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Abstract: In urban land use optimization problems, different conflicting objectives are applied.
One of the most significant goals in urban land use optimization problems is to maximize environ-
mental benefits. To quantify environmental benefits in land use optimization, many researchers
have employed a variety of methodologies. According to previous studies, there is no standard
approach for calculating environmental benefits in urban land use allocation problems. Against
this background, this study aims to (a) identify indicators of environmental benefits and (b) pro-
pose a novel composite index to measure environmental benefits in urban land use optimization
problems. This study identified four indicators as a measure of environmental benefits based on a
literature assessment and expert opinion. These are spatial compactness, land surface temperature,
carbon storage, and ecosystem service value. In this work, we proposed a novel composite envi-
ronmental benefits index (EBI) to quantify environmental benefits in urban land use allocation
problems using an ordered weighted averaging (OWA) method. The study results showed that
land surface temperature (LST) is the most influential indicator of environmental benefit while
carbon storage is the least important factor. Finally, the proposed method was applied in Rajshahi
city in Bangladesh. This study identified that, in an average-risk decision, most of the land (64.55%)
of the study area falls within the low-environmental-benefit zone due to a lack of vegetated land
cover. The result suggests the potential of using EBI in the land use allocation problem to ensure
environmental benefits.

Keywords: spatial compactness; land surface temperature; ecosystem service value; carbon storage;
environmental benefits index

1. Introduction

Land use optimization is an important technique for attaining sustainable urban
development through environmental protection, efficient resource use, economic prosperity,
and social equity [1–3]. It acts as a decision support system for land use decisions and
considers many criteria to reach the ultimate decision. There are certain conflicting interests
in urban land use optimization since multiple stakeholders are involved in the optimization
process. If residential growth develops in a low-lying location, for example, it may address
the housing problem, but it may exacerbate the urban drainage issue. If green space is
replaced by urban buildings, the urban environment and health would suffer as a result
of urbanization. While property developers seek to maximize their financial earnings,
the government seeks to maximize the social advantages of land use allocation. In urban
land use optimization games, different conflicting objectives are considered. Some of the
objectives are widely employed in urban land use optimization. The maximization of
economic benefits, maximization of ecological benefits, maximization of environmental
benefits, minimization of land conversion costs, maximization of land value, maximization
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of land use compatibility, maximization of accessibility, maximization of compactness,
maximization of ecosystem service value (ESV), and maximization of social benefits are
some of the most important objectives. [4].

One of the most significant goals in urban land use optimization problems is to
maximize environmental benefits. Cities around the world are confronted with a variety
of environmental challenges, including air, water, and soil pollution, traffic and noise
congestion, and poor housing conditions, in the face of unsustainable urban development
and climate change [5]. Rapid urban growth has exacerbated the environmental problems
associated with the unsustainable management of transport, housing, waste, energy,
and land use [6]. Cities play an important role in environmental change. For example,
cities are responsible for over 75% of worldwide greenhouse gas emissions. Urban
areas also produce large volumes of trash, much of which is inadequately handled
and poses a health risk to people and ecosystems [7]. The structure and composition
of urban land use affect the urban environment, ecosystem, and biodiversity in many
ways. Due to the high population density and urbanization, especially in developing
countries, urban land uses are changing. The majority of such land use changes are
detrimental to the natural ecosystem, particularly in terms of farmland loss [8], air and
water pollution, the urban heat island effect [9], surface runoff, habitat variety, and
biodiversity loss [10]. For example, the expansion of the urban impervious surface due
to urbanization affects the city’s overall thermal climate. Due to the rapid urbanization
and population growth, the urban vegetation, agricultural land, and wetland are being
occupied by built environment, e.g., residential, commercial, and industrial activities.
These changes deteriorate the urban environment and ecosystem [11]. When recognizing
and anticipating future urban environmental challenges, urban sustainability becomes
the global concern among top-level decision makers as well as academics and researchers.
In recent times, the quality and benefits of the urban environment have become the
focus of scientific research and a hot topic of researchers in related fields. For example,
Javanbakht et al. [12] presented an approach to the spatial-temporal mapping of urban
air quality based on fuzzy logic, an analytical network process, remote sensing imagery,
and field-collected data. Hsueh and Lin [13] identified different dimensions of urban
environmental benefits. Their study found that health, sustainability, security, awareness,
and convenience are the five most critical dimensions of urban environmental benefits.
Mishra et al. [14] developed a novel tool to assess the urban environmental benefits
of urban green and blue spaces. It is widely acknowledged that globally significant
socioeconomic progress and rapid urbanization in the past decades occurred at the
expense of natural and urban environmental quality and benefits. The scenario is more
prevalent in developing countries. As a result, it becomes a global concern to focus on
finding the solution that can ensure both socioeconomic development and environmental
sustainability [15,16].

Against this background, many researchers have considered maximizing environ-
mental benefits in urban land use optimization problems to ensure urban environmental
sustainability. However, according to our earlier study [4], we found no established tech-
nique to compute the environmental benefits in land use allocation problems. Early studies
in urban land use optimization problems used different methods to measure environmental
benefits in urban land use allocation. For example, Yuan et al. [17] used carbon storage
as the proxy for measuring environmental benefits, assuming that carbon storage can
contribute to maintaining air pollution. Spatial compactness as a measure of environmen-
tal benefits has also been used in many studies, assuming that a compact city is more
sustainable and livable [18], provides better accessibility to city facilities and promotes
public health and living [19], and can maximize the overall environmental benefits of
the people [20]. However, we contend that a single metric may not be the best way to
assess environmental benefits. Rather a set of multiple indicators can best describe the
environmental benefits in an urban area. Therefore, a composite index is needed to assess
environmental benefits. However, according to our previous study [4], we found no such
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proven approach to assess environmental benefits in the land use allocation field. Although
some studies considered multiple indicators to measure environmental benefits, those
studies did not consider only land use allocation. For example, Lin [13] identified five criti-
cal indicators of urban environmental benefits. These indicators are health, sustainability,
security, awareness, and convenience. However, these indicators are not completely related
to urban land use allocation. We believe that the spatial composition and structure of urban
land use allocation have an impact on urban environmental benefits and that the different
aspects and attributes of urban land use can be used to measure urban environmental
benefits. Against this background, this study aims to (a) identify the appropriate indicators
of environmental benefits and (b) propose a composite index to measure environmental
benefits in urban land use allocation. In Section 2, we have presented the literature review
for understanding the indicators of urban environmental benefits. Based on the literature
review, we have identified nine indicators of urban environmental benefits, which are pre-
sented in Table 1. Among these nine indicators, four indicators are the most important: (a)
spatial compactness, (b) ecosystem service value (ESV), (c) land surface temperature (LST),
and (d) carbon storage. These four indicators are predominant over the others because
these indicators also represent other indicators in Table 1. For example, LST is the main
basis of the urban heat island effect [9,21], carbon storage (including soil carbon) is also
related to air pollution and soil pollution [22,23], and ESV represents the effect of urban
farming [24,25]. Using these indicators, we have developed an environmental benefits
index (EBI) using the multi-criteria evaluation (MCE) method. This study is unique in the
sense that this study proposed a composite index based on only the attributes of urban
land use.

