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M. Geoffrey Hayes16,17, Diana L. Cousminer18, Antje Körner20, Elisabeth Thiering21,22,

John A. Curtin25, Ronny Myhre26, Ville Huikari28, Raimo Joro31, Marjan Kerkhof33,34,

Nicole M. Warrington37,38, Niina Pitkänen39, Ioanna Ntalla41,42, Momoko Horikoshi43,44,

Riitta Veijola45, Rachel M. Freathy47, Yik-Ying Teo48,49,50, Sheila J. Barton51, David M. Evans9,38,

John P. Kemp9,38, Beate St Pourcain9,10,11, Susan M. Ring9,10, George Davey Smith9,

Anna Bergström12, Inger Kull53,54, Hakon Hakonarson13,55,14, Frank D. Mentch13, Hans Bisgaard5,

Bo Chawes5, Jakob Stokholm5, Johannes Waage5, Patrick Eriksen5, Astrid Sevelsted5,

Mads Melbye15,56, Early Genetics and Lifecourse Epidemiology (EAGLE) Consortium,

Cornelia M. van Duijn1, Carolina Medina-Gomez1,3,4, Albert Hofman1,3, Johan C. de Jongste2,3,
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Common genetic variants have been identified for adult height, but not much is known about the genetics of
skeletal growth in early life. To identify common genetic variants that influence fetal skeletal growth, we meta-
analyzed 22 genome-wide association studies (Stage 1; N 5 28 459). We identified seven independent top
single nucleotide polymorphisms (SNPs) (P < 1 3 1026) for birth length, of which three were novel and four
were in or near loci known to be associated with adult height (LCORL, PTCH1, GPR126 and HMGA2). The
three novel SNPs were followed-up in nine replication studies (Stage 2; N 5 11 995), with rs905938 in DC-
STAMP domain containing 2 (DCST2) genome-wide significantly associated with birth length in a joint analysis
(Stages 1 1 2; b 5 0.046, SE 5 0.008, P 5 2.46 3 1028, explained variance 5 0.05%). Rs905938 was also asso-
ciated with infant length (N 5 28 228; P 5 5.54 3 1024) and adult height (N 5 127 513; P 5 1.45 3 1025). DCST2
is a DC-STAMP-like protein family member and DC-STAMP is an osteoclast cell-fusion regulator. Polygenic
scores based on 180 SNPs previously associated with human adult stature explained 0.13% of variance in
birth length. The same SNPs explained 2.95% of the variance of infant length. Of the 180 known adult height
loci, 11 were genome-wide significantly associated with infant length (SF3B4, LCORL, SPAG17, C6orf173,
PTCH1, GDF5, ZNFX1, HHIP, ACAN, HLA locus and HMGA2). This study highlights that common variation in
DCST2 influences variation in early growth and adult height.

INTRODUCTION

Fetal and infancy length growth are important measures of de-
velopment in early life. Early length growth seems to be asso-
ciated with height in adulthood (1). It has been shown that
fetal and infant growth are independently associated with
higher risks of cardiovascular disease, type 2 diabetes and
many other complex diseases. Previous findings suggested
genetic links between fetal growth and metabolism (2,3).
However, these studies mainly focused on birth weight as
early growth measure. Skeletal growth is a different measure
of development in early life. Skeletal growth during fetal life

and infancy is a complex trait with heritability estimates of
26–72% (4). Although correlated with each other, fetal, infant
and adult skeletal growth may be influenced by different
genetic factors. Many common genetic variants have been iden-
tified for adult height (5), but not much is known about the gen-
etics of skeletal growth in early life. Although, several rare
genetic defects with large effects on length at birth and during
infancy have been found (6,7), common genetic variants that in-
fluence normal variation in birth and infant length have not yet
been identified. Therefore, we aimed to identify common
genetic variants influencing early length growth, also in perspec-
tive of their effect on adult stature.
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RESULTS

