for sensitivity to kurtosis, etc. That said, perfusion is measurable at low 
b-values < 200 s mm−2 47,48. Usually, the low b-values account for blood perfusion, and the high b-values account 
for the water di�usion47–50. To account for both, we used the 11 di�erent b-values to accurately �nd the di�er-
ences in perfusion and di�usion patterns between the non-rejection and acute rejection groups. Additionally, 
we integrated the decision from the 11 di�erent b-values to get an accurate �nal decision. It is worth noting that 
this integration helped with handling any errors that might occur in one or two b-values due to chemical shi�s or 
existing artifacts during the acquisition process.

To summarize, a deep learning-based CAD system for non-invasive assessment of renal transplant status 
using the fusion of the DW-MR derived markers and clinical biomarkers was developed. Speci�cally, this fusion 
process produced well-separated CNN ADC input maps that were used as transplant status discriminatory 
features, which in turn a�ected the individual as well as the global diagnostic accuracy of the proposed CAD 

Figure 6. Receiver operating characteristics (ROC) curves for the FBio scenario for individual b-values and 
their fusion.

Figure 7. Receiver operating characteristics (ROC) curves for the proposed CNN-based system (for both 
scenarios S1 and S2), the clinical biomarkers (ClinBio) based upon using a support vector machine (SVM) 
classi�er, and the auto-encoding system42.
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system. �ese preliminary results demonstrated the potential of the CAD system as a reliable non-invasive renal 
transplant diagnostic tool. It is independent of the scanner type and/or imaging protocol that has been used in 
DW-MRI data collection and the geographical area where the data were collected. �e developed technique has 
also proven that the processing time and complexity can be reduced by avoiding the complex segmentation and 
registration procedures without a�ecting the quality of the �nal diagnosis.

Currently, we are including both lower and higher b-values without sacri�cing any of the 11 di�erent b-values 
to help us gather all possible information that might, one day, lead to the development of an accurate non-invasive 
alternative diagnostic tool to the renal biopsy. However, we are planning to extend our study by performing a sta-
tistical analysis to determine the most informative b-values. Once we reach this point, we could sacri�ce some of 
the b-values that are unsatisfactory informative, which in turn will reduce the DW-MRI acquisition time. Future 
progress includes the usage of a larger sample size collected at di�erent transplant centers and/or di�erent imag-
ing systems and collection protocols, and the exploration of additional biomarkers, such as genomic information 
that will augment personalized data in the cohort.

Data Availability
�e datasets generated during and/or analyzed during the current study are available from the corresponding 
author on a reasonable request.

References
 1. National chronic kidney disease fact sheet, https://www.cdc.gov/kidneydisease/pdf/kidney_factsheet.pdf (2017).
 2. Organ donation and transplantation statistics, https://www.kidney.org/news/newsroom/factsheets/Organ-Donation-and-

Transplantation-Stats (2016).
 3. Collins, A. J. et al. Us Renal Data System 2011 Annual Data Report. American Journal of Kidney Diseases 59, https://doi.

org/10.1053/j.ajkd.2011.11.015 (2012).
 4. Hollis, E. et al. Towards non-invasive diagnostic techniques for early detection of acute renal transplant rejection: A review. �e 

Egyptian Journal of Radiology and Nuclear Medicine 48, 257–269 (2017).
 5. Myers, G. L. et al. Recommendations for improving serum creatinine measurement: A report from the laboratory working group of 

the national kidney disease education program. Clinical Chemistry 52, 5–18 (2006).
 6. Kidney biopsy, https://www.mayoclinic.org/tests-procedures/kidney-biopsy/about/pac-20394494.
 7. Brown, E. D., Chen, M. Y., Wolfman, N. T., Ott, D. J. & Watson, N. E. Jr. Complications of renal transplantation: Evaluation with US 

and radionuclide imaging. Radiographics 20, 607–622 (2000).
 8. Sebastià, C. et al. Helical CT in renal transplantation: Normal findings and early and late complications. Radiographics 21, 

1103–1117 (2001).
 9. Kirkpantur, A. et al. Utility of the doppler ultrasound parameter, resistive index, in renal transplant histopathology. In 

Transplantation Proceedings, vol. 40, 104–106 (Elsevier, 2008).
 10. Seiler, S. et al. Ultrasound renal resistive index is not an organ-specific predictor of allograft outcome. Nephrology Dialysis 