Table 1. Indicators of environmental benefits in land use allocation.

Indicators References

Spatial compactness [2,18,19,26–31]

Land surface temperature [32–38]

Ecosystem service value [39–46]

Carbon storage [22,23,47–56]

Air pollution [57–65]

Soil pollution [66–74]

Urban farming [75–81]

Urban heat island effects [82–87]

Urban flooding [88–93]
Source: Prepared by the authors based on a literature review and expert opinion.

The rest of the paper has been structured as follows: Section 2 describes the relevant
literature. This section discusses the different indicators used in different studies as
measures of environmental benefits in urban land allocation. Section 3 describes the
data used in this study and the methods followed for constructing the EBI. This section
describes the detailed procedure to calculate each indicator used to develop the EBI. The
method to calculate the weight of each indicator is also described in this section. The
result of this study is presented in Section 4. This section illustrates the output of the
EBI indicators and the development of the EBI. The discussion of the findings is also
illustrated in this section. Finally, this paper ends with Section 5, which contains the
concluding remarks of this study.
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2. Literature Review

Urban land use planning has a significant impact on urban environmental benefits.
The compositions and spatial patterns of urban land uses are diverse. The compositions
and spatial patterns of land use affect the urban environment in many ways. Concerning
the compositions and spatial patterns of urban land uses, many indicators are contributing
to urban environmental benefits. This section discusses the different types of indicators
that can be used to measure environmental benefits from urban land use allocation. At the
end of the section, we have summarized the list of possible indicators of environmental
benefits based on the literature review.

Spatial compactness has been used in many land use optimization problems with
the argument that a compact city results in many environmental benefits [2,17,29,31]. In
many urban land use optimization situations, the maximization of spatial compactness
has been employed as one of the optimization objectives, according to a comprehensive
review by Rahman and Szabó [4]. In previous studies, spatial compactness was used as
an indicator of urban environmental benefits since there are numerous perceived advan-
tages of compact cities over urban sprawl, including lower car dependency and, thus,
lower emissions, reduced energy consumption, improved public transportation services,
increased overall accessibility, the re-use of infrastructure and previously developed land,
the regeneration of existing urban areas and urban vitality, a higher quality of life, the
preservation of green space, and the creation of an environment conducive to enhanced
business and trading activity [18,19,26,30,31]. All these benefits are urban environmental
benefits related to spatial compactness. While spatial compactness in the city has many
environmental benefits, other studies suggest that it can also lead to lower living space,
less access to natural spaces, less affordable housing, and poorer health [94]. Traffic
congestion in the city center might result in increased emissions and noise pollution due
to a higher level of spatial compactness [95]. Other researchers believe that the harmful
impact of the compact city on health is more severe because of the high concentration
of emissions in the inner city [96]. Therefore, other variables should be considered in
addition to spatial compactness when measuring environmental benefits in urban land
allocation. Different methods were used to measure urban spatial compactness. The
most common methods used to measure spatial compactness included (a) the non-linear
integer program-neighbor method, (b) the linear integer program-neighbor method, (c)
the minimization of the shape index, (d) linear IP using aggregated blocks/minimization
of the number of clusters per land use type, (e) a linear integer program using buffer
cells, and (f) spatial autocorrelation [97–100]. The non-linear integer program is the
simplest explanation for land use compactness, as it relies solely on the neighbors of
each cell to calculate the compactness by sum. The linear integer program model is an
analogous linear reformulation of the first with the inclusion of integer variables [101].
The minimization of the shape index method calculates each cluster’s form index, which
sounds complicated but is a good way to describe compactness [102]. The fourth concept
is to group individual cells into blocks and create a model that reduces the number of
blocks in the final allocation result that contains only one land use category. In other
words, the goal is to reduce the number of clusters by as much as possible for each land
use category. The fifth method was stated as a problem in which parcels are chosen and
each reserve (one land use type) is divided into core cells and a buffer zone. Compact-
ness is achieved indirectly by reducing the number of buffer cells surrounding the core
sections [103]. The last option is to use Moran’s I and other geographical statistics to
calculate the spatial compactness [104].

LST is a key indicator of the environment and climate in cities [105–107]. LST is one
of the important factors controlling the urban environment. On the other hand, urban
LST mostly depends upon the composition and dynamics of urban land cover [108].
For example, the surface temperature in urban areas is higher than in vegetated and
water-covered areas because of the surface cover. Since the composition of the urban
land surface, mostly in developing countries, has been experiencing changes, including
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conversion to more built-up areas, due to rapid urbanization, the urban LST is also
rising [109,110]. The increase in temperature is also deteriorating the urban environment.
Therefore, it is very important to consider LST in urban land allocation problems because
it affects the overall urban environment. Since LST can affect urban environmental
benefits, many studies incorporated LST in urban environmental analyses. For example,
a study by Santamouris [111] showed that increased LST has a significant impact on
cooling energy use, heat-related mortality and morbidity, urban environmental quality,
local vulnerability, and thermal comfort. Xue et al. [112] considered temperature as one
of the environmental factors to estimate the association between the environment and
mental health. Their study suggested that an increase in temperature is associated with
higher probabilities of declined mental health. Yu et al. [113] studied the effect of urban
land use zoning on the urban heat island effect. Their study showed that the composition
of urban land cover and functional zoning significantly contribute to LST and the urban
environment.

