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A Novel Collocation Method Based on Residual Error Analysis for Solving Integro-
Differential Equations Using Hybrid Dickson and Taylor Polynomials

(Kaedah Novel Kolokasi Berdasarkan Analisis Sisa Ralat untuk Menyelesaikan Persamaan 

Integro-Pembezaan yang Menggunakan Hibrid Dickson dan Polinomial Taylor)
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ABSTRACT

In this study, a novel matrix method based on collocation points is proposed to solve some linear and nonlinear integro-

differential equations with variable coefficients under the mixed conditions. The solutions are obtained by means of Dickson 
and Taylor polynomials. The presented method transforms the equation and its conditions into matrix equations which 
comply with a system of linear algebraic equations with unknown Dickson coefficients, via collocation points in a finite 
interval. While solving the matrix equation, the Dickson coefficients and the polynomial approximation are obtained. 
Besides, the residual error analysis for our method is presented and illustrative examples are given to demonstrate the 

validity and applicability of the method.

Keywords: Collocation and matrix methods; Dickson and Taylor polynomials; integro-differential equations; nonlinear 
equations; pseudocode

ABSTRAK

Dalam kajian ini, kaedah matriks novel berdasarkan titik kolokasi adalah dicadangkan untuk menyelesaikan persamaan 
integro-pembezaan bagi sesetengah linear dan tak linear dengan pekali pemboleh ubah dalam keadaan bercampur-
campur. Penyelesaian yang diperoleh dengan cara polinomial Dickson dan Taylor. Kaedah yang dibentangkan mengubah 
persamaan serta keadaannya ke dalam persamaan matriks yang bertepatan dengan sistem persamaan algebra linear 
dengan pekali Dickson tidak diketahui, melalui titik kolokasi dalam selang terhingga. Semasa menyelesaikan persamaan 
matriks ini, pekali Dickson dan penganggaran polinomial diperoleh. Selain itu, analisis sisa ralat bagi kaedah kami ini 
telah dikemukakan dan contoh ilustrasi diberi untuk menunjukkan kesahihan dan penerapan kaedah.

Kata kunci: Kolokasi dan kaedah matriks; polinomial Dickson dan Taylor; persamaan integro-pembezaan; persamaan 
tak linear; tatasusunan

INTRODUCTION

Integro-differential equations (IDEs) consist of differential 

and integral equations. These equations play an important 

role in the fields of applied mathematics and  engineering, 
mechanics, physics, chemistry, potential theory, dynamics 
and ecology. These equations are also generally difficult 
to solve analytically; thereby, a numerical method is 
needed. In recent years, several numerical methods 
have been introduced such as the matrix and collocation 

methods based on Chebyshev (Akyüz-Daşcıoğlu 2006), 
Taylor (Sezer 1994), Legendre (Yalçınbaş et al. 2009) 
and Bessel (Yüzbaşı et al. 2011) polynomials, along with 
Adomian decomposition (Evans et al. 2005) and Wavelet 
moment (Babolian et al. 2007) methods.
 Permutation and Dickson polynomials are widely 
used in mathematics, integer rings (Fernando 2013), 
finite fields (Bhargava et al. 1999), key cryptography 
(Wei et al. 2011), algebraic and number-theory (Stoll 
2007). Dickson polynomials are denoted as D

n
 (x, α) and 

were introduced by Dickson (1896). These were later 

rediscovered by Brewer (1961). Dickson polynomials are 
defined as follows,

 ; -∞ < x < ∞, (1)

where the parameter -α, D0(x,α) = 2,  D
1
(x,α) and n ≥ 1. Also, 

the Dickson polynomials y = D
n
(x,α) satisfy the ordinary 

differential equations (Lidl et al. 1993)

 (x2 – 4α) y" + xy´ – n2y = 0, n = 0,1,2,3,…

and the recurrence relation (Lidl et al. 1993),

 D
n
(x, α) = xD

n–1
(x, α) – αD

n–2(x, α), n ≥ 2.

 For further information about the Dickson polynomials 
see (Kürkçü et al. 2016 and therein references).
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 In this paper, the matrix relations between the Dickson 
polynomials and its expansions depend on the parameter-α 

with n and the novel method will be applied to mth-order 

linear and nonlinear integro-differential equations.

1. mth-order linear Fredholm integro-differential 
equation (FIDE)

 

 . (2)

2.  mth-order linear Volterra integro-differential equation 

(VIDE)

  . (3)

3.  mth-order linear Fredholm-Volterra integro-differential 
equation (FVIDE)

   .