Transplantation 27, 3315–3320 (2012).
 11. Khalifa, F. et al. Dynamic contrast-enhanced MRI-based early detection of acute renal transplant rejection. IEEE Transactions on 

Medical Imaging 32, 1910–1927 (2013).
 12. Sharfuddin, A. Renal relevant radiology: imaging in kidney transplantation. Clinical Journal of the American Society of Nephrology 

9, 416–429 (2014).
 13. Sayar, H., Sharfuddin, A. A., Taber, T. E. & Mehta, R. Chronic myeloid leukemia within a year of kidney transplant with elevated 

alkaline phosphatase correlated with imatinib therapy. Experimental and Clinical Transplantation 9, 336–339 (2011).
 14. Prasad, P. V., Priatna, A., Spokes, K. & Epstein, F. H. Changes in intrarenal oxygenation as evaluated by bold MRI in a rat kidney 

model for radiocontrast nephropathy. Journal of Magnetic Resonance Imaging 13, 744–747 (2001).
 15. Grenier, N. et al. Functional MRI of the kidney. Abdominal Imaging 28, 0164–0175 (2003).
 16. Chilla, G. S., Tan, C. H., Xu, C. & Poh, C. L. Di�usion weighted magnetic resonance imaging and its recent trend: A survey. 

Quantitative imaging in medicine and surgery 5, 407 (2015).
 17. Xu, J., Xiao, W., Zhang, L. & Zhang, M. Value of diffusion-weighted MR imaging in diagnosis of acute rejection after renal 

transplantation. Zhejiang da xue xue bao. Yi xue ban = Journal of Zhejiang University. Medical sciences 39, 163–167 (2010).
 18. Abou-El-Ghar, M. et al. Role of di�usion-weighted MRI in diagnosis of acute renal allogra� dysfunction: A prospective preliminary 

study. �e British Journal of Radiology 85, e206–e211 (2012).
 19. Kaul, A. et al. Assessment of allogra� function using di�usion-weighted magnetic resonance imaging in kidney transplant patients. 

Saudi Journal of Kidney Diseases and Transplantation 25, 1143 (2014).
 20. Wypych-Klunder, K. et al. Diffusion-weighted MR imaging of transplanted kidneys: Preliminary report. In Polish Journal of 

Radiology (2014).
 21. Park, S. Y. et al. Assessment of early renal allogra� dysfunction with blood oxygenation level-dependent MRI and di�usion-weighted 

imaging. European Journal of Radiology 83, 2114–2121 (2014).
 22. Liu, G. et al. Detection of renal allogra� rejection using blood oxygen level-dependent and di�usion weighted magnetic resonance 

imaging: A retrospective study. BMC Nephrology 15, 158 (2014).
 23. Hueper, K. et al. Di�usion-weighted imaging and di�usion tensor imaging detect delayed gra� function and correlate with allogra� 

�brosis in patients early a�er kidney transplantation. Journal of Magnetic Resonance Imaging 44, 112–121 (2016).
 24. Hueper, K. et al. Kidney transplantation: Multiparametric functional magnetic resonance imaging for assessment of renal allogra� 

pathophysiology in mice. Investigative Radiology 51, 58–65 (2016).
 25. Fan, W.-J. et al. Assessment of renal allogra� function early a�er transplantation with isotropic resolution di�usion tensor imaging. 

European Radiology 26, 567–575 (2016).
 26. Steiger, P., Barbieri, S., Kruse, A., Ith, M. & �oeny, H. C. Selection for biopsy of kidney transplant patients by di�usion-weighted 

MRI. European Radiology 27, 4336–4344 (2017).
 27. Xie, Y. et al. Functional evaluation of transplanted kidneys with reduced �eld-of-view di�usion-weighted imaging at 3 T. Korean 

Journal of Radiology 19, 201–208 (2018).
 28. Wernick, M. N., Yang, Y., Brankov, J. G., Yourganov, G. & Strother, S. C. Machine learning in medical imaging. IEEE Signal Processing 

