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Abstract This paper addresses one of the main challenges
in physical activity monitoring, as indicated by recent bench-
mark results: The difficulty of the complex classification
problems exceeds the potential of existing classifiers. There-
fore, this paper proposes the ConfAdaBoost.M1 algorithm.
This algorithm is a variant of the AdaBoost.M1 that incorpo-
rates well established ideas for confidence-based boosting.
ConfAdaBoost.M1 is compared to the most commonly used
boosting methods using benchmark datasets from the UCI
machine learning repository. Moreover, it is evaluated on
an activity recognition and an intensity estimation problem,
including a large number of physical activities from the re-
cently released PAMAP2 dataset. The presented results indi-
cate that the proposed ConfAdaBoost.M1 algorithm signif-
icantly improves the classification performance on most of
the evaluated datasets, especially for larger and more com-
plex classification tasks. Finally, two empirical studies are
designed and carried out to investigate the feasibility of Conf-
AdaBoost.M1 for physical activity monitoring applications
in mobile systems.
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1 Introduction

Wearable computing is an emerging research field. With re-
cent progress in wearable sensing it becomes reasonable for
individuals to wear various sensors all day. Physical activity
monitoring is an application area strongly benefiting from
this progress. The goals of activity monitoring systems are
among others to tell the type of physical activity an individ-
ual performs, and to estimate the duration and intensity of
the activity performed. With the information obtained this
way, the individual’s daily routine can be described. One of
the strong motivations to achieve these goals comes from
healthcare: to be able to tell if individuals are performing
enough physical activity — with respect toe.g.health rec-
ommendations as given by the American College of Sports
Medicine and the American Heart Association [14] — to
maintain or even promote their health.

Recognition of basic physical activities (such as walk,
run or cycle) and basic postures (lie, sit, stand) is well re-
searched [6,18,19]. It was shown that good recognition per-
formance can be achieved even with just one 3D-accelero-
meter and simple classifiers. Moreover, the intensity estima-
tion of these basic activities has been the focus of recent
studies,e.g. in [21,38]. However, since these methods only
consider a limited set of similar activities, they only apply
to specific scenarios. Therefore, current research in this area
focuses among others on increasing the number of activities
to recognize, with examples ofe.g.everyday, household or
sport activities. This can for instance be achieved by intro-
ducing new classification techniques.
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The use of meta-level classifiers for activity monitor-
ing problems is not as widespread as using different base-
level classifiers. However, comparing base-level and meta-
level classifiers on different activity recognition tasks shows
that meta-level classifiers (such as boosting, bagging, plu-
rality voting, etc.) outperform base-level classifiers [26]. A
complex activity recognition problem including13 differ-
ent physical activities is used to evaluate the most widely
used base-level (decision trees,k-nearest neighbors(kNN),
support vector machines(SVM) and naive Bayes classifiers)
and meta-level (bagging, boosting) classifiers [30]. Best per-
formance was achieved with a boosted decision tree classi-
fier. Recently, a new dataset for physical activity monitoring
was introduced and made publicly available: the PAMAP2
dataset [28,29]. Different classification problems have been
defined and benchmarked on this dataset, confirming that us-
ing a boosted C4.5 decision tree classifier is one of the most
promising methods.

The boosted decision tree classifier has — apart from
good performance results — further benefits: it is a fast clas-
sification algorithm with a simple structure, and is therefore
easy to implement. These benefits are especially important
for activity monitoring applications since they are usually
running on mobile, portable systems for everyday usage,
thus the available computational power is limited. Previous
work showed the feasibility of using boosted decision tree
classifiers for activity recognition on a mobile platform [27].
Moreover, boosting decision trees has been widely and suc-
cessfully used in other research fields,e.g.recently in multi-
task learning [7]. Therefore, considering all the above men-
tioned benefits, this work focuses on using boosting, and in
particular boosted decision tree classifiers for physical ac-
tivity monitoring.

The benchmark results on the PAMAP2 dataset [28,29]
indicate that the difficulty of the more complex tasks exceed
the potential of existing classifiers. Moreover, results pre-
sented in [31] show rather low performance when fully sim-
ulating how the most common classifiers perform in every-
day life scenarios of physical activity monitoring. Therefore,
there is a reasonable demand for modifying and improv-
ing existing algorithms. This paper proposes a confidence-
based extension of the well-known AdaBoost.M1 algorithm,
called ConfAdaBoost.M1. It builds on established ideas of
existing boosting methods, combining some of their bene-
fits. Overall, the paper provides the following contributions:

1. The paper introduces the ConfAdaBoost.M1 algorithm:
a confidence-based extension of the well known Ada-
Boost.M1 algorithm. ConfAdaBoost.M1 is a direct mul-
ticlass classification technique. Moreover, it uses the in-
formation about how confident the weak learners are to
predict the class of the instances.

2. A thorough evaluation is presented, comparing Conf-
AdaBoost.M1 to the most commonly used existing boos-

ting methods. Experiments performed on8 different data-
sets from the UCI machine learning repository are pre-
sented. Moreover, evaluation on an activity recognition
task and an intensity estimation task (both defined on the
PAMAP2 dataset) is carried out. Overall, these exper-
iments show that ConfAdaBoost.M1 significantly im-
proves the results of previous boosting algorithms.

3. Empirical studies are described and carried out to inves-
tigate the feasibility of the novel ConfAdaBoost.M1 al-
gorithm for mobile physical activity monitoring appli-
cations. These studies show the applicability of Conf-
AdaBoost.M1 for both online activity monitoring and
the personalisation of such systems on mobile devices.

The rest of this paper is organised as follows. Section 2
gives an overview of existing boosting algorithms, highlight-
ing their benefits and drawbacks. The ConfAdaBoost.M1
algorithm is introduced in Section 3. In Section 4 the new
algorithm is evaluated on various benchmark datasets from
the UCI machine learning repository, comparing it to the
most commonly used existing boosting methods. Section 5
presents the evaluation on a complex activity recognition
and intensity estimation problem defined on the PAMAP2
dataset. The main motivation for presenting the ConfAda-
Boost.M1 algorithm is the better performance it achieves,
compared to existing algorithms, on activity monitoring clas-
sification tasks. Section 6 describes two empirical studies
performed to examine the feasibility of the proposed Conf-
AdaBoost.M1 algorithm for mobile physical activity mon-
itoring systems. Finally, the paper is summarised in Sec-
tion 7.

This paper is an extended and significantly revised ver-
sion of [32]. The main novelty of this paper is the investiga-
tion of the proposed ConfAdaBoost.M1 algorithm’s feasi-
bility for mobile physical activity monitoring systems. Two
empirical studies are presented here, along with various in-
sights related to this topic. Moreover, Section 2 includes an
extended description of existing boosting methods, while
Section 5 describes the applied data processing chain for
physical activity monitoring in more detail, compared to the
original publication [32].