 (4a)

4.  mth-order nonlinear Fredholm-Volterra integro-
differential equation in the from

  

 , (4b)

 under the mixed conditions

 ; j = 0,1,2, …, m – 1, (5)

 where y(x) is an unknown function, the known 
functions P

k
(x), Z

1
(x), T

1
(x), g(x), K

f
(x,t), K

v
(x,t) are 

described on –∞ < a ≤ x, t ≤ b < ∞ and a
jk
, b

jk
, λ

1
, 

λ2,  μj
 are useful constants. Our purpose is to find an 

approximate solutions of (2), (3), (4a) and (4b). Hence, 
form of the solutions will be as follows (Kürkçü et al. 
2016),

 , –∞ < a ≤ x, t ≤ b < ∞,	(6)

 where y
n
 are unknown Dickson coefficients and 

N (n ≥ m) is chosen as any positive integer. Also, 
Dickson polynomials D

n
(x, α) were defined by (1). In 

order to obtain a solution in the form (6) of (2), (3), 
(4a) and (4b), we can use the collocation points,

 , i = 0, 1, 2, …, N,  (7)

 where  a = x0 < x
1
 < … < x

N
 = b. 

FUNDAMENTAL MATRIX RELATIONS

In this and next sections, the whole relations will be based 
on (4a) and (4b). Let us write (4a) as the generalized 

integro-differential equation form,

 D(x) = g(x) + F(x) + V(x), (8)

where

 ,  

 and  .

 D(x), F(x) and V(x) are called as the differential, 
Fredholm and Volterra integral parts of (2), (3) and 
(4a), respectively. We transform these parts with mixed 
conditions (5) to matrix form. Here, if we establish the 
collocation points (5) in (8), then we have a system

 D(x
i
) = g(x

i
) + F(x

i
) + V(x

i
), (9)

where

 ,  

 and  .

 Now we can transform the systems (9) into the matrix 
equations, respectively

 D = G+F+V , (10)

where

 D =  , G =  , F =  and 

 V = 

MATRIX REPRESENTATION OF DIFFERENTIAL PART

Let us assume the function y(x) and its derivatives have 

truncated Dickson series expansion of the form

 , –∞ < a ≤ x, t ≤ b <∞.

 Hence, the solution is explained by (6) and its 
derivatives can be transformed to the matrix forms
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 [y(x)] = D(x, α) Y and  [y(k)(x)] = D(k) (x, α) Y, (11)

such that

 D(x, α) = [D0(x, α) D
1
(x, α) …  D

N
(x, α)],  

 

and the Dickson coefficients matrix

 Y = [y0   y1
   …  y

N
]T.

 On the other hand, we obtain the matrix D(x, α) by 

using the Dickson polynomial. The matrix is given for odd 

values of N

 (12)

for even values of N

(13)

 Hence, we write the matrix equation by using (12) and 
(13)

DT(x, α) = ST(α) XT(x) or  D(x, α) = X(x) S(α) and 

D(k)(x, α) = X(k) (x) S(α).  (14)

 Also, the following equations are obtained by using 
(11) and (14).

 y(x) = X(x) S (α) Y and y(k)(x) = X(k)(x) S (α) Y. (15)

 The relation (Kurt & Sezer 2008) between the matrix 
X(x) and its derivative X(k) (x)  is 

 X(k)(x) = X(x) Bk, (B0: Identity matrix ), (16)

where

 

 

 From (15) and (16), we obtain y(k)(x) = X(x) BkS(α)

Y and its representation y(k)(x
i
) = X(x

i
) BkS(α)Y with 

the collocation points. On the other hand, the matrix D 

corresponds to D(x
i
), i = 0, 1, 2, …, N can be formed as,

 

 ,  (17)

where 

 ,

 

MATRIX REPRESENTATION OF FREDHOLM INTEGRAL PART

Now, we give the kernel function K
f
(x, t) for the Fredholm 

integral part F(x) in the truncated Dickson and the Taylor 

series forms (Sezer 1996), respectively,

 

and

 ,

where

 ,  m,n = 0,1,2,…, N. 

 We can write the matrix forms of K
t
(x,t) for the Taylor 

and Dickson polynomials as 

  (18)

and 

 [K
f 
(x,t)] = D(x,α) K

f 
DT(t,α). (19)
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 From the equality of the relations (18), (19) and by 
using the relation (14), we obtain the relation between the 
Dickson and Taylor coefficients of the kernel function K

f
 

(x,t):

 ,  

 , (20)

where

 K
t
 = [k

mn
], and ,  m,n = 0,1,2, …, N.