Magazine 27, 25–38, https://doi.org/10.1109/MSP.2010.936730 (2010).
 29. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436 (2015).
 30. Ker, J., Wang, L., Rao, J. & Lim, T. Deep learning applications in medical image analysis. IEEE Access 6, 9375–9389 (2018).
 31. Pedraza, A. et al. Glomerulus classification with convolutional neural networks. In Annual Conference on Medical Image 

Understanding and Analysis, 839–849 (Springer, 2017).
 32. Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classi�cation with deep convolutional neural networks. In Advances in neural 

information processing systems, 1097–1105 (2012).

https://doi.org/10.1038/s41598-019-42431-3
https://www.cdc.gov/kidneydisease/pdf/kidney_factsheet.pdf
https://www.kidney.org/news/newsroom/factsheets/Organ-Donation-and-Transplantation-Stats
https://www.kidney.org/news/newsroom/factsheets/Organ-Donation-and-Transplantation-Stats
https://doi.org/10.1053/j.ajkd.2011.11.015
https://doi.org/10.1053/j.ajkd.2011.11.015
https://www.mayoclinic.org/tests-procedures/kidney-biopsy/about/pac-20394494
https://doi.org/10.1109/MSP.2010.936730


1 1SCIENTIFIC REPORTS |          (2019) 9:5948  | https://doi.org/10.1038/s41598-019-42431-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

 33. Temerinac-Ott, M. et al. Detection of glomeruli in renal pathology by mutual comparison of multiple staining modalities. In 10th 
International Symposium on Image and Signal Processing and Analysis (ISPA), 19–24 (IEEE, 2017).

 34. Yang, X. et al. A deep learning approach for tumor tissue image classi�cation. In IASTED Biomedical Engineering (2016).
 35. Kolachalama, V. B. et al. Association of pathological �brosis with renal survival using deep neural networks. Kidney International 

Reports 3, 464–475, https://doi.org/10.1016/j.ekir.2017.11.002 (2018).
 36. Marsh, J. N. et al. Deep learning global glomerulosclerosis in transplant kidney frozen sections. IEEE Transactions on Medical 

Imaging 1–1, https://doi.org/10.1109/TMI.2018.2851150 (2018).
 37. Tustison, N. J. et al. N4ITK: Improved N3 bias correction. IEEE Transactions on Medical Imaging 29, 1310–1320 (2010).
 38. LeCun, Y., Bottou, L., Bengio, Y. & Ha�ner, P. Gradient-based learning applied to document recognition. Proceedings of the IEEE 86, 

2278–2324 (1998).
 39. Io�e, S. & Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shi�. In Proceedings 

of the 32nd International Conference on International Conference on Machine Learning - Volume 37, ICML’15, 448–456 (JMLR.org, 
2015).

 40. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: A simple way to prevent neural networks from 
over�tting. �e Journal of Machine Learning Research 15, 1929–1958 (2014).

 41. Paszke, A. et al. Pytorch: Tensors and dynamic neural networks in python with strong gpu acceleration (may 2017).
 42. Shehata, M. et al. Computer-aided diagnostic system for early detection of acute renal transplant rejection using di�usion-weighted 

MRI. IEEE Transactions on Biomedical Engineering 1–1, https://doi.org/10.1109/TBME.2018.2849987 (2018).
 43. Gray, D., Daar, A., Shepherd, H., Oliver, D. & Morris, P. Oral versus intravenous high-dose steroid treatment of renal allogra� 

rejection: �e big shot or not? �e Lancet 311, 117–118 (1978).
 44. Shinn, C., Malhotra, D., Chan, L., Cosby, R. L. & Shapiro, J. I. Time course of response to pulse methylprednisolone therapy in renal 

transplant recipients with acute allogra� rejection. American journal of kidney diseases 34, 304–307 (1999).
 45. Webster, A. C., Pankhurst, T., Rinaldi, F., Chapman, J. R. & Craig, J. C. Monoclonal and polyclonal antibody therapy for treating 

acute rejection in kidney transplant recipients: A systematic review of randomized trial data. Transplantation 81, 953–965 (2006).
 46. Qureshi, F., Rabb, H. & Kasiske, B. L. Silent acute rejection during prolonged delayed gra� function reduces kidney allogra� 

survival. Transplantation 74, 1400–1404 (2002).
 47. �oeny, H. C. & De Keyzer, F. Di�usion-weighted MR imaging of native and transplanted kidneys. Radiology 259, 25–38 (2011).
 48. Zhang, J. L. et al. Variability of renal apparent di�usion coe�cients: limitations of the monoexponential model for di�usion 

quanti�cation. Radiology 254, 783–792 (2010).
 49. Wittsack, H.-J. et al. Statistical evaluation of di�usion-weighted imaging of the human kidney. Magnetic resonance in medicine 64, 

616–622 (2010).
 50. Lu, L. et al. Use of di�usion tensor MRI to identify early changes in diabetic nephropathy. American journal of nephrology 34, 

476–482 (2011).