Urban ecosystem services play an important role in connecting cities with the bio-
sphere and reducing the ecological footprint and ecological debt of cities while at the
same time enhancing urban environmental quality, public health, resilience, and the
quality of urban life [114]. Urban ecosystem services contribute directly or indirectly to
human well-being, providing many functions, including the food supply, water supply,
waste treatment, regulation of the urban heat island effect, clean air, water filtration,
noise reduction, pollination, climate regulation, etc. [37,39,40]. Most of these functions
are strongly related to urban environmental benefits. Ecosystem services could con-
tribute to the urban environment in many ways. A healthy ecosystem can also ensure
urban environmental sustainability and contribute to achieving sustainable develop-
ment. On the other hand, a vulnerable urban ecosystem will lead to environmental
pollution, biodiversity decline, land degradation, and extreme climatic events, develop
the urban heat island effect, and threaten public health, human safety, and global eco-
logical security [41,47,115]. Thus, researchers and urban policymakers are interested in
monitoring the health of urban ecosystem services and understanding their relationship
with human well-being in cities to support coordinated urban development that benefits
social interests, the urban economy, and the environment [116,117]. Urban ecosystem
services are strongly influenced by the composition of urban land use and land cover
(LULC) and their spatio-temporal dynamics. Considering the importance of ecosystem
service to maintaining the urban environment and its nexus with urban LULC, many
researchers studied the impact of LULC change on ESV. For example, Lin et al. [41] exam-
ined the influence of LULC changes on ecosystem service in Chengdu city, China; Hein
et al. [118] analyzed the spatial scale of ecosystem services and studied how stakeholders
assign value to different ecosystem services based on the spatial scale; Tolessa et al. [45]
monitored the impact of land use/land cover change on ecosystem services in the central
highlands of Ethiopia. Estoque and Murayama [119] examined the potential impact of
LULC change on the ecosystem services of Baguio city, the Philippines, and observed a
substantial decrease in ESV due to the change of agricultural and forest land to built-up
areas.

Climate change is wreaking havoc on our world, generating extreme weather events,
such as tropical storms, wildfires, severe droughts, and heat waves, as well as signifi-
cantly affecting food output and disrupting animal habitats. Because greenhouse gas
emissions are the primary driver of global warming and, thus, climate change, carbon
storage plays an important role in mitigating the effect of greenhouse gas emission
and controlling the environment and climate [23,49]. Carbon storage is associated with
controlling the environment in many ways. Carbon storage can reduce the emissions
of different types of gaseous pollutants responsible for environmental pollution. For
example, studies show that emissions due to sulfur dioxide (SO2), particulate matter
(PM), nitrogen oxide (NOx), and ammonia (NH3) are significantly reduced by carbon
storage [50,54,56]. There is a strong correlation and a high degree of spatial congruence
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between carbon storage and environmental quality [120]. Carbon storage is critical not
only for today’s communities and habitats but also for future generations of people,
plants, and animals. If enough carbon is sequestered and emissions are reduced, the
greenhouse effect will be lessened in the future, resulting in fewer warm days and fewer
droughts and other extreme weather events linked to climate change. Due to the signifi-
cance of carbon storage in maintaining urban environmental quality, many researchers
focused on analyzing carbon stock assessment, an impact of forestry, vegetation, and
land cover change on carbon storage. For example, Nowak et al. [54] quantified carbon
storage and sequestration by urban trees in the United States to assess how urban forests
contribute to climate change and the overall environment. In their study, they assessed
the carbon density based on the density of urban trees and found that the density of
carbon storage densities was on average 7.69 kg C/m2 in urban trees in selected US
cities. Adelisardou et al. [56] assessed the spatiotemporal impacts of land use/cover
change (LUCC) on the provision and value of the carbon storage and sequestration in
the Jiroft plain, Iran. Their study suggested that agriculture and urban expansion led to
a considerable decrease in carbon storage, mainly due to rapid deforestation. The study
by Ma et al. [52] showed that urban land use planning, the degree of urbanization, and
the urban forest structure affect the spatial distribution of carbon storage.

Based on the literature review, we have identified several indicators that can be used
to measure the environmental benefits of urban land use optimization.

3. Data and Methods
3.1. Study Area

Rajshahi city of Bangladesh was selected as a case study for this research. This city
was mainly selected for two reasons: (a) the availability of updated data and (b) this city
is similar to other cities of Bangladesh so it can be considered as a representative city
in the country. It can also be mentioned that although Rajshahi city of Bangladesh was
selected as a case study, the approach and result of this study can be used in other cities
and countries. Rajshahi city lies between 24◦20′57.03′′ to 24◦20′58.40′′ north latitude and
88◦32′30.19′′ to 88◦40′08.76′′ east longitude. The city sits on the north bank of the Padma
River, which runs through the city’s southern side. The city is about 243 km from the capital
city, Dhaka, and is close to the India–Bangladesh border. The area and population of this
city are 48.05 Km2 (Figure 1) and 0.76 million, respectively [121]. The city’s topography is
mostly flat, with a mean surface height of 21.289 m above sea level. Rajshahi is a significant
administrative, educational, cultural, and business center. Due to the higher number of
educational institutions and a large number of students, the city is called an educational city
of Bangladesh. The divisional headquarter is situated in this city. Rajshahi has a tropical
wet and dry climate according to the Köppen climatic classification [122]. Rajshahi’s climate
is characterized by monsoons, high temperatures, considerable humidity, and moderate
rainfall [123].

The city’s first formal master plan, within the jurisdiction of the Rajshahi metropoli-
tan area (RMA), was produced in 2004 to guide the city’s future land use growth [124].
Every five years, this plan was expected to be updated to accommodate essential changes
and ensure planned development. The plan, however, was not updated on time due
to a lack of sufficient expertise, resources, and regulation, resulting in the unplanned
expansion of the city. Recognizing the need, the Rajshahi Development Authority (RDA)
has taken the initiative to amend the land use plan to ensure the city developments in a
guided manner.
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3.2. Data

The primary purpose of this research was to create a composite index that can be used
to assess the environmental benefits of urban land use allocation. Primary and secondary
data were used to achieve the goal of the study. As mentioned at the end of the introduction
section, four indicators were used to develop the EBI. Spatial compactness was calculated
from the spatial distribution of existing land use. These land use data were collected from
the RDA of Bangladesh. The existing land use map is presented in Figure 2. The land
use types include residential, commercial, and industrial areas, green spaces, educational
institutions, health facilities, and water bodies.
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Figure 2. Spatial distribution of different land use types in this study area.

The ESV and LST were derived from Landsat images of 2021. To calculate carbon
storage, Landsat images and secondary data were used. Landsat 8 images from the year
2021 were downloaded from the US Geological Survey (USGS) official website (https:
//earthexplorer.usgs.gov/, accessed on 19 October 2021), providing level-1 precision and
terrain-corrected (L1TP) and cloud-free multispectral images. The raw images contain a
digital number (DN) value for each pixel. These DN values were used for further processing
of the images. A detailed method to calculate these indicators is described in the subsequent
sections. Table 2 presents the detailed description of the Landsat images used in this study.

Table 2. Particulars of the Landsat images used in this study.

Landsat Scene ID Acquisition Date Satellite Sensor Path/Row

LC81380432021115LGN00 25/04/2021 Landsat 8 OLI/TIRS 138/43
OLI = operational land imager, TIRS = thermal infrared sensor.