 By substituting the matrix forms (20) and (11) into the 
Fredholm integral part F(x), we have the matrix equation

 

where 

 

 

 Q
1
 = [q

mn
], 

 Hence, we have the matrix connection of Fredholm 
integral part:

 [F(x)] = λ
1
D(x,α) K

f 
Q

f 
Y.

 If we utilize the collocation points x = x
i 
(i = 0,1,2,…, 

N), then we obtain the system of the matrix equations

 

or briefly, the matrix equation 

 F = λ
1
XS(α) K

f
 Q

f
 Y.  (21)

MATRIX REPRESENTATION OF VOLTERRA INTEGRAL PART

Now we consider the kernel function K
v
(x,t) of the Volterra 

integral part V(x) in (4a) and (4b) by using the similar 

procedure to previously discussed, we obtain the following 
results:

 

where 

 Q
v
(x) = [q

kl
(x)],  k, l = 0,1,2,…, N;

and for x = x
i
, (i = 0,1,2, …, N) the matrix system

 .  (22)

 Consequently, the matrices system (22) is written in 
the matrix form

 , (23)

where ,  ; m, n = 0,1,2, …, N,

 , 

 

 , 

 .

MATRIX REPRESENTATION OF NONLINEAR PARTS

By using (7) and (15), we construct the matrix representation 
of nonlinear parts  Z

1
(x)y2(x) and T

1
y3(x), respectively 

(Kürkçü et al. 2016),

 , (24)
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where 

  , 

 .

Similarly, 

 , (25)

where

 , ,  

  and  

  

 . 

MATRIX REPRESENTATION OF MIXED CONDITIONS

We can find the corresponding matrix equations for the 
conditions (5), by using the relation (15),

 , j = 0,1,2,…, m – 1, 

(26)
where

 ,

 .

METHOD OF SOLUTION

We now ready to build the fundamental matrix equation 
according to (4a). For this aim, we initially insert the 
matrix relations (17), (21) and (23) into (10) and then by 
simplifying, we obtain the fundamental matrix equation,

 

, 

 (27)

which corresponds to a system of (N +1) algebraic 

equations for (N + 1) unknown Dickson coefficients  y0, 
y

1
, …, y

N
. Briefly, we can write (27) in the form:

 WY = G or  [W ; G], (28)

where

 G = [g(x0)   g(x
1
)   …   g(x

N–1
)   g(x

N
)]T.

 On the other hand, we can construct (26) for the 
conditions (5) , briefly as:

 U
j
Y = μ

j
 ⇒[U

j
 ; μ

j
],  j = 0,1,2,…, m –1,  (29)

where 

 

 In order to obtain the solution of (4a) under the 

conditions (5), by changing the row matrices (29) by any 
m rows of the matrix (28), we get the augmented matrix

 . 

 (30)

 If rankW* =rank [W* ; G*] = N + 1, then we can write 

Y = (W*)–1 G*. Consequently, the Dickson coefficients y
k
 

(k = 0,1, …, N) are uniquely determined by (30). On the 
other hand, when det(W*) = 0, if rankW* =rank [W* ; G*] 

< N + 1, then we may find particular solutions. Else if 
rank≠rank [W* ; G*] < N + 1, then it has no solution.
 Furthermore, in order to solve (4b), we give the 
fundamental matrix equation by using (7), (17), (21) and 
(23)-(25).

 , (31)

where W = [w
ij
],  (i, j = 0,1, …, N) represents the matrix 

form of the linear parts (as in (27)), 

  ; 

 p = 0, 1, …, N + 1, 

 q = 0, 1, …, (N+1)2,

  ; 

 r = 0, 1, …, N + 1, 

 s = 0, 1, …, (N + 1)3.

 Likewise, we obtain the following matrix equation by 
using (29) and (31):
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  .  (32)

 When the system (32) is solved, the unknown Dickson 
coefficients y

n 
are obtained. If they are substituted into (6), 

then we will get the Dickson polynomial solution via the 
method.