To identify common genetic variants associated with birth
length, we examined 2 201 971 million directly genotyped and
imputed SNPs with birth length in 22 independent discovery
studies with genome-wide association (GWA) or Metabochip
data (Stage 1; N ¼ 28 459; Fig. 1). Birth length was measured
using standardized procedures (Supplementary Material, Tables
S1 and S2). Studies with self-reported measurements were
excluded a priori. Birth length was standardized using growth
analyzer (http://www.growthanalyser.org), transforming birth
length into sex- and age-adjusted standard deviation scores
(SDS). We used the North-European 1991 reference panel to
compare results between studies. We applied linear regression
between number of alleles or dosages obtained from imputations
and standardized birth length (full details in Materials and
Methods).

Gene identification

In the discovery phase (Stage 1), we found seven independent
top SNPs with suggestive evidence of association (P , 1 × 1026)
with birth length (Supplementary Material, Figs. S1 and S2,
QQ- and Manhattan plot). Four SNPs mapped to loci already
known to be associated with adult height (Supplementary Mater-
ial, Table S3, LCORL, PTCH1, GPR126 and HMGA2) (5). The 3
SNPs reflecting potentially novel associations were taken for-
ward in nine independent replication studies (Stage 2; N ¼ 11

995; Fig. 1). Only one of the three SNPs displayed significant
evidence for replication in Stage 2 and reached genome-wide
significance in the joint analysis (Stages 1 + 2; P , 5 × 1028;
Table 1). This novel association arose from SNP rs905938,
mapping to chromosome 1q22 in DC-STAMP domain contain-
ing 2 (DCST2) (Fig. 2, regional association plot). Each C allele
[minor allele frequency (MAF) ¼ 0.24] of rs905938 was asso-
ciated with an increase (standardized) of 0.046 SDS in birth
length (standard error ¼ 0.008, P ¼ 2.46 × 1028; explained
variance ¼ 0.05%). The genome-wide significantly associated
SNP showed low degree of heterogeneity between the discovery
studies (P ¼ 0.93, I2 ¼ 0%). Figure 3 shows the forest plot of the
associations between rs905938[C] and birth length across all
studies. Other suggestive loci in the discovery analysis are
shown in Supplementary Material, Table S3 (P , 1 × 1025).
Summary statistics of all SNPs are available at http://egg-
consortium.org.

Functional analyses

We assessed common variants with deleterious functional impli-
cations in linkage disequilibrium (LD, r2 . 0.80) with rs905938
using HaploReg (8). There were no non-synonymous variants in
LD with rs905938. We found three putative functional intronic
variants in high LD with rs905938. Details are depicted in Sup-
plementary Material, Table S4. Subsequently, we assessed
whether variants in the identified locus were involved in the

Figure 1 Study design.
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regulation of messenger RNA expression (eQTLs) in genome-
wide expression datasets of lymphoblastoid cell lines (LCLs,
N ¼ 1830) (9,10). We found cis eQTLs [false discovery rate
(FDR) , 1% account for all SNP-probe pairs that were within
1 Mb of each other) for transcripts of PBXIP1, GBA and
ADAM15. Yet, rs905938 and the cis eQTL SNPs were not in
perfect LD (r2 , 0.80, Supplementary Material, Table S5).

Therefore, we cannot exclude that multiple independent effects
arise from the same region of association.

DCST2 and growth phenotypes

We tested the associations of rs905938[C] with ‘fetal growth’
measures in the 1st, 2nd and 3rd trimester of pregnancy in the

Table 1 Summary statistics of the three novel SNPs at P , 1 × 1026 in the discovery analysis and the replication follow-up results

Marker MAF b SE P n I2 HetP

Discovery (Stage 1)
rs905938[C] at 1q22 (DCST2) 0.24 0.050 0.010 2.59 × 1027 28 327 0.0 0.930
rs12545524[G] at 8q22.1 (near GDF6) 0.14 0.078 0.014 1.54 × 1028 22 170 6.6 0.376
rs11037473[A] at 11p11.2 (nearest genes TTC17-HSD17B12) 0.06 20.109 0.021 2.17 × 1027 22 259 0.0 0.735