The whole study area lies at the intersection of Landsat path 137 and row 44. The
downloaded images had a built-in projection system of the Universal Transverse Mercator
(UTM) projection within Zone 46 North based on the World Geodetic System (WGS) 1984
datum. The spatial resolution of the images used for this study was 30 × 30 m per pixel. To
process and calculate the indicators, ArcGIS 10.8 and TerrSet v19.0 software were used.

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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3.3. Methods

This section describes the detailed methodology of the study. Since the study encom-
passes a variety of data and methods, we have first illustrated the overall methodology
using a flowchart in Figure 3. Then we have described the methodology.
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3.3.1. Indicator Selection

To create a composite index of environmental benefits, appropriate indicators that
reflect environmental benefits from land use allocation must be identified. First, a literature
review was undertaken to identify the indicators that can be used as measures of environ-
mental benefits from urban land use allocation. We identified several indicators, based on
the literature review, that can be used to quantify environmental benefits. The initial list of
indicators was presented in Table 1. However, all the indicators are not equally important.
To select the most suitable indicators, the results of the literature review were then shared
with a group of 15 professionals, including environmental experts, urban planners, and
ecologists. The result of the literature review was shared with the experts with the hope
that the experts would reach a consensus on the indicators’ benefits. Based on the literature
review and experts’ judgment, final indicators were selected.

3.3.2. Computing the Value of Indicators

We identified four indicators as a measure of environmental benefits in land use
optimization problems based on a literature review and expert opinion. These indicators
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are (a) spatial compactness; (b) ecosystem service value; (c) land surface temperature; and
(d) carbon storage. The method for computing those indicators is described in the following
sections.

Spatial Compactness

Urban land uses are organized in a variety of ways. Spatial compactness refers to
the degree to which urban land use is structured and distributed compactly instead of
sprawling. In the literature, there are several ways to measure spatial compactness, of
which the non-linear IP-neighbor technique and shape index minimization are the most
common and straightforward. Computation of the shape index is based on patches of
the land parcel [125], and computation of the non-linear IP-neighbor method is based
on Moore’s eight-cell neighborhood method [126]. In this study we used Moore’s eight-
cell neighborhood method, due to its suitability and simplicity, to compute the spatial
compactness of urban land allocation. In this method, spatial compactness is represented
by the number of cells allocated for the same use in each cell’s eight neighboring cells
(Equation (1)) [1].

Spatial compactness = ∑K
k=1 ∑N

i=1 ∑M
j=1 bijkxijk (1)

where

bijk = xi−1 j k + xi+1 j k + xi j−1 k + xi j+1 k + xi−1 j−1 k + xi−1 j+1 k + xi+1 j−1 k + xi+1 j+1 k

In the above Equation (1), K is the number of land use types, and K = 5. N and M are
the total numbers of rows and columns of the planning area, respectively, and N = M = 30.
When a cell (i, j) is allocated for land use k, xijk = 1; otherwise, xijk = 0. After calculating
the spatial compactness for every cell, we can calculate the total compactness of a land use
allocation scenario by adding the compactness of each cell under study.

Land Surface Temperature

In this study, we have used TIRS band 10 of the Landsat image to derive the LST in the
study area. The detailed method of calculating the LST from Landsat images is available
in the literature. We have used the methods developed by Avdan and Jovanovska [127]
and Z. Zhao et al. [128] to derive the LST in the study area. Since temperature retrieval is a
well-known phenomenon that may readily be generated using an earlier method, we are
not going to describe the detailed method here.

Calculation of the ESV

The ESV was calculated based on the land cover of the study area. The land cover
map was derived from the Landsat images. To calculate the ESV of the study area, two
major steps were followed: (a) land cover classification from the Landsat images and (b)
calculation of the ESV from the land cover image [129]. The detailed method of land cover
classification was described in our earlier study [129]. Therefore, we are not going to repeat
the steps here. Interested readers can have a look at our earlier paper for a detailed method.
In short, the land cover classification from the Landsat images was described here. First,
we processed the raw Landsat image with a DN. A three-step procedure was performed
to convert the DN values to surface reflectance through a radiometric correction. These
steps were (a) the conversion of the DN values to the spectral radiance at the sensor, (b) the
conversion of the spectral radiance to the reflectance at the sensor, and (c) the atmospheric
correction and conversion of the sensor reflectance to the surface reflectance.

In the second step, we classified the surface reflectance value to derive the land use
land cover map of the study area. We used an unsupervised k-means clustering method to
classify the Landsat images into five broad land cover classes. These land cover classes are
(a) built-up area, (b) vegetation, (c) bare land, (d) waterbody, and (e) agricultural land. The
definition of these land cover classes is presented in Table 3.
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Table 3. Description of land cover types.

Land Cover Type Description

Built–up Area Urban, residential, commercial, industrial, and mixed-use areas,
settlements, transport, and other man-made structures

Waterbody River, lake, pond, canal, low land, wetland, etc.

Vegetation Trees, mixed forest, natural vegetation, gardens, parks,
playgrounds, etc.

Bare Land Open space, construction sites, fallow land, land surface without
vegetation, sand, transitional areas, bare soil, etc.

Agricultural Land Cropland and pastures, orchards, groves, nurseries, and other
agricultural lands.

After the classification was complete, it was necessary to assess the accuracy of the
classified images. The Google Earth platform was used to assess the accuracy of the
classified images. For accuracy assessment, the classified images were compared to the
appropriate land cover in Google Earth. About 30 sample points were selected for each land
cover category for accuracy assessment. Using the stratified sampling approach in ArcGIS
10.8, we generated 175 random sampling points for the accuracy assessment. The accuracy
assessment showed that the overall classification accuracies of the classified images were
88.00%, with kappa coefficients of 0.859.

In the final step, the ESV was calculated based on the land cover types. Different
methods were used to estimate the ESV from the land cover class. However, the benefits
transfer method (BTM), developed by Costanza et al. [130], is considered as a robust
method to calculate the ESV from land cover. To obtain the values of the ecosystem services
for each of the 5 land cover categories in Rajshahi city, we compared the 5 categories of
land cover with the 16 biomes identified in Costanza et al. [130]. The most relevant biome
for each category was assigned as the proxy for that land cover type. For example, the
‘cropland’ biome for ‘agricultural land’, ‘lake/rivers’ for ‘water body’, ‘tropical forest’ for
‘vegetation’, ‘urban’ for ‘built-up area’, and ‘desert’ for ‘bare land’ were assigned for the
proxy to calculate the value of ecosystem service for each land use type. Although the land
cover categories and equivalent biomes did not perfectly match, their use proved feasible
in many other studies [131]. Land cover types, equivalent biomes, and the corresponding
value coefficients are presented in Table 4.

Table 4. Biome equivalents for the five land-use categories and the corresponding ecosystem values(
1994 USD ha−1yr−1

)
.