RESIDUAL ERROR ANALYSIS

In this section, we will give an error analysis based on the 
residual function (Kürkçü et al. 2016) for the Dickson-
Taylor collocation method. In addition, we will improve the 
Dickson polynomial solutions (6) by means of the residual 
error function. We can define the residual function of the 
Dickson-Taylor collocation method as:

 R
N
(x) = L[y

N
(x)] – g(x), (33)

where L[y
N
(x)]≅	g(x). The error function e

N
(x) can also be 

defined as:

 e
N
(x) = y(x) – y

N
(x), (34)

where y(x) is the exact solution of the problem (4a). From 
(4a), (5), (33) and (34), we obtain the error equation (ODEs, 
FVIDEs, FIDEs or VIDEs):

 L[e
N
(x)] = L[y(x)] – L[y

N
(x)] = –R

N
(x),

with the homogeneous initial conditions

 , 

or briefly, the error problem is expressed as:

  ,  (35)

where the nonhomegeneous initial conditions (5) are 
reduced to homogeneous initial conditions

  .

 The error problem (35) can be solved by using the 
given procedure in Method of Solution Section. Then, we 
obtain the approximation

 ,

where e
N,M

(x) is the Dickson polynomial solution of the 

error problem obtained by using the residual error function. 

Consequently, the corrected Dickson polynomial solution 
y

N,M
(x) = y

N
(x) + e

N,M
(x) is obtained by means of the 

polynomials y
N
(x) and e

N,M
(x). We also construct the error 

function e
N
(x) = y(x) – y

N
(x), the estimated error function 

e
N,M

(x) and the corrected error function E
N,M

(x) = e
N
(x) – 

e
N,M

(x) = y(x) – y
N,M(x).

 Note that this residual error analysis can not be used 

for the nonlinear (4b).

NUMERICAL EXAMPLES

In this section, numerical examples are given to illustrate 
the efficiency and applicability of the method. The 

computations in the examples are calculated by using 

Mathematica 10 program. In Example 5.2, we calculate 
the values of the corrected Dickson polynomial solutions  

y
N,M

(x) = y
N
(x) + e

N,M
(x), estimated error functions e

N,M
(x) 

and the corrected absolute error functions  ⏐E
N,M

(x)⏐ = 

⏐y(x) – y
N,M

(x)⏐. Besides, we find a good approximation to 
exact solution of the nonlinear integro-differential equation 

in Example 5.4.

Example 5.1 (Akyüz-Daşcıoğlu et al. 2007; Yalçınbaş et al. 
2009, 2000) First, let us consider the linear FIDE 

    

 –1 ≤ x, t ≤ 1,

with the initial conditions y(0) = 1 and y´(0) = 1. We 
suppose the problem has a Dickson polynomial solution,
 

 ,

such that N = 3, P0(x) = –x, P
1
(x) =  x, P2(x) = 1, K

f 
(x, t) = 

(sin x) e-t, –1 ≤ x, t ≤ 1, λ
1
 = 1, λ2 = 0 and . For g(x) = ex – 

2sin(x). For  = 3, the collocation points are 

 

The fundamental matrix representation of the FIDE is

 

 or [W ; G],

where 
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 .

 

 

 For the given conditions, the fundamental matrices 
are acquired as, respectively,

 [U0 ; μ0] = [2    0   –2α   0   ;   1]  and 

 [U
1
 ; μ

1
] = [0    1    0   –3α  ;   1].

The augmented matrix is 

 

.

 The solution of this system yields the Dickson 

coefficients matrix

 Y = [0.5 + 0.451521α  1+0.25052α   0.451521   0.0835065]T.

Hence, we get the approximate solution of the problem

  ,

 .

 The following approximate solutions have been given 
for N = 6,7,8,9 as respectively, 

y6(x) = 1 + x + 0.5x2 + 0.16675216123536205x3 +

0.041778260722306185x4 +  0.008146193641901422x5 +,
0.0009884800170341388x6,

y7(x) = 1 + x + 0.499999x2 + 0.166664x3 + 0.0416795x4 

+ 0.0083539x5 + 0.00137203x6 + 0.000151515x7,

y8(x) = 1 + x + 0.5x2 + 0.166666x3 + 0.0416663x4 + 

0.00833489x5 + 0.00139179x6 + 0.000197236x7 + 

0.0000199175x8,

and

y
9
(x) = 1 + x + 0.5x2 + 0.166667x3 + 0.0416666x4 +

0.00833326x5 + 0.00138908x6 + 0.000198799x7 + 

0.0000247112x8 + 2.24328 ×10-6 x9.