2 Boosting methods: related work, concepts

Boosting is a widely used and very successful technique
for solving classification problems. The idea behind boos-
ting is to iteratively learn weak classifiers by manipulating
the training dataset, and then combine the weak classifiers
into a final strong classifier. Boosting was introduced in the
computational learning theory literature in the early and mid
90’s [9,10,34]. To improve a single classifier (weak learner),
the first versions of boosting trained additional similar clas-
sifiers on filtered versions of the training dataset and pro-
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Algorithm 1 Real AdaBoost
Require: Training dataset ofN instances:(xi, yi) i = 1, . . . , N (xi: feature vector,yi ∈ {−1,+1})

New instance to classify:xn

1: procedure TRAINING((xi, yi) i = 1, . . . , N )
2: Assign equal weight to each training instance:wi = 1

N
, i = 1, . . . , N

3: for t← 1, T do
4: Fit weak learner on the weighted dataset to obtain a class probability estimate:pt(x) = P̂w(y = 1|x) ∈ [0, 1]

5: Computeft(x) = 1
2
log pt(x)

1−pt(x)

6: for i← 1, N do
7: wi ← wie

−yift(xi)

8: end for
9: Normalize the weight of all instances so that

∑

i
wi = 1

10: end for
11: end procedure

12: procedure PREDICTION(xn)
13: The output class is:sign[

∑

T
t=1 ft(xn)]

14: end procedure

duced a majority vote, thus “boosting” the performance ([9,
34]). The adaptive boosting algorithm — called AdaBoost
— evolved from these algorithms [10], and became the most
commonly used technique of boosting, from which many
versions have been developed. Moreover, AdaBoost is con-
sidered as one of the most important ensemble methods, and
is named one of the top10 data mining algorithms by [42].

2.1 Binary classification

The fundamental idea of the boosting technique can be out-
lined the following way [10]: Assume that a training dataset
of N instances is given:(xi, yi) i = 1, . . . , N (xi is the
feature vector,yi ∈ {−1,+1}). The algorithm trains weak
learners,ft(x), on weighted versions of the training dataset,
giving higher weight to currently misclassified instances.
This is performed a predefined number of iterations,T . The
final classifier is a linear combination of the weak learners
from each iteration, weighted according to their error rateon
the training dataset. The first version of the AdaBoost algo-
rithm only uses the binary output of the weak learners, and
is thus called Discrete AdaBoost. The Real AdaBoost algo-
rithm [12] is a generalization of the original algorithm that
use real-valued predictions of the weak learners rather than
the {−1,+1} output, as shown in Algorithm 1. The weak
learners then return a class probability estimate,pt(x), in
each boosting iteration, from which the classification rule
ft(x) is derived. The sign offt(x) gives the classification
prediction, and|ft(x)| gives a measure of how confident the
weak learner is in the prediction. Experiments on various
datasets from the UCI machine learning repository [3] show
that this confidence-based version of AdaBoost outperforms
the original Discrete AdaBoost algorithm [12]. However,
both the Discrete and Real AdaBoost are limited to binary
classification problems.

Apart from Discrete and Real AdaBoost, further boos-
ting methods have been developed for the binary classifi-
cation case the past decade. The Discrete and Real Ada-
Boost algorithms can be interpreted as sequential estimation
procedures for fitting an additive logistic regression model,
optimizing an exponential criterion which to second order
is equivalent to the binomial log-likelihood criterion [12].
Based on this interpretation, the LogitBoost algorithm was
introduced, which optimizes a more standard (the Bernoulli)
log-likelihood [12]. Moreover, [12] also presents the Gentle
AdaBoost algorithm, a modified version of Real AdaBoost.
It uses Newton stepping rather than exact optimization at
each boosting iteration. Another variant of Real AdaBoost
– that uses a weighted emphasis function – is presented in
[13], called Emphasis Boost. Finally, the Modest AdaBoost
algorithm is mentioned here [40]. It not only considers the
updated weight distribution for training a classification rule
in each boosting step, but also considers the inverse weight
distribution to decrease a weak learner’s contribution if it
works “too good” on data that has already been correctly
classified with high margin. As a result, although the train-
ing error decreases slower than for comparable methods,
Modest AdaBoost produces less generalization error.

2.2 Pseudo-multiclass classification

The first extensions of AdaBoost for multiclass classifica-
tion problems can be regarded as pseudo-multiclass solu-
tions: they reduce the multiclass problem into multiple two
class problems [35,36]. One of the most common solutions
using binary boosting methods for multiclass problems is
AdaBoost.MH [36]. It converts aC class problem into that
of estimating a two class classifier on a training setC times
as large, by adding a new “feature” which is defined by the
class labels. Thus the original number ofN instances is ex-
panded intoNC instances. On this new, augmented dataset
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Algorithm 2 AdaBoost.M1
Require: Training dataset ofN instances:(xi, yi) i = 1, . . . , N (xi: feature vector,yi ∈ [1, . . . , C])

New instance to classify:xn

1: procedure TRAINING((xi, yi) i = 1, . . . , N )
2: Assign equal weight to each training instance:wi = 1

N
, i = 1, . . . , N

3: for t← 1, T do
4: Fit weak learner on the weighted dataset:ft(x) ∈ [1, . . . , C]
5: Compute erroret of model on weighted dataset:et =

∑

i:yi 6=ft(xi)
wi

6: if et = 0 or et ≥ 0.5 then
7: Delete lastft(x) and terminate model generation.
8: end if
9: Computeαt = log 1−et

et

10: for i← 1, N do
11: if yi 6= ft(xi) then
12: wi ← wie

αt

13: end if
14: end for
15: Normalize the weight of all instances so that

∑

i
wi = 1

16: end for
17: end procedure

18: procedure PREDICTION(xn)
19: Set zero weight to all classes:µj = 0, j = 1, . . . , C
20: for t← 1, T do
21: Predict class with current model:c = ft(xn)
22: µc ← µc + αt

23: end for
24: The output class isargmaxj µj j = 1, . . . , C
25: end procedure

a binary AdaBoost method (e.g.Discrete or Real AdaBoost)
can then be applied.

There exist other solutions to reduce the multiclass prob-
lem into multiple binary classification problems. In [35]error-
correcting output codes(ECOC) were combined with the
original binary AdaBoost method to solve multiclass prob-
lems, resulting in the AdaBoost.MO algorithm. In [12] it
was shown how the binary LogitBoost algorithm can be ap-
plied for the multiclass case by introducing a “class feature”
similar to the AdaBoost.MH method. In [35] experimental
results are given comparing a few pseudo-multiclass algo-
rithms on a set of benchmark problems from the UCI repos-
itory, which show that Real AdaBoost.MH (the extension of
the binary Real AdaBoost algorithm for the multiclass case
using the AdaBoost.MH technique) performs best amongst
these methods.

However, reducing the multiclass classification problem
into multiple two class problems has several drawbacks. For
instance, as the class label becomes a regular feature in the
AdaBoost.MH method, its importance is significantly re-
duced. AdaBoost.MH is an asymmetric strategy, building
separate two class models for each individual class against
the pooled complement classes. Pooling classes can produce
more complex decision boundaries that are difficult to ap-
proximate, while separating class pairs could be relatively
simple [12]. Moreover, pseudo-multiclass algorithms might
create resource problems by increasing (basically multiply-

ing) e.g. training time or memory required, especially for
problems with a large number of classes. Therefore, to over-
come these drawbacks direct multiclass extensions of the
AdaBoost method should be developed and investigated. Nev-
ertheless, pseudo-multiclass methods will remain interesting
since they can be used for the multiclass multilabeled case:
when instances may belong to more than one class [36]. An
application scenario for this case ise.g.text categorization:
one document can be assigned to more than one topic. If the
goal is to predict all and only all of the correct labels, the
AdaBoost.MH algorithm is a valid solution.

2.3 Multiclass classification

The first direct multiclass extension of the original Ada-
Boost algorithm, AdaBoost.M1, was introduced in [10] and
is the most widely used multiclass boosting method. It is
also the basis of many further variants of multiclass boos-
ting. The AdaBoost.M1 algorithm is shown in Algorithm 2.
Similar to the binary AdaBoost methods, it can be used with
any weak classifier that has an error rate of less than0.5.
However, this criterion is more restrictive than for binary
classification, where an error rate of0.5 means basically ran-
dom guessing. In [10] a second multiclass extension of the
original AdaBoost algorithm, AdaBoost.M2, was also intro-
duced. In this algorithm the weak classifiers have to mini-
mize a newly introduced pseudo-loss, instead of minimal-
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izing the error rate as usually done. The pseudo-loss of the
weak classifiers has to be less than0.5, but this is a much
weaker condition than the error rate being less than0.5. The
drawback of AdaBoost.M2 is that classifiers have to be re-
designed in order to be used as weak learners within this
algorithm, since almost all traditionally used classifiersmin-
imize the error rate and not the new pseudo-loss.