Land Cover Types Equivalent Biome ESV Coefficient (USD ha−1yr−1)

Original Value (1994) Adjusted Value (2021)

Agricultural land Cropland 92 171
Water body Lakes/Rivers 8498 15,806
Vegetation Tropical forest 2007 3733

Built-up area Urban 0 0
Bare land Desert 0 0

The original ESV coefficient was determined according to the 1994 USD. In our study,
we adjusted the ESV coefficient considering the consumer price index (CPI) inflation rate.
The CPI inflation rate in USD in 2021 with respect to the CPI in 1994 is 1.86 [132]. Thus, we
multiplied the original ESV coefficient by 1.86 to calculate the adjusted ESV coefficient in
2021. This adjusted coefficient was used to calculate the ESV. Finally, the ESV for the study
area was calculated using Equation (2) [133,134].

ESV = ∑(Ak ×VCk) (2)
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where ESV is the total estimated value of ecosystem service, Ak is the area in hectares, and
VCk is the ESV value coefficient

(
USD ha−1yr−1

)
for each land cover category, ‘k’.

Calculation of Carbon Storage

The carbon storage for different land types is determined by two factors: (a) above-
ground carbon storage and (b) below-ground carbon storage. Above-ground carbon storage
depends upon the concentration of vegetation, and below-ground carbon storage depends
upon the density of soil organic carbon (SOC) [135]. Carbon storage from different land
cover types was calculated using the following Equation (3) [136].

T = ∑n
i=1 Ti = Ai(Vi + Si) (3)

where T is the total carbon storage of the terrestrial ecosystem in the study area, Ti is the
carbon storage of land use type i, Ai is the area of land use type i, and Vi and Si are the
carbon densities of vegetation and soil of land use type i, respectively. The densities of SOC
were collected from secondary sources and are presented in Table 5.

Table 5. Density of SOC (%) in different land cover types.

Land Cover Type % SOC (ton/ha) Source

Agriculture 17.608 [137,138]

Vegetation 31.24 [137]

Water 5.2 [139]

Bare Land 11.36 [137]

Built-up 9.8 [140]

Since the density of above-ground carbon depends upon vegetation densities, different
vegetation indexes are used to calculate above-ground carbon storage [135,141–143]. How-
ever, Situmorang et al. [143] identified a strong positive correlation between the enhanced
vegetation index (EVI) and above-ground carbon storage. Based on their findings, we have
calculated above-ground carbon storage using the following Equation (4).

AGC = 151.7× EVI− 39.76 (4)

where AGC is the above-ground carbon density and EVI is the enhanced vegetation index.
The EVI was calculated using the Landsat 8 images based on Equation (5) [144].

EVI = 2.5× NIR− RED
NIR + C1× RED− C2× BLUE + L

(5)

where NIR is the near-infrared band, RED is the red band, BLUE is the blue band, C1 is
the values as coefficients for atmospheric resistance, C2 is the values as coefficients for
atmospheric resistance, and L is the value to adjust for the canopy background. In general,
the values for C1, C2, and L are 6, 7, and 1, respectively [145].

Standardization of Indicator Values

When employing the MCE option, the first and most important step is to transform
each of the variables into factors. The difference between a variable and a factor is that
a variable is unscaled with respect to the model, while a factor is scaled to a specific
numeric range using a scaling procedure that is directly related to the expression of benefit
or suitability [146]. For example, in the case of the ESV, a higher value of ESV would
result in a higher environmental benefit, whereas a lower value of ESV would result in a
lower environmental benefit. Therefore, the highest value would result in the maximum
environmental benefit. The highest value can be given a value of 1, and the lowest value of
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ESV can be assigned to 0. The values in between the highest and lowest values of ESV can be
rescaled between 0 to 1. This rescaling is very important in multi-criteria evaluation. In the
transition of multi-criteria evaluation, this process is known as standardization. Different
methods are used for the standardization of variables. The most important methods
include fuzzy, stepwise, max-min, and linear standardization [147]. However, the fuzzy
membership function is a widely used method used in the standardization of variables in
MCE. In this study, we used a fuzzy membership function for the standardization of the
four variables.

3.4. Constructing the Environmental Benefits Index

Based on the values of all four indicators, finally, we have developed the composite
index for the environmental benefits in urban land use allocation. To make a composite
index, it is necessary to aggregate all the indicators. Different aggregation methods are
available in the literature. Most of them include the ordered weighted averaging (OWA),
artificial neural network (ANN), logic scoring of preference (LSP), and weighted linear
combination (WLC) methods [148]. In this study, we used the OWA method to construct
the EBI [149]. The OWA method was used in this study since OWA has the opportunity
to adjust the level of risk in the multicriteria decision-making process. For example, in
our case, if we want to protect an environmentally sensitive area (as determined by the
environmental benefit) we may want to have low-risk, average-risk, and high-risk decisions
available for decision-makers. However, the ANN, WLC, and LSP aggregation methods
can generate only a single decision without alternatives, whereas the OWA method can
generate a wide range of decision strategies for the decision-maker [149–152]. The OWA
method uses a family of combination operators that allows for the continuous adjustment
of both the risk and the tradeoff among the criteria, providing complete control in decision
making. In the case of OWA, in addition to the criteria weight, a second set of weights
known as ordered weights is applied to each factor [153]. Assigning a second weight
to each criterion allows us to control the overall level of risk and tradeoff between the
criteria to generate a wide range of decision outputs. In the OWA approach, the criteria
values in a particular location (e.g., a single cell) are ordered from low to high. Then,
ordered weights are assigned in either increasing order or decreasing order, considering
the level of risk in the decision-making process. Detailed methods of OWA can be found
elsewhere [149,150,153] and we are not going to describe the procedure in detail. The
following OWA equation was used to derive the EBI:

EBIi =
n

∑
j=1

(
ujvj

∑n
j=1 ujvj

)
zij (6)

where EBIi is the environmental benefits index at the ith location, n is the number of
indicators, uj is the original weight factor of the criteria, vj is the ordered weight of the
criteria such that vjε [0, 1] f or j = 1, 2, . . . , n, and ∑n

j=1 vj = 1, zij is the ordered value of
the criteria at ith location.

In the case of OWA, two sets of weights are used. The first weight (uj) of the criteria
can be determined using many methods, including the analytic network process (AHP)
method [154], entropy method [155], and Delphi method [156], etc. Among others, the
AHP method is the most popular and is used globally in the decision-making process. In
this study, based on its popularity, we have used the AHP method to determine the weights
of the indicators of environmental benefits in land use planning. A detailed method of
calculating the weights of the indicators using the AHP method was described in our
earlier study [157]. Therefore, we will not repeat the method here. The interested reader
can see our earlier publication for more details. In this study, a focus group discussion
was conducted with 15 professionals, including environmental experts, urban planners,
and ecologists, to determine the weights of the indicators using the AHP method. After
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calculating the weights, the consistency ratio was also calculated to check if there was
consistency of judgment. The consistency ratio (CR) was calculated using Equation (7).