Replication (Stage 2)
rs905938[C] at 1q22 (DCST2) 0.23 0.035 0.015 1.99 × 1022 11 908 – –
rs12545524[G] at 8q22.1 (near GDF6) 0.11 20.012 0.017 4.67 × 1021 17 614 – –
rs11037473[A] at 11p11.2 (nearest genes TTC17-HSD17B12) 0.08 20.035 0.020 8.06 × 1022 17 606 – –

Discovery + replication (Stages 1 + 2)
rs905938[C] at 1q22 (DCST2) 0.24 0.046 0.008 2.46 × 1028 40 235 – –
rs12545524[G] at 8q22.1 (near GDF6) 0.13 0.042 0.011 9.08 × 1025 39 784 – –
rs11037473[A] at 11p11.2 (nearest genes TTC17-HSD17B12) 0.07 20.069 0.014 1.49 × 1026 39 865 – –

SNPs markers are identified according to their standard rs numbers (NCBI build 36). Independent novel SNPs with a strong suggestive effect in the discovery analysis
on birth length are shown (P , 1 × 1026). SNPs in loci that are known to be associated with adult height were excluded for replication efforts (adult height loci:
LCORL, PTCH1, GPR126 and HMGA2). MAF, minor allele frequency; SE, standard error.b reflects differences in standardized birth length per minor allele. P values
are obtained from linear regression of each SNP against standardized birth length adjusted for sex and gestational age. We included both GWA and metabochip cohorts
in our discovery analysis, rs905938 is on the metabochip, and rs12545524 and rs11037473 are not, this explains the differences in numbers (n). Derived inconsistency
statistic I2 and HetP values reflect heterogeneity across discovery studies with the use of Cochran’s Q tests.

Figure 2 Regional association plot of 1q22 in the 22 birth length discovery studies (N ¼ 28 459). SNPs are plotted with their P values (as 2log10 values; left y-axis) as a
function of genomic position (x-axis). Estimated recombination rates (right y-axis) taken from HapMap are plotted to reflect the local LD-structure around the top
associated SNP (‘white open diamond’) and the correlatedproxies (‘circles’ according to a black-to-gray scale from r2 ¼ 0 to 1). The joint analysis P valueof discovery
and replication studies is reported with the ‘white square’ (N ¼ 40 235).
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Generation R Study (N ¼ 5756) (11), infant length at 1 year of
age (range 6–18 months; N ¼ 28 228) in the Early Growth
Genetics (EGG) consortium (12), and adult height in the
Genetic Investigation of Anthropometric Traits (GIANT) con-
sortium (N ¼ 127 513) (5). Rs905938[C] was not associated
with ‘fetal growth’ measures, but was associated with infant
length and adult height (P , 0.05; Table 2).

Known adult height loci in relation to birth and infant length

We also explored whether common genetic variants known to be
associated with adult height (5) influenced birth length variation.
We found that 17 out of 180 known adult height loci were asso-
ciated with birth length (FDR , 5%, Supplementary Material,
Table S6; Fig. 4, QQ-plot of 180 SNPs and birth length). We
then calculated a height-increasing-alleles score of the 180
known height loci (5) to predict birth length in the Generation
R Study (N ¼ 2085; Fig. 5). The score composed of variants

associated with adult height explained 0.13% of the variance
in birth length (P ¼ 0.1), in contrast to the �10% of the
phenotypic variation in adult height reported in the original
manuscript (5).