In [5,46] another way to overcome the restriction on the
weak learner’s error rate is shown by adding a constant tak-
ing the number of classes (C) into account, this way re-
laxing the requirement of the weak classifiers to an error
rate of less than random guessing (1 − 1

C
). In [5] the Ada-

Boost.M1W algorithm was introduced based on this idea,
and proved with experiments its benefits over AdaBoost.M1.
The SAMME (stagewise additive modeling using a multi-
class exponential loss function) algorithm in [46] is based on
the same idea. It has an identical structure to AdaBoost.M1,
the only difference is howαt is computed on line9: αt =

log 1−et
et

+ log(C − 1). It is shown in [46] that the extra
termlog(C−1) is not artificial: Similar to the interpretation
of AdaBoost in [12], SAMME is equivalent to fitting a for-
ward stage-wise additive model using a multiclass exponen-
tial loss function. Obviously whenC = 2, SAMME reduces
to AdaBoost.M1. However, the extra termlog(C−1) is crit-
ical in the multiclass case, since in order forαt to be positive
only the condition(1 − et) >

1

C
is required. Therefore, the

error rate of the weak learners only has to be better than
random guessing rather than0.5. In [46] the SAMME al-
gorithm was compared to AdaBoost.MH on various bench-
mark datasets from the UCI repository. It was shown that
SAMME’s performance is comparable with that of the Ada-
Boost.MH method, or even slightly better. The SAMME.R
variation [45] of the SAMME algorithm uses the probability
estimates from the weak classifiers. However, SAMME.R
does not keep the structure of AdaBoost.M1: when updat-
ing the weights for the training instances only the respec-
tive probability estimates are used, the erroret of the weak
learner on the weighted dataset is not considered. Moreover,
the SAMME.R algorithm showed overall slightly worse per-
formance results than SAMME on different datasets [45],
thus is discarded from further analysis in this work.

Another multiclass boosting method is introduced in [15]:
GAMBLE (gentle adaptive multiclass Boosting learning) is
the generalised version of the binary Gentle AdaBoost al-
gorithm. However, GAMBLE fits a regression model rather
than a classification model at each boosting iteration, thus
requires several additional steps in order to be used for clas-
sification tasks (which is the actual focus of this work). First
the class labels have to be encoded (e.g.with response en-
coding), then the regression model is fitted which is then
used to obtain the weak classifier. Overall, the training time
and computational cost is significantly increased compared
to AdaBoost models using directly classification models.

3 ConfAdaBoost.M1

Various boosting algorithms exist and were presented in the
previous section. However, there are still classification prob-
lems where the difficulty of the task exceeds the potential of
existing methods,e.g., in the field of physical activity moni-
toring [28,29]. Moreover, experiments presented in this pa-
per show a high error rate on the PAMAP2 physical activity
monitoring dataset with selected, commonly used boosting
algorithms. Therefore, there is a need for further develop-
ment of boosting techniques to improve the performance on
such complex classification tasks.

This section introduces a new variant of the boosting al-
gorithm, called ConfAdaBoost.M1. It is a confidence-based
extension of the AdaBoost.M1 algorithm based on a com-
bination of concepts and ideas used in the previously de-
scribed boosting methods. First of all it is a direct multi-
class classification technique, thus it overcomes the draw-
backs of pseudo-multiclass boosting methods. Moreover, it
keeps the structure of AdaBoost.M1, thus when already us-
ing AdaBoost.M1 in a classification task it can be easily ex-
tended to ConfAdaBoost.M1. Furthermore, the new algo-
rithm uses the information about how confident the weak
learners are to predict the class of the instances. This ap-
proach has been beneficial in both binary (when develop-
ing the Real AdaBoost algorithm from Discrete AdaBoost
in [12]) and pseudo-multiclass (the improvement of Dis-
crete AdaBoost.MH to Real AdaBoost.MH in [36]) classi-
fication. Therefore, this work takes the next step by apply-
ing the idea of a confidence-based version of AdaBoost for
the direct multiclass classification case. It is worth mention-
ing that [25] already proposed to modify the prediction step
of the AdaBoost.M1 algorithm to allow the voting weights
of the weak learners to vary in response to the confidence
with which xn (the new instance to be classified) is classi-
fied. However, no confidence-based extension of the training
part of the AdaBoost.M1 algorithm has previously been pro-
posed.

The main idea of the ConfAdaBoost.M1 algorithm can
be described as follows. In the training part of the algorithm
the confidence of the classification estimation is returned for
each instance by the weak learner, and is then used to com-
pute the new weight of that instance: the more confident the
weak learner is in a correct classification the more the weight
will be reduced, and the more confident the weak learner is
in a misclassification the more the weight will be increased.
Moreover, the confidence values are also used in the pre-
diction part of the algorithm: the more confident the weak
learner is in a new instance’s prediction the more it counts
in the output of the combined classifier, as proposed in [25].

The ConfAdaBoost.M1 algorithm is shown in Algori-
thm 3. The structure of the original AdaBoost.M1 algorithm
is kept (cf.Algorithm 2), extending it on multiple lines. First
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Algorithm 3 ConfAdaBoost.M1
Require: Training dataset ofN instances:(xi, yi) i = 1, . . . , N (xi: feature vector,yi ∈ [1, . . . , C])

New instance to classify:xn

1: procedure TRAINING((xi, yi) i = 1, . . . , N )
2: Assign equal weight to each training instance:wi = 1

N
, i = 1, . . . , N

3: for t← 1, T do
4: Fit weak learner on the weighted dataset:ft(x) ∈ [1, . . . , C]
5: Compute the confidence of the prediction that instancexi belongs to the predicted class:pti, i = 1, . . . , N
6: Compute erroret of model on weighted dataset:et =

∑

i:yi 6=ft(xi)
ptiwi

7: if et = 0 or et ≥ 0.5 then
8: Delete lastft(x) and terminate model generation.
9: end if

10: Computeαt = 1
2
log 1−et

et

11: for i← 1, N do

12: wi ← wie

(

1

2
−I(yi=ft(xi))

)

ptiαt

13: end for
14: Normalize the weight of all instances so that

∑

i
wi = 1

15: end for
16: end procedure

17: procedure PREDICTION(xn)
18: Set zero weight to all classes:µj = 0, j = 1, . . . , C
19: for t← 1, T do
20: Predict class with current model:[c, pt(xn)] = ft(xn),

wherept(xn) is the confidence of the prediction that instancexn belongs to the predicted classc
21: µc ← µc + pt(xn)αt

22: end for
23: The output class isargmaxj µj j = 1, . . . , C
24: end procedure

of all, after training the weak learner on the weighted dataset
(line 4), the confidence of the classification estimation is re-
turned for each instance by this weak learner (line 5). These
pti confidence values are used when computing the error rate
of the weak learner (line 6): the more confident the model
is in the misclassification the more that instance’s weight
counts in the overall error rate. The factor1

2
on line 10

of the ConfAdaBoost.M1 algorithm is used to compensate
the loweret compared to the computed error rate of Ada-
Boost.M1. Thepti confidence values are also used to re-
compute the weights of the instances. The more confident
the weak learner is in an instance’s correct classification or
misclassification, the more that instance’s weight is reduced
or increased, respectively (line 12). The factor1

2
on line

12 (determined in an empirical study) is applied in addition
compared to the original AdaBoost.M1 algorithm, to com-
pensate that weights are modified in both directions before
the renormalization of the weights. In the prediction part of
ConfAdaBoost.M1 the only modification compared to the
AdaBoost.M1 algorithm is that the confidence of the predic-
tion (pt(xn)) is computed (line 20), and then used to adjust
the voting weights of the weak learners (line 21).