CR =
CI
RI

(7)

where, CI and RI represent the consistency index and random index, respectively, in which

CI =
λmax − n

n− 1
(8)

where, λmax and n are the eigenvalue and the size of the matrix, respectively.
It is acceptable to have a consistency ratio of up to 10%, but minor variations are not a

concern. Large deviations, on the other hand, suggest that the assessments are not perfect
and need to be improved [158].

The second weight, which is known as the ordered weight, was assigned on the
ordered criteria, either based on increasing order or decreasing order depending on the
level of acceptable risk and the type of criteria. In our case, we are generating environmental
benefit, so if we derive a high value of EBI, it will be low-risk and if we derive a low value
of EBI, it will be a high-risk, considering the protection of the environmentally sensitive
area. Therefore, we assigned ordered weights in the decreasing order (0.4, 0.3, 0.2, 0.1) to
derive a low value of EBI (high-risk decision), and we also assigned ordered weights in
increasing order (0.1, 0.2, 0.3, 0.4) to derive a high value of EBI (low-risk decision). It can
be noted that we used four criteria to construct the EBI. Therefore, we used four ordered
weights. It can also be noted that according to Equation (6), the sum of the ordered weights
must be equal to 1 (∑n

j=1 vj = 1). A set of equal ordered weights (0.25) was also assigned to
each criterion to derive the average EBI value (average-risk decision). Thus, we generated
three EBI scenarios in the study area with the low-risk decision, average-risk decision, and
high-risk decision. After the calculation of the EBI value, we classified the EBI value into
five levels. These levels were very low (0.00–0.20), low (0.20–0.40), medium (0.40–0.60),
high (0.60–0.80), and very high (08.0–1.00).

4. Results and Discussion
4.1. Environmental Benefit Indicators

In Section 2, we elaborately discussed the different types of indicators used to measure
environmental benefits from land use planning. Table 1 in Section 2 provides the initial
list of indicators that can be used to measure environmental benefits. In Section 3.3.1,
we also mentioned that the indicators were finalized based on expert opinion. Based on
the literature review and expert opinion, we selected four indicators that can be used to
measure environmental benefits in land use allocation and optimization problems. These
four indicators are (a) spatial compactness, (b) land surface temperature, (c) ecosystem
service value, and (d) carbon storage. In the next section, the values of these four indicators
are presented.

4.2. Value of the Indicators

In this study, we identified four indicators to develop a composite index to measure
environmental benefits in land use allocation and optimization problems. These indicators
are spatial compactness, land surface temperature, ecosystem service value, and carbon
storage. This section describes the findings of these indicators. Based on the methods
described in Section 3.3.2, we computed the value of each indicator.

Figures 4 and 5 show the values of the four indicators used to construct the composite
EBI. Figure 4 shows the actual values of the four indicators calculated using the methods
described in Section 3.3.2. Figure 5 shows the standardized values of all indicators. The
standardized values range from 0 to 1 and were calculated using the fuzzy membership
function as described at the end of Section 3.3.2. The standardization of factors was con-
ducted in such a way that a higher value indicates a higher environmental benefit, whereas
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a lower value indicates a lower environmental benefit. Figures 4a and 5a illustrate the
cell-wise value of spatial compactness for the study area. For Figure 4a, the value of spatial
compactness ranges between 0 and 8, and for Figure 5a, the values range from 0 to 1. Some
earlier studies used a 0-to-8 scale to indicate the value of spatial compactness [31,99,159].
However, we used a 0-to-1 scale to represent spatial compactness. A higher value of com-
pactness indicates that the same land use types are closely grouped, whereas a lower value
indicates that the same land uses are dispersed. From Figures 4a and 5a, it is seen that, in
some locations, the value of spatial compactness is higher, and, in some locations, the value
is lower. It is also evident from those figures that the value of compactness is higher in the
locations where there is a higher number of same land uses, and the value of compactness
is lower in the places where the number of same land use types is low. A similar nature
was also identified in the compactness values in some other studies [2,27,28,99]. How-
ever, there is a difference in the representation in the value of compactness. We present
compactness values on a scale from 0 to 1, while, in other studies, the compactness values
were represented on a scale from 0 to 8. The main reason is that previous studies used
various indicators separately to evaluate land use allocation, whereas we combined all four
indicators to develop a composite index. Therefore, the standardization of indicators is
required. We believe that the representation of the compactness value on a scale from 0 to 1
is more suitable compared to a scale from 0 to 8.
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and (d) ecosystem service value index.

Figures 4b and 5b show the spatial distribution of carbon storage in the study area. As
described in Section 3.3.2, carbon storage depends upon the density of vegetated carbon
and soil organic carbon. Vegetated carbon was calculated based on the enhanced vegetation
index (EVI), and SOC was calculated based on the density of SOC and the bulk density
of soil. The spatial distribution of the EVI, vegetated carbon, and SOC are illustrated in
Figure 6. Figure 6a illustrates that the value of the EVI in the study area ranges between
−0.08 and 0.67.
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The EVI has a value range of −1 to +1, and it ranges between 0.2 and 0.8 for healthy
vegetation. A score nearer to 1 indicates healthy vegetation, whereas a value around
−1 indicates unhealthy vegetation [160]. The EVI was recently shown to be an effective
approach for detecting vegetation changes and deriving the canopy biophysical features of
a given location. The EVI is used to quantify the vegetation greenness of an area and for
healthy vegetation. The EVI in the study area shows that the presence of healthy vegetation
is low in the study area. However, the concentration of healthy vegetation is higher in the
periphery compared to the central area. The total carbon storage in Figure 4b is the sum
of the vegetated carbon and SOC in Figure 6b,c. According to Figure 4b, the minimum
and maximum carbon storage per cell are 0.4 ton/year and 8.33 ton/year. The land cover
type contributes to the value of carbon storage in the study area. In Figures 4b and 5b, we
can see that the value of carbon storage is higher in the northern, southern, and eastern
periphery of the study area, whereas the value of carbon storage is lower in the central
part of the city. The reason is that the central part mainly comprises the built-up area with
low vegetation cover. On the other hand, the northern, southern, and eastern periphery
are characterized by a higher level of vegetation, agricultural land, and water bodies that
contain high levels of carbon. Our findings are also supported by other studies where
it is evident that vegetated land cover and agricultural land are associated with a high
level of carbon storage, and that built-up areas are characterized by a low level of carbon
storage [23,47,51,53,55].