To evaluate whether different common genetic variants influ-
enced both birth and infant length, we tested 2 193 675 million
SNPs for association with infant length in almost the same set
of samples used for the analysis of birth length (19 studies,
N ¼ 28 238; Supplementary Material, Table S7). We identified
genome-wide significant associations at 11 genetic loci (Supple-
mentary Material, Figs S3 and S4, QQ- and Manhattan plot),
which all are known to be associated with adult height
(Table 3, SNPs in or near SF3B4, LCORL, SPAG17, C6orf173,
PTCH1, GDF5, ZNFX1, HHIP, ACAN, HLA locus and HMGA2)
(5,13). In addition, we found that variants in 58 of the adult
height loci were associated with infant length at an FDR of 5%
(Supplementary Material, Table S8; Fig. 4, QQ-plot of 180
SNPs and infant length). Next, we tested in the Generation R
Study (N ¼ 2385) how much of the phenotypic variance in
infant length was explained by the score composed of height-
increasing-alleles. Variants from the 180 known adult height
loci together explained 2.95% of the variance in infant length
(P ¼ 3.10 × 10217, Fig. 5).

DEPICT analysis of birth and infant length

Finally, we used a pathway analysis tool called DEPICT (Pers
et al., unpublished data) to prioritize genes at associated regions,
search for reconstituted gene sets that were enriched in genes
near associated variants, and identify tissue and cell types in
which genes from loci associated with birth and infant length
were highly expressed (full details in Materials and Methods).
For both traits, we used independent SNPs (r2 , 0.05) asso-
ciated at P , 1 × 1025, from 21 birth length and 44 infant
length loci. There were no pathways significantly overrepre-
sented in the birth length results. In contrast, for infant length
DEPICT significantly prioritized nine genes which were overre-
presented (FDR , 5%, Supplementary Material, Table S9),
including three known Mendelian human stature genes (ACAN,
GDF5 and PTCH1) as well as several relevant reconstituted

Figure 3 Forest plot of the associations between rs905938[C] and birth length.
∗Replication studies. The ‘black diamond’ indicates the overall effect size and
the confidence interval of the 31 studies.

Table 2 Associations of rs905938[C] in DCST2 related to birth length with ‘fetal
growth’ measures, infant length and adult height

b SE P

Generation R: fetal growth (N ¼ 5756)
First trimester

Crown-rump length (n ¼ 1126) 0.003 0.045 0.952
Second trimester

Femur length (n ¼ 5361) 20.035 0.023 0.129
Third trimester

Femur length (n ¼ 5532) 20.015 0.022 0.490
EGG: infant length

Infant length at 1 year of age (N ¼ 28 228) 0.035 0.010 5.54 × 1024

GIANT: adult height
Adult height (N ¼ 127 513) 0.024 0.006 1.45 × 1025

rs905938 C-allele with a genome-wide significant effect on birth length is shown
(P , 5 × 1028) in relation to ‘fetal growth’ measures, infant length and adult
height. SE, standard error. b reflects difference in standard deviation scores per
minor allele.
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gene sets (e.g. abnormal sternum ossification, regulation of
osteoblast proliferation and WNT signaling, Supplementary
Material, Table S10). There was no significant enrichment for
particular tissue or cell types for any of the two traits.

DISCUSSION

In the present study we identified one previously unknown locus
(rs905938 in DCST2 at 1q22) to be associated with birth length at
a genome-wide significant level. This common genetic variant
was also associated with infant length and adult height.

It was not possible to identify eQTLs for transcripts of DCST2
in the MRCA and MRCE databases, as there were no probes
available (9). Also, there was no significant eQTL of DCST2 in
immortalized LCLs (10). However, DCST2 is a DC-STAMP-
like protein family member and DC-STAMP is an important
regulator of osteoclast cell-fusion in bone homeostasis (14–16).
The transcripts of PBXIP1, GBA and ADAM15 were in weak
LD with our lead SNP rs905938. The PBXIP1 protein is known
to regulate estrogen receptor functions (17). Mutations in the
GBA gene cause Gaucher disease, and strong associations with
Parkinson’s disease and dementia with Lewy bodies have been
described (18–21). ADAM15 is prominently expressed in osteo-
blasts and to a lesser extent in osteoclasts (22). A study in mice
showed that ADAM15 is required for normal skeletal homeosta-
sis and that its absence causes increased nuclear translocation of
b-catenin in osteoblasts leading to increased osteoblast prolifer-
ation and function, which results in higher trabecular and cortical
bone mass (23). The 1q22 locus is a complex region harboring
multiple interesting genes that could affect birth length. We em-
phasize that we could not specifically pinpoint the causal gene(s)
as our lead SNP (rs905938) was not in perfect LD with our cis
eQTL SNPs.