 Also, the comparison of solutions with the exact 
solution y(x) = ex for Example 5.1 are shown in Table 1 
and Figure 1. 
 In Figure 2, the interval [-1,1] cannot be changed. 
Because Fredholm integral is defined in this interval. If 

FIGURE 1. Comparison of the exact and the approximate 
solutions of Example 5.1 for N = 3, 7, 9

FIGURE 2. For the interval [-1,15] of Example 5.1
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the interval is changed, the results will be unsuitable as 
seen from Figure 2 and its interval [-1,15].

Example 5.2 (Yüzbaşı et al. 2011) Second, let us consider 
the linear VIDE 

 ,

 0 ≤ x, t ≤ 1,

with the initial conditions  y(0) = 1  and  y´(0) = 1. Similarly, 
in order to find the Dickson polynomial solution, we 
initially take N = 3 such that P0(x) = –x, P

1
(x) = x, P2(x) 

= 1, g(x) = ex +  x cos x, κ
v
(x,t) = (cos x)e–t, λ

1
 = 0, and 

. For N = 3, the collocation points are

  .

The matrix representation of the linear VIDE is 

 

 or [W ; G],

where B and S(α) matrices are the same as in Example 5.1;

  ,  , 

  ,   , 

 

  

 

, 

TABLE 1. Numerical results of Example 5.1
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  , 

 

 ,

  ,  .

The condition matrices are obtained as

 [U0 ; μ0] = [2   0   –2α     0    ;    1]  and  

 [U
1 
; μ

1
] = [0   1      0   –3α   ;    1].

Thereby, the augmented matrix for Example 5.2 is 

 

.

 By solving the system, we obtain the Dickson 
coefficients matrix 

Y = [0.5+0.5α  1+0.592084222416703α  0.5  0.1973614074722343]T

and the approximate solution of linear VIDE

 y3(x) = 1+x+0.5x2 + 0.1973614074722343x3.

 In similar way, we obtain the solution of the problem 
for N = 7,

y7(x) = 1+x+0.55x2 + 0.1666689439997x3 + 

0.0416485846103x4 + 0.0083947557404x5 + 

0.0012837229956x6 + 0.0002855234008x7.

TABLE 2. Numerical results of Example 5.2

TABLE 3. Numerical results of the exact and the approximate solutions for 
N =3 and M =5,9 of Example 5.2

FIGURE 3. Comparison of the exact, approximate and the corrected 
Dickson polynomial solutions according to the parameter-α 

for Example 5.2
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 Table 2 indicates the comparison of solutions with the 
exact solution y(x) = ex.

 Now, we calculate the corrected Dickson polynomial 
solutions for N = 3 and M = 5,9. In Table 3 and Figure 3, we 
compare the exact solution and the approximate solutions 

for N=3 and M=5,9.

y3.5 = 1+x+0.5x2 + 0.03977088752456758x4 + 

0.01129410303351437x5 + (0.1670864603617452 – 
(1.387778780781445e – 17)α)x3 – 

(1.387778780781445e – 17)α2 + 

(2.775557561562891e – 17)xα2.

y3.9 = 1+0.0000224849x8 + (4.07868e – 6)x9 + 

(0.000200566 + (6.77626e – 21)α)x7 + (0.00138771 
+ (2.71051e – 20)α)x6 + (3.46945e – 18)α3 + 

(2.168e – 19)α4 + (0.00833372 + (4.33681e – 19)α 

– (5.42101e – 20)α2)x5 + (0.0416666 + 
(1.04083e – 17)α + (4.33681e – 19)α2)x4 + 

(0.5 – (1.38778e – 17)α2 – (9.75782e – 19)α3)x2 

+ (0.166667 + (3.46945e – 17)α – (8.67362e – 19)α2 

+ (2.1684e – 19(α3)x3 + x(1 + (4.16334e – 17)α – 

(4.16334e – 17)α2 – (3.79471e – 19)α4).

 Similarly, we calculate the corrected Dickson 
polynomial solutions for N=7 and M=9. The comparisons 

are given in Table 4. Then, the comparison of the corrected 
absolute errors are given in Tables 5 and 6.
 As seen from Tables 5 and 6, the corrected absolute 
errors are close to zero. So, when the values of M increase, 
the accuracy of solution increases. However, when the 
values of parameter-α  increase, the tolerance increases.