The spatial distribution of LST is illustrated in Figures 4c and 5c. In Figure 4c, it is seen
that the highest and lowest LST in the study area are 37.33 ◦C and 25.64 ◦C respectively.
Urban land cover types play an important role in controlling LST, and LST affects human
thermal comfort. Human thermal comfort (HTC) in urban areas informs city residents and
planners about the negative effects on human health caused by excessive temperatures and
a rise in LST [161]. Studies show that LST is associated with human thermal comfort. A
higher LST in urban areas reduces human thermal comfort and has an impact on the urban
environment and ecosystem [162]. Therefore, a higher value of LST indicates a lower level
of environmental benefit, whereas a lower level of LST indicates higher environmental
benefits. A value of LST ranging between 21 ◦C to 24 ◦C is considered to be a thermal
comfort zone for humans [21]. From our study, it is evident that the LST in the entire
study area is higher than the human thermal comfort range. In Figures 4c and 5c, it is
observed that the central part of the city is characterized by higher temperatures compared
to the periphery. The reason behind this variation is that the central part of the city
is composed of more built-up areas, high population density, and transport activities,
whereas the periphery is characterized by a higher level of vegetation and agriculture. Our
study identifies that the LST is higher in built-up areas compared to vegetated land and
agricultural land. Our finding is also supported by other studies [163–165].

The result of the ESV is illustrated in Figures 4d and 5d. The ESV was calculated
based on the land cover map presented in Figure 7, Equation (2), and Table 4. Land cover is
the primary data for the estimation of the ESV. Figure 7 shows the spatial distribution of
land cover in the study area. According to Figure 7 and Table 6, built-up area is the most
dominant land cover, which covers about 34.95% of the study area. The second dominant
land cover type is vegetation (20.67%), followed by bare land (19.30%) and agriculture
(17.11%). About 7.98% of the land belongs to water bodies. In Figure 7, it is observed
that the central part and southern periphery are dominated by built-up areas, whereas the
northern periphery is dominated by vegetation and agricultural land.
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Table 6. Different land cover types in the study area.

Land Cover Area (SqKm) Percentage

Agriculture 8.22 17.11
Bare land 9.28 19.30
Built-up 16.80 34.95
Vegetation 9.94 20.67
Waterbody 3.83 7.98
Total 48.07 100.00

Source: Author’s calculation.

The adjusted value coefficient for the year 2021 was used to calculate the ESV in the
study area. In Figure 5d, it is seen that the maximum and minimum ESV in the study area
were 1437 USD/year/cell and 0 USD/year/cell in the study area. A higher ESV results
in a higher level of environmental benefit, whereas a lower ESV indicates a lower level of
environmental benefit. The study finding shows that the ESV in the periphery is higher,
and the ESV in the central city is close to 0. This means that the environmental benefit is
higher in the periphery compared to the central part of the city. This spatial variation of
ESV is also justified by the spatial distribution of land cover in the study area. As we can
see from the land cover map in Figure 7, the built-up area is prevalent in the central part of
the city, and the built-up area generates no ESV, according to Table 4; therefore, the ESV in
the central part of the city is close to 0.

4.3. Environmental Benefits Index (EBI) in the Study Area

Finally, Equation (6) and the weights of the indicators in Table 7 were used to determine
the value of the EBI based on the value of four indicators. The AHP approach was used to
calculate the weight of each indicator based on the experts’ judgment. Table 7 shows that
the weight of spatial compactness, LST, carbon storage, and ESV were 0.1667, 0.4996, 0.0776,
and 0.2562, respectively. The consistency ratio was 6%. As mentioned earlier, a consistency
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ratio of less than 10% is acceptable. Therefore, the consistency ratio (6%) suggests that
our weight determination using AHP is feasible. Table 7 shows that the LST is the most
essential criterion in land use allocation for environmental benefit, whereas carbon storage
has the least impact on environmental benefits. The importance of the LST in maintaining
an urban environment was also highlighted in many studies [166,167]. The LST-induced
urban heat island effect is becoming a global problem. Many studies have shown that the
LST is an important factor in human comfort in urban areas [84].

Table 7. Weights of different indicators.

Indicators Weight

Spatial compactness 0.1667
Land surface temperature 0.4996

Carbon storage 0.0776
Ecosystem service value 0.2562

Source: Author’s calculation using the AHP method.