Although, there is some overlap between adult height loci and
birth length, which is illustrated by 17 shared loci, the genetic
architecture of adult height seems more similar to the genetic
architecture of infant length than birth length [58 shared loci
for infant length, based on conservative statistical method
(FDR)]. One point of consideration for the interpretation of
our findings is the potential of measurement error for birth
length (24). This may lead to less power to detect novel genetic
variants as standard errors of SNPs could be increased. The esti-
mate of the risk-allele score slope of Figure 5 is not influenced
by measurement error and the differences in the slopes suggest
that birth and infant length are influenced by distinct genetic
variants. We found that the SNP effects for birth length of 137
of the 180 established height loci were in the same direction
as reported in the GIANT paper (5) (Supplementary Material,
Table S6; probability of success ¼ 0.761, P ¼ 6.25 × 10213).
One hundred sixty-two of the 180 loci were in the same direction
for infant length (Supplementary Material, Table S8; probability
of success ¼ 0.900, P ¼ 2.20 × 10216).

Four SNPs associated with birth length (P , 1 × 1025) are in
or near loci known to be associated with birth weight (LCORL,
HMGA2, ADCY5 and ADRB1). LCORL is associated with
birth weight, birth length, infant length and adult height, but
we could not find an obvious link between the gene and
adult-onset diseases. HMGA2 is associated with aortic root
size (25), type 2 diabetes (26), and many other traits like tooth
development, head circumference and brain structure (12,27).
ADCY5 is also associated with type 2 diabetes and ADRB1
with adult blood pressure (2,3). These findings highlight genetic
links between fetal growth and metabolism (2,3,26). As we
found overlap between genetic variants of birth weight and birth
length, we looked-up the effect of rs905938 in DCST2 on birth
weight in a previous EGG study (3). Rs905938 was associated
with birth weight, but weaker as compared with birth length
(b ¼ 0.035 SDS, SE ¼ 0.010, P ¼ 2.35 × 1024, N ¼ 26 558).

In conclusion, in the present study we identified one novel
locus (rs905938 in DCST2 at 1q22) associated with birth
length at a genome-wide significant level. This common

Figure 4 QQ-plots of the 180 known adult height SNPs with birth and infant
length. QQ-plot of the 180 known adult height SNPs in association with birth
length (upper panel) in 22 studies (N ¼ 28 459) and with infant length (lower
panel) in 19 studies (N ¼ 28 238). The black dots represent observed P values
and the diagonal lines represent the expected P values under the null distribution.
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genetic variant was also associated with infant length and adult
height, with decreasing magnitude of the associations in later
life (0.046 SDS for birth length, 0.035 SDS for infant length
and 0.024 SDS for adult height). To our knowledge, no pheno-
type has been previously associated with the DCST2 gene and
while the gene is expressed in osteoclasts, its function should
be further studied.