It should be noted that theet ≥ 0.5 stopping criterion of
the original AdaBoost.M1 remains the same in the proposed
ConfAdaBoost.M1 algorithm (line 7). This means that, sim-
ilar to AdaBoost.M1, only classifiers achieving a reasonably
high accuracy value can be used as weak learners, thuse.g.

decision stumps are not suitable for multiclass problems.
However, the stopping criterion ofet ≥ 0.5 is less restrictive
in ConfAdaBoost.M1, since the computation of the error
rate also uses thepti confidence values, thus the computed
et is lower. Therefore, when using the same weak learner,
ConfAdaBoost.M1 can perform significantly more boosting
iterations before stopping compared to AdaBoost.M1, as
shown in the experiments of the next sections.

4 Evaluation on UCI datasets

In this section experiments on various datasets from the UCI
machine learning repository [3] are presented. These experi-
ments compare the newly introduced ConfAdaBoost.M1 al-
gorithm to the most commonly used existing boosting meth-
ods. The first part of this section presents the basic con-
ditions of the experiments, then results are given and dis-
cussed.

4.1 Basic Conditions

The experiments were performed on8 datasets from the UCI
repository. The selected benchmark datasets include3 small
datasets:Glass, Iris [8] and Vehicle[37], as well as5 pre-
partitioned larger datasets:Letter [11], Pendigits[2], Satim-
age, SegmentationandThyroid [23]. The parameters of the
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Table 1 Summary of the benchmark datasets used in the experiments. Size of a training and test part listed in case pre-partitioning of the dataset
is provided in the UCI repository.

#Instances
Dataset Total Training Testing #Variables #Classes
Glass 214 — — 9 6
Iris 150 — — 4 3
Vehicle 846 — — 18 4
Letter 20000 16000 4000 16 26
Pendigits 10992 7494 3498 16 10
Satimage 6435 4435 2000 36 6
Segmentation 2310 210 2100 19 7
Thyroid 7200 3772 3428 21 3
PAMAP2 AR 19863 — — 137 15
PAMAP2 IE 24197 — — 137 3

used datasets are summarised in Table 1. These datasets were
selected with the goal to cover a wide range of scenarios:
The size of the datasets ranges from150 to 20 000 instances,
the number of classes ranges from3 to 26, and the difficulty
of the classification problems these datasets define vary a
lot as well according to experiments performed on these
datasets in previous work (cf. e.g. [36,46]). A further se-
lection criterion was to only include datasets which directly
provide the features of the classification tasks as attributes,
thus no domain knowledge (e.g. how to process the pro-
vided data, which features should be extracted,etc.) of the
datasets should be required. Using various datasets from the
UCI repository is common practice when introducing a new
boosting method and comparing it to existing algorithms.
For instance, [46] used7 different UCI datasets to compare
the SAMME algorithm to AdaBoost.MH, and [16] used23
UCI datasets to compare the proposed AdaBoost.HM al-
gorithm to AdaBoost.M1 and AdaBoost.MH. Finally, using
datasets which have been applied before allows a real com-
parison to previous work.

On the selected datasets, the ConfAdaBoost.M1 algo-
rithm is compared to4 other existing boosting methods. First
of all to AdaBoost.M1 to provide the baseline performance
of the experiments (since, as many other boosting variants,
ConfAdaBoost.M1 is also an extension of AdaBoost.M1).
The proposed confidence-based modification of the predic-
tion step of AdaBoost.M1 in [25] is part of the ConfAda-
Boost.M1 algorithm. Therefore, it is of interest to compare
to this extension (which will be referred to as QuinlanAd-
aBoost.M1 hereafter) of the original AdaBoost.M1, to in-
vestigate whether possible performance improvements come
from only the confidence-based prediction step or the confi-
dence-based extension of both the training and prediction
steps, as proposed by ConfAdaBoost.M1. The next boosting
method used for comparison is SAMME, since according to
[5,46] this direct multiclass extension of AdaBoost.M1 out-
performs traditionally used boosting techniques. Finally, the
most common pseudo-multiclass classification technique is
used for comparison: the Real AdaBoost.MH algorithm. It

performs best amongst the pseudo-multiclass methods and
is a confidence-based boosting version similar to ConfAda-
Boost.M1.

The C4.5 decision tree classifier [24] is used as weak
learner in each of the evaluated boosting methods. This clas-
sifier is, together with decision stumps, the most commonly
used weak learner for boosting. It also fulfills the require-
ment of achieving a reasonably high accuracy on the dif-
ferent classification problems (it has an error rate of signifi-
cantly less than0.5 on the various datasets, as shown below
by the results), thus can be used with the algorithms Ada-
Boost.M1, QuinlanAdaBoost.M1 and ConfAdaBoost.M1.
Considering confidence-based versions of AdaBoost, the
C4.5 decision tree has another benefit: there is no need to
modify the C4.5 algorithm, the confidence values of the weak
learners’ predictions can be directly extracted from the
trained decision trees. Assume that a C4.5 decision tree is
trained asft(x) weak learner in the ConfAdaBoost.M1 al-
gorithm (Algorithm 3, line 4). Thepti confidence of the pre-
diction that instancexi belongs to the predicted class (Algo-
rithm 3, line 5) can be computed as follows, based on [25].
In the trained C4.5 decision tree a single leaf node classifies
xi: c = ft(xi). Let S be the training instances mapped to
this leaf, and letSc be the subset ofS belonging to classc.
The confidence of the prediction is then:

pti =
(
∑

j∈Sc
wj

) / (
∑

j∈S wj

)

. (1)

On the5 larger, pre-partitioned datasets pruned C4.5 de-
cision trees are used. The level of pruning is defined by
5-fold cross-validation(CV) on the training part of these
datasets, for each of the evaluated boosting methods sepa-
rately. On the3 smaller datasets (Glass, Iris and Vehicle),
non-pruned C4.5 decision trees are used as weak learners.
Between1 and500 boosting iterations are evaluated for all
algorithms and benchmark datasets (previous worke.g. in
[5,46] showed that the performance of various boosting al-
gorithms usually levels off at maximum100 iterations). All
results presented below are averages of multiple test runs.
On datasets providing a training and test part training is per-
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Fig. 1 Test error of the5 evaluated boosting algorithms on the UCI benchmark datasets Glass, Iris, Vehicle and Letter. The results are averages
over10 test runs.

formed 10 times on the training set, and the trained classi-
fier is then evaluated on the provided test set each time. On
datasets without a predefined test part, 10-fold CV is used
and performed 10 separate times. All experiments were per-
formed within Matlab, random substreams are used to en-
sure randomness between different test runs.

4.2 Results and Discussion

The averaged results of the10 test runs on the selected8
UCI benchmark datasets are shown in Fig. 1 and 2. The test
errors of the5 evaluated boosting methods are summarised
in Table 2. Overall it is clear that the ConfAdaBoost.M1 al-
gorithm performed best in the experiments: on7 out of 8
datasets there is a noticeable increase in performance com-
pared to existing boosting methods, while on one dataset
(Thyroid) ConfAdaBoost.M1 has essentially the same per-
formance as the other algorithms. According to the results
of Table 2, the second best boosting algorithm is SAMME,
closely followed by AdaBoost.MH, confirming the results
of [46]. The original AdaBoost.M1 and its variation Quin-

lanAdaBoost.M1 performed overall clearly worse, the latter
algorithm being slightly but not significantly better.