Example 5.3 (Akyüz-Daşcıoğlu 2006) Let us consider the 
linear FVIDE

 ,

 0 ≤ x, t ≤ 1,

FIGURE 4. For the interval [0,30] of Example 5.2

FIGURE 5. For the interval [0,100] of Example 5.2

with the conditions y(0) = 1, y´(0) – 2y(1) + 2y(0) = 1. In 
order to solve the above problem, we take N = 5. Hence, 
the matrix representation of linear FVIDE is

 or [W ; G]

TABLE 4. Numerical results of the exact and the approximate solutions  for N=7 and M=9 of Example 5.2
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TABLE 5. Numerical results of the corrected absolute errors for N=3, M=5,9 of Example 5.2

TABLE 6. Numerical results of the corrected absolute errors for N=7, M=9 of Example 5.2

where  P0(x) = 2,  P
1
(x) = –x,  P2(x) = x,  g(x) =  ,  K

f 
(x,t) = (x + t),   K

v
(x,t) = (x – t) and  λ

1
 = λ2 = 1. 

Also, the collocation points are

 .

We obtain the augmented matrix as

 

and the Dickson coefficients matrix

 .
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Thereby, we get the solution

 y(x) = –x2 + x + 1,

which is the exact solution.

Example 5.4 Finally, let us consider the nonlinear Volterra 
integro-differential equation

 ,  0 ≤ x, t ≤ 1

with the conditions  y(0) = 1 and y´(0) = 0. The exact 
solution of the equation is y(x) = cos(x). Here P0(x) = –2, 
P2(x) = 1, λ2 = 1 and g(x) = cos2(x) – 3 cos(x) –x. We now 
construct the fundamental matrix equation from (32).
 

.

 When this system is solved, we obtain the Dickson 
polynomial solutions by applying N=3 and some different 
values of the parameter-α.
 

 , 
  

,

 , 

 .

 As seen from Figure 6, we achieved consistent 
aproximate solutions by using the present method. If 

the parameter-α  is choosen in [-0.5, 0.9], the results of 
Example 5.4 will be close to the exact solution. For the 
best approximation, the parameter-α is choosen as α = 

0.4. In addition, except for this interval, the results will 

be connected to complex or null space. Therefore, the 
parameter-α should be choosen in this interval. Also, 
as seen from Figures 4, 5 and 7, when the interval is 
expanded, the results have been deviated a little from the 
exact solutions, but the good approximations have been 
obtained by the present method.

ALGORITHM

In this section, the Pseudocode has been given for calculation 
of (4a). This can also be applied to (2) and (3).

Step 1

a. Input the number of truncated Dickson polynomial 

solution N ∈  such that  N ≥ m (6).
b. Determine a, b, λ

1
, λ2, P0(x), …, P

k
(x), (k = 0, 1, …, 

m),  K
f
(x, t), K

v
(x, t), g(x) and mixed conditions.

c. The mixed conditions put in (5).
d. According to N (N is even or odd), set S(α). 

Step 2 Set the collocation points x
i
, i = 0, 1, …, N. There 

are x0 = α and x
N
 = b.

Step 3 

a. Construct the matrices P
k
 (k = 0, …, m) , B, X, K

f
, Q

f
, 

, , and  from (27). 
b. Compute W and G matrices.

c. Construct the conditional (m-1)-rows matrices from 
(29).

Step 4 Construct the augmented [W*; G*] matrix from (30).

Step 5 If rank W * = rank [W*; G*] = N + 1, then solve the 
system by using Gaussian elimination method (or to solve 

the  Y = (W*)-1 G*).

Step 6  Substituting all elements of the Dickson coefficients 
matrix solution, respectively, into (6). Finally, this will be 
our solution.

FIGURE 7. For the interval [0,5] of Example 5.4

FIGURE 6. Comparison of the exact and the approximate 
solutions of Example 5.4 for N = 3 with α = -0.5, 0, 0.4, 0.9
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CONCLUSION

High-order linear and nonlinear Fredholm-Volterra 
integro-differential equations (FVIDEs) are usually difficult 
to solve as analytically. Therefore, it is necessary to use 
approximate methods. For these purposes, the present 
method has been given to find consistent approximate 
solutions. One of the remarkable advantages of the 

present method, the Dickson coefficients obviously find 
with the aid of the computer programs. At the same time, 
the presence of parameter-α  is required to use computer 

program along with the present method for the accuracy 
of solutions. The results related with examples have been 
shown in Tables 1-6 and Figures 1-7. As seen from tables 
and figures, when the value of N is increased, the numerical 
results improve. On the other hand, if the interval a ≤ x, t 

≤ b is taken, the width intervals as [0,30], [0,100]…, it is 
seen that the approximations are not good. We have also 
improved the approximate solutions by using the residual 

error analysis. The present method can be developed for 

the systems of differential, integral and integro-differential 
equations. But some modifications are required.
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