MATERIALS AND METHODS

Stage 1: discovery genome-wide association analyses of birth
length

We combined 21 population-based studies with GWA or Meta-
bochip data and birth length available (total N ¼ 28 459 indivi-
duals). One of our discovery cohorts had two independent

sub-samples within their study leading to a total of 22 independ-
ent GWA/Metabochip sub-samples for our analysis: one sub-
sample from the AvonLongitudinalStudyofParentsandChildren
(ALSPAC, GWA, n ¼ 4816); Children, Allergy, Milieu, Stock-
holm, Epidemiology [Swedish] (BAMSE, GWA, n¼ 423); Chil-
dren’s Hospital Of Philadelphia (CHOP, GWA, n ¼ 432);
Copenhagen Study on Asthma in Childhood 2000 (COPSAC-
2000, GWA, n ¼ 348); Copenhagen Study on Asthma in Child-
hood Registry (COPSAC-Registry, GWA, n ¼ 1111); Danish
National Birth Cohort (DNBC, GWA, n ¼ 932); Generation
R Study (Generation R, GWA, n ¼ 2085); Hyperglycemia and
Adverse Pregnancy Outcomes study (HAPO, GWA, n ¼ 1325);
Helsinki Birth Cohort Study (HBCS, GWA, n ¼ 1572); Infancia
y Medio Ambiente (INMA, GWA, n ¼ 848); Leipzig Childhood
Obesity cohort (LEIPZIG, Metbochip, n ¼ 607); Lifestyle
Immune System Allergy study (LISA, GWA, n ¼ 552);

Figure 5 Height-increasing-alleles score of known adult height SNPs predicting birth and infant length. Genetic risk-allele scores (sum of height-increasing alleles
weighted by known effect on adult height (5) transformed to standard deviation Z-scores) in the Generation R study plotted against length adjusted for sex and age. The
distribution of the genetic risk-allele score is depicted as bars. (A) Mean birth length plotted against the genetic score (N ¼ 2085). (B) Mean infant length plotted
against the genetic score (N ¼ 2385).

Table 3 Summary statistics of the eleven known adult height SNPs in association with infant length at P , 5 × 1028

Marker MAF b SE P n I2 HetP

rs7536458[G] at 1p12 (SPAG17) 0.25 20.064 0.010 9.61 × 10211 28234 0.0 0.403
rs11205303[C] at 1q21.2 (SF3B4) 0.34 0.087 0.011 1.79 × 10216 26559 0.0 0.864
rs1380294[T] at 4p15.31 (LCORL) 0.15 20.108 0.014 2.54 × 10214 23079 13.7 0.184
rs1812175[A] at 4q28-q32(HHIP) 0.18 20.068 0.011 2.33 × 1029 28227 0.0 0.398
rs592229[G] at (HLA locus) 0.43 0.048 0.009 2.22 × 1028 28223 0.6 0.326
rs9385399[T] at 6q22.32 (C6orf173) 0.46 0.055 0.009 1.68 × 10210 28224 0.0 0.943
rs1984119[C] at 9q22.3 (PTCH1) 0.26 20.063 0.010 1.77 × 10210 28197 0.0 0.490
rs7970350[T] at 12q15 (HMGA2) 0.49 20.047 0.009 2.90 × 1028 28226 0.0 0.426
rs2280470[A] at 15q26.1 (ACAN) 0.36 0.053 0.009 6.43 × 1029 27443 0.0 0.436
rs143384[G] at 20q11.2 (GDF5) 0.44 0.058 0.009 2.87 × 10210 28232 0.0 0.996
rs1567865[T] at 20q13.13 (ZNFX1) 0.21 0.063 0.010 1.10 × 1029 28229 22.5 0.104