A statistical significance test (the McNemar test [17] is
used to pair-wise compare the predictions of the different
methods) indicates that the reduction of the test error rate
by ConfAdaBoost.M1 compared to SAMME is significant
with p-value 0.01 on the datasets Pendigits and Segmen-
tation, significant withp-value0.05 on the datasets Letter
and Satimage, and that on the remaining datasets no statisti-
cal significance was observed. In conclusion, the ConfAda-
Boost.M1 algorithm has more potential for improvement the
larger the dataset and the more complex the classification
problem is. This statement is supported by the results on
the PAMAP2 classification tasks in the next section. More-
over, similar observation was made in [36] when compar-
ing Discrete and Real AdaBoost.MH: the confidence-based
method had better capability for improvement the larger the
datasets were. On the Thyroid dataset on the other hand even
AdaBoost.M1 reaches an error rate of less than1% leaving
only a few outlier instances misclassified, thus explaining
the minimal (not statistically significant) difference between
the results of the5 algorithms. Furthermore, [12] concludes
that interpreting results and slight performance differences
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Fig. 2 Test error of the5 evaluated boosting algorithms on the UCI benchmark datasets Pendigits, Satimage, Segmentation and Thyroid. The
results are averages over10 test runs.

on rather small datasets is difficult since it can occur due
to sampling fluctuations, while on the larger datasets clearer
trends are observable.

One of the main reasons why AdaBoost.M1 and Quin-
lanAdaBoost.M1 performs significantly worse than the other
methods is that they reach the stopping criterion ofet ≥ 0.5
quickly. This can be observed especially on the results of the
datasets Glass, Vehicle or Satimage: the test error decreases
at the beginning but levels off already at around10 to 20

boosting iterations, no further improvement can be reached
with the increase of the number of boosting rounds. This
effect is not observed when using the ConfAdaBoost.M1 al-
gorithm due to the modified computation of the error rate
of the weak learners. Another benefit of ConfAdaBoost.M1
over the other methods can be observede.g.on the results of
the datasets Vehicle, Letter and Satimage: the test error even
at lower numbers of boosting iterations is the lowest when
using ConfAdaBoost.M1. This means that for a particular
level of accuracy fewer boosting rounds (thus smaller clas-
sifier size) are necessary with ConfAdaBoost.M1 compared
to existing boosting algorithms. Therefore, the better perfor-
mance of ConfAdaBoost.M1 can be partially explained by
faster convergence (cf. e.g.the results of AdaBoost.MH on

the aforementioned datasets). However, this quality is espe-
cially beneficial when the available computational resources
are limited, which is usually the case for physical activity
monitoring applications.

Finally, it is worth to discuss and compare the training
time required for creating the different classifiers. Building a
decision tree has the time complexity ofO(DMN log(N)),
whereN is the number of training instances,M is the di-
mension of the feature vector of a training instance, andD

is the average depth of the decision tree [45]. The compu-
tational cost of AdaBoost.M1 is thenO(DMN log(N)T ),
whereT is the number of boosting iterations. The theo-
retical complexity of the algorithms QuinlanAdaBoost.M1,
SAMME and the newly proposed ConfAdaBoost.M1 is sim-
ilar. The computational cost of AdaBoost.MH isO(DMN ·

log(N)TC), whereC refers to the number of classes. Dur-
ing the experiments of this section, the training time of Conf-
AdaBoost.M1 was comparable to that of SAMME on all8

evaluated datasets. Compared to these two algorithms, the
training time of AdaBoost.M1 and QuinlanAdaBoost.M1
was almost an order of magnitude lower. This can be ex-
plained with the early reaching of the stopping criterion, as
discussed in the previous paragraph (thusT gets smaller in
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Table 2 Comparison of the5 evaluated boosting algorithms: test error rates [%] on the selected benchmark datasets. The results are averaged over
10 test runs (mean and standard deviation are given), the best performance is shown for each of the methods.

Dataset AdaBoost.M1
Quinlan-

AdaBoost.M1
Conf-

AdaBoost.M1
SAMME AdaBoost.MH

Glass 26.26 ± 1.42 26.17 ± 2.60 21.12 ± 1.22 22.29 ± 1.38 22.24 ± 1.81
Iris 4.73 ± 0.73 5.00 ± 0.85 4.27 ± 0.64 4.47 ± 1.22 4.60 ± 0.80
Vehicle 24.72 ± 1.05 24.52 ± 1.10 21.75 ± 0.44 22.35 ± 1.14 23.48 ± 1.21
Letter 3.28 ± 0.14 3.19 ± 0.15 2.64 ± 0.11 2.99 ± 0.13 5.68 ± 0.39
Pendigits 3.16 ± 0.27 3.14 ± 0.45 2.51 ± 0.11 3.08 ± 0.15 2.70 ± 0.08
Satimage 10.63 ± 0.80 10.47 ± 1.01 8.07 ± 0.15 8.79 ± 0.25 9.50 ± 0.39
Segmentation 6.36 ± 1.03 6.55 ± 1.08 4.31 ± 0.20 5.92 ± 0.79 5.22 ± 0.78
Thyroid 0.61 ± 0.04 0.59 ± 0.05 0.61 ± 0.05 0.60 ± 0.06 0.64 ± 0.08
PAMAP2 AR 29.28 ± 1.40 27.90 ± 1.06 22.22 ± 0.77 27.98 ± 1.34 —
PAMAP2 IE 7.98 ± 1.04 7.73 ± 0.66 5.60 ± 0.31 7.81 ± 0.60 —

the expression ofO(DMN log(N)T )). On the other hand,
the training time required for AdaBoost.MH was20 to 40

times larger than for ConfAdaBoost.M1 on the larger datasets
(e.g.Letter or Pendigits). Therefore, training AdaBoost.MH
is not feasible for extremely large datasets.

5 Evaluation on the PAMAP2 dataset

The PAMAP2 dataset is a physical activity monitoring data-
set created and released recently [28,29], and is included in
the UCI machine learning repository as well. The dataset
was recorded from18 physical activities performed by9
subjects, wearing3 inertial measurement units(IMU) and
a heart rate monitor. Each of the subjects followed a prede-
fined data collection protocol of12 activities (lie, sit, stand,
walk, run, cycle, Nordic walk, iron, vacuum clean, rope jump,
ascend and descend stairs), and optionally performed a few
other activities (watch TV, computer work, drive car, fold
laundry, clean house, play soccer). Therefore, the PAMAP2
dataset not only includes basic physical activities and pos-
tures, but also a wide range of everyday, household and fit-
ness activities. A more detailed description of the dataset
can be found in [28]. In this section first an activity recogni-
tion and an intensity estimation classification problem is de-
fined on the PAMAP2 dataset. These classification tasks are
described in detail, highlighting also the differences to the
UCI benchmark datasets of the previous section and point-
ing out the special challenge these problems pose. Using the
defined classification tasks different boosting methods are
evaluated and compared to the proposed ConfAdaBoost.M1
algorithm.