By using Equation (6) and weights from Table 7, we calculated the EBI for each
cell in the study area with high-, low-, and average-risk decisions. The EBI’s output is
depicted in Figure 8. We categorized the EBI index into five tiers, as described at the end
of Section 3.4. Table 8 shows the area under various EBI levels under different decision
risk scenarios. Figure 8 shows the EBI in the study area at different levels of risk. Deriving
alternative decision scenarios for the decision makers is common in many multi-criteria
evaluations [150,151,153]. Figure 8a shows the EBI values in the study area with high-risk
decisions. According to Figure 8a and Table 8, there would be no area with very high
environmental benefits. Most of the area (48.31%) would fall within a low environmental
benefit, followed by a very low environmental benefit (28.37%), and a medium level of
environmental benefit (21.78%). Only 1.58% of land would fall within the high-level
environmental benefit. Figure 8b illustrates the EBI values with the average-risk decision.
According to Figure 8b and Table 8, the study area’s minimum and maximum EBI values
would range from 0.07 to 0.81. It is observed that, in an average-risk decision, no value
greater than 0.8 would exist in the study area, except the river in the city’s southwestern
portion. This shows that the study area would not have a very high level of environmental
benefit zone. It is also worth noting that only a small percentage of the land (3.83%) would
have a high level of environmental value. About 95.56% of the land would have a very low
to medium EBI value, with 2.54%, 64.55%, and 28.48% of land having very low, low, and
medium EBI values, respectively. The medium EBI zone would encompass the majority of
the land (64.55%). Figure 8c shows the EBI values in the study area with a low-risk decision.
According to Figure 8c and Table 8, most of the area (50.88%) would fall within a medium
environmental benefit, followed by a low environmental benefit (39.25%) and a high-level
environmental benefit (8.00%). The three scenarios of the EBI have significance in decision
making for the protection of environmentally sensitive areas. In a low-risk decision, the
EBI is higher compared to average-risk and high-risk decisions. The decision maker will
create more areas with high EBI values in the low-risk scenario to make decision making
easier for the protection of environmentally sensitive areas.
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We strongly argue that our proposed index is a much better approach compared to
other measures of environmental benefits. Because, in previous studies, only one indicator
was used to measure the environmental benefits. For example, spatial compactness, LST,
carbon storage, and ESV were used separately to measure the environmental benefits.
However, we contend that a single metric may not be the best way to assess environmental
benefits. Rather, a composite index is necessary to better understand the environmental
benefits in an urban area. In comparison, to separately assess environmental indicators,
an environmental index provides several benefits. To begin, it is more easily interpretable
and facilitates communication with environmental managers and the broader community.
Additionally, it encourages accountability and results in similar long-term evaluations of
an environmental system. Another issue with a single variable measure of environmental
benefits is that the single variable may have disadvantages that could be overlooked. For
example, according to Jenks and Jones [94], while urban spatial compactness has numerous
environmental benefits, it can also result in reduced living space, less access to open spaces,
less affordable housing, and worse health. Similarly, even a compact city may suffer
negative consequences if the adjacent land uses are not compatible with each other. For
example, if residential and industrial land coexists, it will create enormous problems for
the people living near the industry. Likewise, if a city is spatially compact, as desired due
to the benefits of a compact city, but the city lacks vegetated land cover, then there may
be a high temperature, which may lead to human thermal discomfort. At the same time,
insufficient vegetation and water bodies would result in a lower ESV, which is not good for
the environmental quality and environmental sustainability of a city. Therefore, various
factors, in combination, may play a role in the calculation of environmental benefits. Based
on this idea, we proposed a composite index comprising spatial compactness, LST, carbon
storage, and ESV. While there are some examples of environmental indices, those indices
hardly focused on the sole urban area. Although there are some examples of multi-variable
environmental measures, those did not only consider spatial variables relating to land
use allocation. For example, the environmental performance index (EPI) is a composite
indicator of overall environmentally sustainable development in a country. The index
combines variables obtained from underlying sources to provide a composite picture of
national environmental stewardship [168]. However, this index does not focus on urban-
scale environmental benefits. Moreover, there are some indicators associated with the
EPI that are not better understood in the context of land use allocation. For example,
fisheries, sanitation, and drinking water were considered in developing the EPI, which
are not associated with urban land use allocation. Široka et al. [169] developed a port
environmental index (PEI) to measure the environmental quality in the seaport area. PEI
was mainly concentrated on the pollution aspect of the environmental quality of a seaport.
Zhou, Delmas and Kohli [170] developed a composite environmental index (CEI) to enable
comparing the environmental performance among cities. However, they only considered
toxin-related data to construct the CEI. Thus, it is evident that the proposed index will
be the best approach compared to the single-indicator-based approach to describe the
environmental benefits in urban land use allocation.

Table 8. The area under different EBI levels in the study area.

EBI Level
High-Risk Decision Average-Risk Decision Low-Risk Decision

Area (Sq.km) % Area (Sq.km) % Area (Sq.km) %

Very low 13.64 28.37 1.219 2.54 0.16 0.34
Low 23.22 48.31 31.024 64.55 18.86 39.25

Medium 10.47 21.78 13.691 28.48 24.46 50.88
High 0.74 1.54 1.843 3.83 3.85 8.00

Very High 0 0 0.289 0.60 0.73 1.52
Total 48.065 100 48.065 100.00 48.065 100.00

Sources: Author’s calculation based on the proposed EBI index.



ISPRS Int. J. Geo-Inf. 2022, 11, 220 23 of 30

In general, the study area is characterized by a low EBI. This lower EBI value indicates
that the study area’s land use allocation is not optimal. Rather, the city grew haphazardly.
It is also worth noting that the majority of the city’s periphery is classified as medium EBI,
while the western side is characterized by extremely low and low EBI levels. The indicative
value of EBI is also supported by the present land cover scenario in the study area. It is
worth noting that the LST is the most significant contributor to the EBI. The LST is also
affected by the kind of land cover. The LST is higher in urban areas and lowers in vegetated
areas, water bodies, and agricultural areas. The EBI is higher in the periphery area because
vegetated areas, aquatic bodies, and agricultural land predominate. The spatial distribution
of the EBI over the territory indicates that the city’s land use plan is inappropriate. This
necessitates immediate intervention in the study area to improve land use planning.

We believe that the EBI value in this area is considerably lower due to unplanned
growth in Rajshahi city. The unplanned growth was also recognized in the planning
literature in the area. Unplanned development has been linked to a variety of factors.
The city lacks a clear land use plan. The city’s first master plan, which includes four
hierarchical stages: a strategic plan, a structure plan, a functional master, and detailed
area development plans, was completed in 2004 to guide the city’s future development.
There was no appropriate land use plan in this master plan, but the master plan was just an
indicative plan without a proper guideline for land use development. At the same time,
there was no effective development regulation or monitoring. As a result, the city was built
chaotically. In addition to the lack of a formal land use plan, several hurdles prevented the
city’s physical expansion and development in a planned manner. In a nutshell, we can say
the lower value of the EBI is the result of improper land use plans in the city.

5. Conclusions

Quantifying the environmental benefits in urban land use allocation is an important
consideration to achieve urban sustainability and is of greater interest among researchers.
However, there is limited research on this topic. This study developed a composite index
based on four spatial indicators to measure environmental benefits in urban land use
allocation. The main contribution and novelty of this paper are that previously a single
indicator was used to measure environmental benefits in urban land use allocation, but this
paper developed a composite index using multiple indicators. This study finds that the
LST, spatial compactness, ESV, and carbon storage are the key indicators of environmental
benefits in urban land use allocation, of which the LST is the most influential indicator of
the EBI, while carbon storage has a low influence on the EBI. The result also suggests that
the land use allocation in the study area is not optimal from an environmental point of
view. It was also noticed that, with an average-risk decision, only a negligible portion of
the city (3.83%) would fall within a high level of environmental benefit, while about 95.56%
of the land would fall within a very low to medium EBI, of which the highest portion
of land (64.55%) would fall within the medium EBI zone. The proposed environmental
benefits index and the relevant analysis would help the decision-makers in many ways.
The EBI values show the level of environmental benefits throughout the area. Therefore,
the policy makers can take attention to the area where the EBI value is low. The policy
makers can identify the reasons why the EBI is lower in a particular area and can take the
necessary measures. This EBI would also help to devise appropriate policy interventions
for increasing environmental benefits in the city. Although the proposed index is expected
to offer a good way of measuring environmental benefits, there are also some limitations.
Firstly, in this study, we considered the most appropriate four indicators to develop the
composite index. However, the environmental benefits of land use allocation are very broad.
Therefore, other indicators might have an impact on environmental benefits. Secondly, we
used the OWA method to aggregate the indicators. However, there are also some other
aggregation techniques, such as the Bonferroni method [171] and Choquet integral [172],
that could generate new insights. Future research may be conducted to address these issues
by adding more indicators and using different aggregation methods.
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