SNPs markers are identified according to their standard rs numbers (NCBI build 36). The total sample includes data of 19 independent datasets (N ¼ 28 238). MAF,
minorallele frequency;SE, standarderror.b reflects differences in standardized infant length perminor allele. P values are obtained from linear regression of each SNP
against standardized infant length adjusted for sex and age. We included both GWA and metabochip cohorts in our discovery analysis, this explains the differences in
numbers (n). Derived inconsistency statistic I2 and HetP values reflect heterogeneity across discovery studies with the use of Cochran’s Q tests.
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Manchester Asthma and Allergy Study (MAAS, GWA, n ¼ 402);
Norwegian Mother and Child Cohort study (MOBA, GWA,
n ¼ 832); Northern Finland Birth Cohorts 1966 (NFBC66,
GWA, n ¼ 4642); Northern Finland Birth Cohorts 1986
(NFBC86, Metabochip, n ¼ 4652); Physical Activity and Nutri-
tion in Children study (PANIC, Metabochip, n ¼ 319); two sub-
samples from the Prevention and Incidence of Asthma and Mite
Allergy birth cohort study (PIAMA1, GWA, n ¼ 283; PIAMA2,
GWA, n ¼ 195); The Western Australian Pregnancy Cohort
Study (RAINE, GWA, n ¼ 1272); Special Turku Coronary
Risk Factor Intervention Project (STRIP, Metabochip,
n ¼ 614); and TEENs of Attica: Genes and Environment
(TEENAGE, GWA, n ¼ 197). While no systematic phenotypic
differences were observed between the sub-samples of the
PIAMA birth cohort study, they were analyzed separately due
to genotyping on different platforms and at different time
periods. Genotypes within each study were obtained using high-
density SNP arrays and then imputed for �2.5 M HapMap SNPs
(Phase II, release 22; http://hapmap.ncbi.nlm.nih.gov/). The
basic characteristics, exclusions applied (for example, indivi-
duals of non-European ancestry, family related individuals),
genotyping, quality control and imputation methods for each dis-
covery study are presented in Supplementary Material, Table S1.

Statistical analysis within discovery studies
In all studies, birth length was measured using standardized pro-
cedures.Studieswithself-reportedmeasurementswereexcluded
a priori. Birth length was standardized using growth analyzer
(http://www.growthanalyser.org), transforming birth length
into sex- and age-adjusted SDS. We used the North-European
1991 reference panel to compare results between studies. Mul-
tiple births and twins were excluded from all analyses. We
applied linear regression between number of alleles or dosages
obtained from imputations and standardized birth length. The
GWA analysis per study was performed using MaCH2qtl (28),
SNPTEST (29), PLINK (30) or PropABEL (31). The secured
data exchange and storage were facilitated by the Erasmus
Medical Center, Department of Internal Medicine (32).

Meta-analysis of discovery studies
Prior tometa-analysis,SNPswithaMAF ,0.01andpoorly imputed
SNPs [r2hat ,0.3 (MaCH); proper_info ,0.4 (IMPUTE2);
R2_BEALE ,0.4 (BEAGLE)] were filtered. Genomic control
(GC) (33) was applied to adjust the statistics generated within
each cohort (see Supplementary Material, Table S1 for individ-
ual studylvalues). Four out of the twenty-two sub-samples were
genotyped on Metabochips. These SNP-arrays were enriched
with ‘adult height SNPs’. Normal variation in early length
growth seems to be associated with height in adulthood (1).
Therefore, we assumed more true-positive hits in these studies
and did not apply GC in these studies (GIANT et al., unpublished
data). Details of any additional corrections for study specific
population structure are given in the Supplementary Material,
Table S1. Inverse variance fixed-effects meta-analyses were
analyzed using METAL (released 2010-08-01) (34) by two
meta-analysts in parallel and blinded to obtain identical results.
After the METAL meta-analysis, we filtered SNPs with a MAF
,0.05 and SNPs that were not available in at least 12 sub-
samples to avoid false-positive findings. We used Cochran’s Q
test and the derived inconsistency statistic I2 to assess evidence

of between-study heterogeneity of the effect sizes. The
meta-analysis results were obtained for a total of 2 201 971
SNPs. SNPs that crossed the threshold of P ≤ 1 × 1026 were
considered to represent strong suggestive evidence of associ-
ation with birth length. SNPs that were already known to be asso-
ciated with adult height were excluded for the replication analysis
(5). The explained variance of the top SNPs were calculated in one
of the largest cohorts, the Generation R Study (n ¼ 2085).