5.1 Definition of the classification problems

The benchmark of [28,29] defined4 different classification
problems on the PAMAP2 dataset. One of these problems
— calledAll activity recognition task— uses the12 activi-
ties of the data collection protocol, defining12 classes corre-

sponding to the activities. This classification task is extended
in this paper with3 additional activities from the optional
activity list: fold laundry, clean house and play soccer.1 This
activity recognition task of15 different activity classes will
be referred to as the ‘PAMAP2AR’ task throughout this
work. Moreover, an intensity estimation classification task is
defined on the PAMAP2 dataset: using all18 activities, the
goal is to distinguish activities of light, moderate and vig-
orous effort (referred to as ‘PAMAP2IE’ task). The ground
truth for this rough intensity estimation task is based on the
metabolic equivalent(MET) of the different physical activ-
ities, provided by [1]. Therefore, the3 intensity classes are
defined as follows: lie, sit, stand, drive car, iron, fold laundry,
clean house, watch TV and computer work are regarded as
activities of light effort (< 3.0 METs); walk, cycle, descend
stairs, vacuum clean and Nordic walk as activities of moder-
ate effort (3.0-6.0 METs); run, ascend stairs, rope jump and
play soccer as activities of vigorous effort (> 6.0 METs).

Contrary to the8 UCI benchmark datasets used for the
experiments in the previous section, the PAMAP2 dataset
does not directly provide a feature vector with each of the
instances, but only provides timestamped raw sensory data
from the3 IMUs and the heart rate monitor. Therefore, the
raw signal data needs to be processed first in order to be used
by classification algorithms. Adata processing chain(DPC)
is applied on the raw sensory data including preprocessing,
segmentation, feature extraction and classification steps, cf.
Fig. 3. In the preprocessing step, the timestamped raw ac-
celeration2 and heart rate data is synchronised, and possible
wireless data loss compensated with linear interpolation.To
obtain at least 2–3 periods from the periodic movement of
various aerobic activities (walking, cycling,etc.), and to as-

1 The remaining 3 activities from the dataset are discarded for the
following reasons:drive carcontains data from only one subject, while
watch TVandcomputer workare not considered due to their high re-
semblance to thesit class.

2 Previous work shows (e.g. in [21]), that both for activity recog-
nition and for intensity estimation, accelerometers outperform gyro-
scopes. Therefore, from all3 IMUs, only data from the accelerometers
is used in the subsequent data processing steps.
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Fig. 3 The data processing chain applied on the PAMAP2 dataset.

sure effective FFT-calculation, a window size of512 sam-
ples (equivalent with5.12 seconds due to the sampling rate
of 100Hz) is selected for the segmentation step. Therefore,
the preprocessed data is segmented using a sliding window
with the defined5.12 seconds of window size, shifted by1
second between consecutive windows. From each window
segment, a total of137 features are extracted:133 features
from IMU acceleration data (such as mean, standard devia-
tion, energy, entropy, correlation,etc.) and4 features from
heart rate data (mean and gradient). These extracted features
serve as input to the classification step, in which different
boosting algorithms are evaluated. The data processing steps
preprocessing, segmentation and feature extraction are fur-
ther described in [28].

The main parameters of the PAMAP2 classification tasks
are summarised in Table 1. It is clear that, compared to the
other datasets of Table 1, the classification problems de-
fined on the PAMAP2 dataset are significantly more com-
plex, considering the number of instances and especially the
number of variables. To get a first impression about the dif-
ficulty of these tasks, experiments with a C4.5 decision tree
classifier are performed: an error rate of34.21% is achieved
on the PAMAP2AR and11.02% on the PAMAP2IE task,
averaged over10 test runs. This result serves as baseline per-
formance, showing that improvement is required and to be
expected while applying different boosting methods.

The experiments presented below in this section com-
pare the newly introduced ConfAdaBoost.M1 algorithm to
the boosting methods AdaBoost.M1, QuinlanAdaBoost.M1
and SAMME. The selection of these algorithms for compar-
ison was already explained in Section 4.1. The comparison
to AdaBoost.MH is not considered here due to the unfeasi-
ble training time it would require, given the complexity of
the classification tasks and that the actual size of the train-
ing set is a multiple of that of the other algorithms (cf. also
the discussion in Section 4.2). Similar to the previous sec-
tion, the C4.5 decision tree classifier is used for each of the

boosting algorithm as weak learner. An important difference
in the realization of the experiments in this section is the
applied evaluation technique. As discussede.g. in [27,31],
a subject independent validation technique simulates best
the goals of systems and applications using physical activ-
ity recognition. Therefore,leave-one-subject-out(LOSO) 9-
fold cross-validation is used in this section, while evaluating
each method from1 up to500 boosting iterations.

5.2 Results and discussion

The averaged results of the10 test runs on the PAMAP2
classification tasks are shown in Fig. 4, the test error rates
of the4 evaluated boosting methods are included in Table 2.
Compared to the baseline accuracy of the decision tree clas-
sifier, all boosting methods significantly improve the per-
formance. The ConfAdaBoost.M1 algorithm clearly outper-
forms the other methods:e.g.on the PAMAP2AR task, com-
pared to the performance of the second best SAMME algo-
rithm a reduction of the test error rate by nearly20% can be
observed. This reduction of the test error rate is statistically
significant with ap-value smaller than0.001. As discussed
in Section 4.2, it was expected that the most significant im-
provement from all the datasets evaluated in this work is
achieved on the PAMAP2AR classification task, since it
represents the largest and most complex classification prob-
lem.

Similar to the results of Fig. 1 and 2, the algorithms
AdaBoost.M1 and QuinlanAdaBoost.M1 reach the stopping
criterion with fewer boosting iterations. However, contrary
to the results of the previous section, QuinlanAdaBoost.M1
performs significantly better here (especially on the
PAMAP2 AR task), confirming that it is even worth to ap-
ply the confidence-based modification to only the prediction
step of the original AdaBoost.M1 algorithm, as proposed in
[25]. However, compared to QuinlanAdaBoost.M1, Conf-
AdaBoost.M1 reduces the test error rate by20%. Therefore,
the major part of the performance improvement achieved by
ConfAdaBoost.M1 comes from the confidence-based exten-
sion of both the training and prediction step of the original
AdaBoost.M1 algorithm, as also confirmed by the results on
the 8 other UCI datasets. Therefore ConfAdaBoost.M1 is
clearly a significant improvement over QuinlanAdaBoost.M1.

ConfAdaBoost.M1 also adopts one of the beneficial char-
acteristics of boosting: it rarely overfits a classificationprob-
lem. The only result indicating overfitting is on the
PAMAP2 AR task, the reasons need further investigation.
However, it should be noted that generally the behaviour of
AdaBoost algorithms concerning overfitting is a controver-
sial topic in the scientific community,cf. e.g.[20]. More-
over, different techniques have been proposed to avoid over-
fitting even in rare cases,e.g.by implementing data-derived
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Fig. 4 Test error of the4 evaluated boosting algorithms on the PAMAP2 classification tasks.The results are averages over10 test runs.

early stopping rules [43]. Nevertheless, in the example pre-
sented in Fig. 4, the performance of ConfAdaBoost.M1 on
the PAMAP2AR task is significantly better than that of the
other evaluated boosting methods even with larger boosting
iterations.

To better understand the results of this section, the con-
fusion matrix of the best performing classifier (ConfAda-
Boost.M1 with30 boosting iterations) on the PAMAP2AR
task is presented in Table 3.3 The numbering of the activi-
ties in the table corresponds to the activity IDs as given in the
PAMAP2 dataset. The results are averaged over10 test runs,
the overall accuracy is77.78%. The confusion matrix shows
that some activities are recognised with high accuracy,e.g.
lie, walk or even distinguishing between ascend and descend
stairs. Misclassifications in Table 3 have several reasons.For
example, the over5% confusion between sit and stand can
be explained with the positioning of the sensors: an IMU on
the thigh would be needed for a reliable differentiation of
these postures. Moreover, ironing has a similar characteris-
tics from the used set of sensors’ point of view, especially
compared to talking and gesticulating during standing. An-
other example of overlapping activity characteristics comes
from the introduction of playing soccer into this classifica-
tion problem. Playing soccer is a composite activity, and it
is for instance not trivial to distinguish running with a ball
from just running. The significant confusion between the
different household activities (vacuum clean, iron, fold laun-
dry and clean house — the latter mainly consisting of dust-
ing shelves) indicates that they can not be reliably distin-
guished with the given set of sensors. However, arguably, the
main reason for the misclassifications in Table 3 is the diver-
sity in how subjects perform physical activities. Therefore,

3 Recently new error metrics were introduced for continuous activ-
ity recognition,e.g. insertion, merge, overfill,etc. [39,41]. However,
contrary to activity recognition ine.g.home or industrial settings, for
physical activity monitoring the frame by frame metrics (precision, re-
call, F-measure and accuracy: all derivable from the confusionmatrix)
are sufficient, as discussed in [28].

to further increase the accuracy of physical activity recog-
nition, personalisation approaches should be introduced and
investigated.