Acknowledgements
�is research is supported by the National Institutes of Health (NIH Grant Number: 1R15AI135924-01A1).

Author Contributions
M.G., M.E. and A.D. were responsible for data curation. M.E. and A.E. participated in the formal analysis. 
M.G., H.H. and A.E. were responsible for funding acquisition. H.A., M.S. and A.E. were responsible for the 
conceptualization. H.A., M.S., A.S., F.K., A.M. and A.E. participated in the methodology. F.K., A.M. and A.E. 
were responsible for project administration. M.G., M.E., A.D. and A.E. provided the required resources. H.A., 
M.S., A.S. and F.K. worked on the so�ware development. A.M., F.K., R.K. and A.E. validated the results. H.H., 
R.K. and A.E. visualized the results. H.A., M.S., A.S. and F.K. were responsible for writing the original dra�. H.A., 
M.S. and A.S. made all the �gures. M.G., H.H., R.K., A.D., A.M. and A.E. were responsible for the writing review 
and editing processes.

Additional Information
Competing Interests: �e authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional a�liations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. �e images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© �e Author(s) 2019

https://doi.org/10.1038/s41598-019-42431-3
https://doi.org/10.1016/j.ekir.2017.11.002
https://doi.org/10.1109/TMI.2018.2851150
https://doi.org/10.1109/TBME.2018.2849987
http://creativecommons.org/licenses/by/4.0/

	A Novel CNN-Based CAD System for Early Assessment of Transplanted Kidney Dysfunction
	Materials and Methods
	Data Preprocessing and Region-of-Interest (ROI) Selection. 
	ADC Maps. 
	Clinical Biomarkers. 
	Data Preparation: ADCs and Biomarkers Fusion. 
	Convolutional Neural Networks (CNN). 
	The Proposed CNN Architecture. 
	CNN Training and Testing. 
	CNN Decision Fusion. 


	Experimental Results
	Discussion and Conclusions
	Acknowledgements
	Figure 1 The proposed convolutional neural network (CNN)-based framework for early detection of renal transplant rejection using diffusion-weighted (DW) MRI.
	Figure 2 Illustration of the voxel-wise ADC calculations at a voxel (x y z) at b-value of 500 s mm−2: (a) the ROI-kidney regions at b0, (b) the ROI-kidney regions at b500, and (c) the constructed ADC maps for the defined ROI.
	Figure 3 Demonstration of the efficacy of the fusion of both image and clinical markers.
	Figure 4 Illustration of the processing of a single volume using CNN.
	Figure 5 The architecture of the proposed convolutional neural network (CNN), where (a) illustrates the configurations of the developed CNN and its layers and (b) represents the pipeline of the fusion process using a support vector machine (SVM) classifie
	Figure 6 Receiver operating characteristics (ROC) curves for the FBio scenario for individual b-values and their fusion.
	Figure 7 Receiver operating characteristics (ROC) curves for the proposed CNN-based system (for both scenarios S1 and S2), the clinical biomarkers (ClinBio) based upon using a support vector machine (SVM) classifier, and the auto-encoding system42.
	Table 1 The proposed CNN configuration.
	Table 2 A comparison example between a non-rejection (NR) and an acute rejection (AR) subjects based upon the mean and the standard deviation (std) values of the ADC maps alone at the 11 individual b-values.
	Table 3 Comparison of the approximated percentage diagnostic accuracy (ACC%) obtained at individual and fused b-values (F11) between the first scenario (S1) using the ADC maps alone with the CNN-based classification system, the second scenario (S2) utiliz
	Table 4 Comparative diagnostic quality between the first scenario (S1) using the ADC maps alone with the CNN-based classification system, the second scenario (S2) utilizing the fusion of the clinical biomarkers and the image markers using the same CNN-bas