Stage 2: replication analysis of top birth length SNPs

In the discovery phase, we found seven independent SNPs with
strong suggestive evidence of association (P , 1 × 1026) with
birth length. Four SNPs were already known to be associated
with adult height (5). These SNPs were excluded for follow-
up analyses. The three remaining novel SNPs were followed-up
in replication studies. We included both GWA and Metabochip
studies in our discovery analysis. Rs905938 was on our Metabo-
chips, and rs12545524 and rs11037473 were not. This results in
differences in numbers for our top SNPs in the discovery and rep-
lication analyses. rs905938 was taken forward in 9 independent
replication studies (N ¼ 11 995), rs12545524 and rs11037473 in
13 independent replication studies including the four discovery
Metabochip studies (N ¼ 17 679). Details of the replication
studies are presented in Supplementary Material, Table S2.
Within the replication studies, we analyzed the association
between number of alleles and standardized birth length. Com-
bined effect estimates and heterogeneity between cohorts was
calculated using fixed effects meta-analyses in R Version 2.8.1
(The R foundation for Statistical Computing, library rmeta).
Top SNPs that crossed the significant threshold of P-replication
≤0.05 and the widely accepted genome-wide significance
threshold of P ≤ 5 × 1028 for all studies combined were consid-
ered to represent robust evidence of association with birth length.
The institutional review boards for human studies approved the
protocols and written consent was obtained from the participat-
ing subjects or their caregivers if required by the institutional
review board.

DEPICT analysis

We used the novel Data-driven Expression-Prioritized Integra-
tion for Complex Traits (DEPICT) method (Pers et al., unpub-
lished data). DEPICT is designed to systematically identify the
most likely causal gene at a given locus, gene sets that are
enriched in genetic associations, and tissues and cell types in
which genes from associated loci are highly expressed. First,
DEPICT assigns genes to associated SNPs using LD r2 . 0.5
distance to define locus boundaries, merges overlapping loci
and discards loci mapping within the extended major histocom-
patibility complex region (chromosome 6, base pairs 25 000–
35 000). Next, the DEPICT method prioritizes genes within a
given associated locus based on the genes’ functional similarity
to genes from other associated loci. Genes that are highly similar
to genes from other loci obtain low prioritization P values, and
simulated GWAS results are used to adjust for gene length
bias as well as other potential confounders. There can be several
prioritized genes in a given locus. Next, DEPICT conducts gene
set enrichment analysis by testing whether genes in associated
loci enrich for reconstituted versions of known pathways, gene
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sets as well as protein complexes. Leveraging the guilt by asso-
ciation hypothesis that genes co-expressing with genes from a
given gene set are likely to be part of that gene set (see Cvejic
et al. (35), for details), the gene set reconstitution is accom-
plished by identifying genes that were co-expressed with genes
in a given gene set based on a panel of 77 840 gene expression
microarrays. Gene sets from the following repositories were
reconstituted: 5984 protein complexes that were derived from
169 810 high-confidence experimentally derived protein–
protein interactions (36); 2473 phenotypic gene sets derived
from 211 882 gene–phenotype pairs from the Mouse Genetics
Initiative (37); 737 Reactome database pathways (38); 184
KEGG database pathways (39); and 5083 Gene Ontology data-
base terms (40). Finally, DEPICT conducts tissue and cell type
enrichment analysis, by testing whether genes in associated
loci are highly expressed in any of 209 Medical Subject
Heading annotations of 37 427 microarrays from the Affymetrix
U133 Plus 2.0 Array platform (see Wood et al. (41) and Geller
et al. (42) for previous applications of DEPICT). In this work,
21 autosomal SNPs for birth length and 44 autosomal SNPs for
infant length were used as input to DEPICT resulting in 21 and
41 non-overlapping loci, respectively, that covered a total of
34 genes and 83 genes, respectively. The gene prioritization,
gene set enrichment and tissue/cell type enrichment analyses
were run using the default settings in DEPICT.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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