6 Feasibility of ConfAdaBoost.M1 for mobile systems

The previous sections introduced and evaluated a novel conf-
idence-based boosting algorithm. It was shown that Conf-
AdaBoost.M1 significantly outperforms existing, commonly
used methods. However, the feasibility of the proposed algo-
rithm for online mobile applications remains an open ques-
tion. As pointed out in Section 1, boosted decision tree clas-
sifiers have a simple structure and are thus easy to imple-
ment. However, boosting is complex in the way that the size
of the classifier is aboutT -times larger (T being the num-
ber of boosting iterations) than the applied base-level classi-
fier. This means that boosted classifiers have larger compu-
tational requirements. Moreover, as shown by the results in
Sections 4.2 and 5.2, more boosting iterations can be reached
during training with ConfAdaBoost.M1 compared toe.g.
AdaBoost.M1, raising further the computational requirements.
On the other hand, the mobile systems where physical ac-
tivity monitoring applications are usually running on havea
restriction on available computational power. Therefore,this
section describes two empirical studies performed to exam-
ine the feasibility of the proposed ConfAdaBoost.M1 algo-
rithm for such mobile systems. The first study, presented in
Section 6.1, investigates the feasibility for an online gen-
eral activity monitoring model. The second study, presented
in Section 6.2, applies ConfAdaBoost.M1 as part of a re-
cently introduced personalisation concept for physical ac-
tivity recognition.

Both empirical studies are carried out with a state-of-
the-art mobile system prototype. This prototype consists of
Shimmer4 wearable wireless sensors, a wireless heart rate

4 http://www.shimmersensing.com
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Table 3 Confusion matrix of the PAMAP2AR classification task using the ConfAdaBoost.M1 classifier and 30 boosting iterations. The table
shows how different annotated activities are classified in [%].

Annotated
activity

Recognised activity
1 2 3 4 5 6 7 12 13 16 17 18 19 20 24

1 lie 97.1 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0
2 sit 2.0 84.8 5.4 0.0 0.0 0.5 0.0 0.0 0.0 0.1 4.1 0.6 2.5 0.0 0.0
3 stand 0.0 6.0 83.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 7.4 0.9 2.4 0.0 0.0
4 walk 0.0 0.0 0.0 92.2 0.0 0.0 0.5 6.8 0.0 0.0 0.0 0.0 0.0 0.4 0.0
5 run 0.0 0.0 0.0 0.0 89.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.1 0.0
6 cycle 0.0 0.0 0.0 1.1 0.0 91.7 0.4 0.5 0.0 1.3 0.1 0.0 4.9 0.0 0.0
7 Nordic walk 0.0 0.0 0.0 2.7 0.0 0.0 89.1 1.1 0.1 0.0 0.0 0.0 0.1 7.0 0.0

12 asc. stairs 0.0 0.0 0.0 6.4 0.0 0.2 0.3 87.2 2.6 0.7 0.0 0.0 0.3 2.5 0.0
13 desc. stairs 0.0 0.0 0.0 0.1 0.1 0.0 0.2 6.7 91.3 0.0 0.0 0.0 0.2 0.7 0.7
16 vacuum clean 0.0 0.0 0.1 0.0 0.0 1.1 0.0 0.3 0.4 73.5 1.3 0.3 23.1 0.0 0.0
17 iron 0.0 2.6 0.8 0.0 0.0 0.0 0.0 0.0 0.0 1.2 77.7 5.0 12.7 0.0 0.0
18 fold laundry 0.0 1.1 1.5 0.0 0.0 0.1 0.0 0.0 0.0 8.9 61.1 11.1 16.2 0.0 0.0
19 clean house 0.5 0.6 3.4 0.0 0.0 1.7 0.0 1.2 0.7 21.4 18.1 5.0 47.4 0.0 0.0
20 play soccer 0.0 0.0 0.0 5.1 27.6 1.4 2.8 7.3 20.6 1.7 0.0 0.0 0.1 20.7 12.8
24 rope jump 0.0 0.0 0.0 0.0 32.0 0.0 0.0 1.3 0.1 0.0 0.0 0.0 0.0 7.8 58.8

Table 4 Feasibility study I: online physical activity monitoring. Comparing computational cost and performance of the C4.5 decision tree, Ada-
Boost.M1 and ConfAdaBoost.M1 classifiers on the Samsung Galaxy S III smartphone.

Computation time (ms) Accuracy [%]
Classifier average maximum intensity estimation activity recognition
C4.5 decision tree 3.32 42 94.36 93.84
AdaBoost.M1 24.54 131 96.18 98.98
ConfAdaBoost.M1 51.54 150 99.79 100

monitor and an Android smartphone. Three Shimmer 2r base-
board units (containing each an accelerometer) are placed on
chest, lower arm and ankle positions, a sensor setup already
used for the PAMAP2 dataset recording [28,29]. Moreover,
a Zephyr Bioharness 35 heart rate monitor is included in the
prototype. Finally, as mobile control unit, a Samsung Galaxy
S III (which contains a1.4GHz quad-core Cortex-A9 CPU
and1GB of RAM) Android smartphone is used.

6.1 Study I: Online general physical activity monitoring

The goal of this study is to show the feasibility of the Conf-
AdaBoost.M1 algorithm for online physical activity moni-
toring on mobile devices. For this purpose the entire data
processing chain of Fig. 3 is implemented inJava on the
Samsung Galaxy S III smartphone. The structure of the im-
plementation includes a data collection thread (includingpre-
processing and segmentation of raw sensory data) for each
of the sensors, and a data processing thread for feature ex-
traction and classification. The feature extraction step isop-
timised in a way that each feature should be computed at
most once each window segment. As for the classification
step, ConfAdaBoost.M1 is compared to a C4.5 decision tree
classifier and to AdaBoost.M1. Both boosting classifiers have
the C4.5 decision tree as weak learner, and theT number of
boosting iterations is set to100. Both intensity estimation

5 http://www.zephyranywhere.com

and activity recognition are included in this mobile physical
activity monitoring application, as defined in Section 5.1.

The protocol of this empirical study can be described
as follows. First, data is recorded from two subjects per-
forming various activities while wearing the mobile system.
This data is used for training all classifiers offline, for both
the intensity estimation and the activity recognition task.
Then, with each of the trained classifier an approximately20

minutes protocol is carried out by one of the subjects. The
same protocol is followed with each classifier, including the
following wide range of activities: lying, sitting, standing,
walking, running, cycling, ascending and descending stairs.

Table 4 shows the comparison of the three different de-
cision tree-based classifiers. The computation time includes
the classification and the computation of the required fea-
tures for the respective classification step, and was com-
puted in the above mentioned data processing thread of the
online application. It is clear that even the maximum com-
putation time of each classifier is far below the restriction
of 1 second. This restriction is defined by the fact that the
segmentation step of the DPC uses a sliding window shifted
by 1 second, thus the data processing thread has maximum
1 second for each processing step. The difference between
AdaBoost.M1 and ConfAdaBoost.M1 in computation time
can be explained by the fact that the training of the Ada-
Boost.M1 algorithm stops at an earlier boosting round, thus
this classifier is of smaller size. With the ConfAdaBoost.M1
algorithm on the other hand, the predefined iteration num-
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Fig. 5 Data processing chain: a novel concept of personalisation.

ber of100 is reached during the training for both intensity
estimation and activity recognition.

Overall, this empirical study proves the feasibility of us-
ing ConfAdaBoost.M1 for online activity monitoring on
smartphones, there are no limitations considering the com-
putational costs. Moreover, the comparison of the three clas-
sifier’s performance in Table 4 confirms previous results of
this work: The ConfAdaBoost.M1 algorithm outperforms
the other classifiers on both the intensity estimation and the
activity recognition task.

6.2 Study II: Personalised physical activity recognition

Personalisation of physical activity recognition has become
a topic of interest recently. It is motivated by the fact thatac-
tivity monitoring systems are usually trained on a large num-
ber of subjects, and then used by a new subject from whom
data is not available in the training phase. Most existing per-
sonalisation approaches focus on the classification step of
the DPC. A common personalisation concept is to adapt the
parameters of a previously trained general model to the new
user. However, the drawback of changing the parameters of
a general model is that either the model is simple (e.g. the
decision tree classifiers used in [22,44]) and thus only low
performance can be expected on more challenging activity
recognition tasks, or the general model is complex and thus
resulting in unfeasible computational costs for mobile appli-
cations [4].

A novel general concept of personalisation has been in-
troduced recently in [33]. In this concept, personalisation is
applied in the decision fusion step of the DPC, as shown in
Fig. 5. The general model consists of a set ofS classifiers
(experts), all weighted the same:wi = 1, i = 1, . . . , S. Us-
ing new labeled data from a previously unknown subject,
only thewi weights of the experts are retrained, the clas-
sifiers themselves remain the same. In order to show that
this concept is a valid approach for personalisation, differ-
ent methods based on the idea of weighted majority voting

have successfully been applied to increase the performance
of the general model for new individuals:weighted major-
ity algorithm (WMA), randomised weighted majority algo-
rithm (RWMA), weighted majority voting(WMV) and the
newly introduceddependent experts(DE) algorithm [33].
The main idea of the latter is that the confidence of an ex-
pert’s prediction depends on the decision of all other experts.
Therefore, the training part of the DE algorithm results in a
matrix of weights, containing weights for each of the experts
when the majority vote of all other experts is a given class.
For further details the reader is referred to [33].

One of the key goals and benefits of the above described
personalisation concept is that a fast personalisation of even
advanced classifiers is enabled. This way the personalisation
concept can handle complex activity recognition tasks (e.g.
the recognition of not only a few basic, but a large num-
ber of physical activities), while still feasible for mobile ap-
plications regarding its computational complexity [33]. It is
expected thereby that the new user — after recording new la-
beled data — receives the personalised model within a short
time. In order to investigate this an empirical study is de-
signed and carried out, implementing the DPC of Fig. 5 on
the Samsung Galaxy S III smartphone.

The procedure of the empirical study can be described
as follows. First, data is recorded from one subject (wearing
the previously described mobile system prototype) during6

sessions, each session including the following7 activities:
lying, sitting, standing, walking, running, ascending andde-
scending stairs. These recordings are used to create the gen-
eral model, consisting of6 classifiers (each of these classi-
fiers is trained using data from one of the sessions). C4.5
decision tree, AdaBoost.M1 and ConfAdaBoost.M1 (both
with decision tree as base-level classifier) are used and com-
pared as classifiers in the general model. Then, labeled data
from a second subject is recorded, while performing each
of the 7 activities for approximately one minute (this pa-
rameter has been determined in [33], as trade-off between
classification accuracy and the time required for new data
recording). This new data is used to retrain the weights of
the6 classifiers in the general model. The retraining of the
weights is performed directly on the smartphone, for each
of the4 analysed algorithms. For each classifier — person-
alisation algorithm pair the retraining is run5 times, results
will present the average of these test runs.

Table 5 presents the average retraining time of each of
the weighted majority voting algorithms and each type of
classifier. The interpretation of these results is the following:
After the second subject recorded the required new train-
ing data and started the retraining of the general model on
the smartphone, how long did he have to wait to receive his
personalised model. For each of the retraining algorithms,
the major computational time is spent to predict the label of
each new sample by each of the general model’s classifier
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Table 5 Feasibility study II: personalisation of physical activity recognition. Computational time [s] required for the retraining ofthe general
model. Decision tree, AdaBoost.M1 and ConfAdaBoost.M1 are eachtested as classifiers used in the general model. The proposed personalisation
approach is evaluated with the weighted majority voting-based methods WMV, WMA, RWMA and DE.

Classifier WMV WMA RWMA DE
C4.5 decision tree 4.01 3.89 4.01 4.05
AdaBoost.M1 10.91 11.03 10.82 10.84
ConfAdaBoost.M1 30.89 30.48 31.01 31.00

(for which the by far most computationally intensive part is
the feature calculation in the data processing chain). With
an effective implementation this has to be done exactly once
for each sample — classifier pair, even when applying the
DE algorithm. Therefore, the retraining time for all4 algo-
rithms is expected to be similar, as confirmed by the results
of Table 5. Furthermore, the retraining of the general model
when consisting of ConfAdaBoost.M1 classifiers takes the
longest, since this classifier is the most complex, thus in-
cludes the calculation of the most features. Nevertheless,the
retraining time of approximately30 seconds is still accept-
able: The new user receives a complex personalised system
after only waiting half a minute. Therefore, this empirical
study proves the feasibility of using ConfAdaBoost.M1 for
mobile, personalised physical activity monitoring as well.

7 Conclusion

This paper presented a confidence-based extension of the
well-known AdaBoost.M1 algorithm, called ConfAda-
Boost.M1. The new algorithm builds on established ideas of
existing boosting methods, combining some of their bene-
fits. The ConfAdaBoost.M1 algorithm has been evaluated on
various benchmark datasets, comparing it to the most com-
monly used boosting techniques. ConfAdaBoost.M1 perfor-
med significantly best among these algorithms, especially
on the larger and more complex activity monitoring prob-
lems: on the PAMAP2AR task the test error rate was re-
duced by nearly20% compared to the second best perform-
ing classifier. Therefore, the main motivation of proposing
this new boosting variant — namely to overcome some of
the challenges defined by recent benchmark results in physi-
cal activity monitoring — was achieved successfully. More-
over, empirical studies proved the feasibility of using the
ConfAdaBoost.M1 algorithm for physical activity monitor-
ing applications in mobile systems, there are no limitations
considering the computational costs.

This work presented experimental proof on various data-
sets in different application areas that the ConfAdaBoost.M1
algorithm is superior to existing methods, and using it im-
proves on classification performance. The main concepts of
the new method are clear and comprehensible, but a the-
oretical interpretation of the algorithm and explanation of
its success remains for future work. Moreover, it is planned
to slightly modify ConfAdaBoost.M1 — similar toe.g.the

modification proposed by SAMME over the original Ada-
Boost.M1 algorithm — to loosen the stopping criterion of
et ≥ 0.5, thus allowing the usage of “weak” weak learners
(such as decision stumps). However, boosting decision trees
proved to be very successful in the experiments presented
in this work, and will remain (due to its many benefits dis-
cussed in this paper) one of the most widely used classifiers
especially in the field of physical activity monitoring.
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