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A Novel Continuum Manipulator Design Using
Serially Connected Double-Layer Planar Springs

Peng Qi, Student Member, IEEE, Chen Qiu, Hongbin Liu, Member, IEEE,
Jian S. Dai, Senior Member, IEEE, Lakmal D. Seneviratne, and Kaspar Althoefer, Member, IEEE

Abstract—There is a surge of research interest in the
field of “continuum robotics.” Robots created under this
paradigm offer many advantages and represent unique fea-
tures in terms of flexibility, dexterity, safety, and weight
reduction. This paper introduces a novel continuum ma-
nipulator that integrates multiple layers of compliant planar
springs—a structure that provides several notable advan-
tages over existing designs. First, it possesses precise lin-
ear large-displacement motion. In this context, we utilize the
linear output motion of each layer of springs. With the se-
rial connection of multiple conjoined layers, the manipulator
demonstrates linear predictable bending even when execut-
ing large bends. An analytical method is provided to study
the compliance characteristics of the planar spring and de-
rive the compliance matrix to represent the force–deflection
relationships, allowing an accurate motion prediction. Sec-
ond, compared with work elsewhere, this structure demon-
strates an effective way of decoupling bending from con-
traction and expansion. It reduces the uncontrolled com-
pression when generating normal deflections, thus con-
trolling robot bending is simplified. Third, the reachable
workspace of the end effector is enlarged by means of
varying the length of the continuum manipulator via con-
trolled contraction and expansion. A 3-D printed prototype
of this continuum manipulator is experimentally evaluated.
The conducted experiments demonstrated validity of our
approach.

Index Terms—Compliance analysis, continuum manipu-
lator, double-layer planar spring, tendon-driven mechanism.

I. INTRODUCTION

C
ONTINUUM manipulators, inspired by elephant trunks
and octopus tentacles, increasingly arouse the attention of

researchers due to appealing advantages, such as compliance,
dexterity, and potential for miniaturized profile. A continuum
manipulator has the capability to continuously bend and the-
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oretically possesses an infinite number of degrees of freedom
(DOF). Remarkable developments in this area have been seen
in the past two decades: various forms of design were created;
many new applications for such continuum robots were demon-
strated across different sectors, including industrial operations
and health-care environments [1]. The related scientific prob-
lems range from designing and modeling continuum manipula-
tors to low-level control and high-level task execution [2].

Historically, the first continuum manipulator is generally ac-
cepted to be Anderson and Horn’s tensor arm manipulator in-
vented in the late 1960s [3]—a tendon-driven spine-like flexible
arm. Subsequently in 1971, Hirose started to propose creative
designs of snake-like robots and appropriate control systems
based on the biomechanical study of snakes [4]. Early works
also include Chirikjian’s pilot research in the 1990s on estab-
lishing the fundamental modeling technique to formulate the
dynamics of hyperredundant manipulators [5]. The late 1990s
and 2000s saw an increasing trend of miniature continuum ma-
nipulators being moved into robotic surgery with a view to
finding solutions for robot-assisted minimally invasive surgery
(MIS) with its inherent access problems through small incisions
[6], [7]. Meanwhile, soft robotics as a subset of continuum
robotics emerged with the development of novel soft actuators
and sensors [8], [9]. Webster and Jones [10] presented a mile-
stone review on the constant-curvature kinematics methodology
of continuum manipulators and summarized the early develop-
ments. Most recently, Walker [1] reviewed the state of the art
of continuous backbone robot manipulators and analyzed the
hardware design principles.

A. Related Work

A continuum manipulator is characterized by its continuously
bending structure. Some hyperredundant manipulators [5] have,
externally viewed, the appearance of a continuum arm; however,
if they are internally comprised of a segmented backbone with
many short rigid links/columns, they do not represent, strictly
speaking, continuum manipulators—we will refer to such ma-
nipulators as “continuum-style manipulators.” The frequently
applied continuum-style robot constructions to date are then
summarized according to their distinctive backbone architec-
tures. Of these design principles, the earlier robot structure is
composed of serially connected independent joints, and, thus,
pertains to the aforementioned hyperredundant manipulator. Ex-
amples include different kinds of snake-like robots, which are
articulated by revolute joints [4], universal joints [11], [12],
or spherical joints [13]. In terms of actuation mode, this type
of design employs an individual micromotor per joint [12],
or more commonly incorporates tendon-driven actuation [11],
[13]. The designs share the advantages of having a large num-
ber of DOFs and accurate control; however, they suffer from the
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problems of lighter payload, joint friction, and incompressibil-
ity/inextensibility.

Perhaps the most common form of a truly continuum robot is
the one that uses a spring backbone [3], [14]–[16]. Due to the
flexibility of the spring structure, the shape of such a robot can
be actuated in a tendon-driven manner and allows us an ideal ax-
ial compliance combined with a relatively low hysteresis. Here,
tendons are routed along the spring backbone producing torques
at the termination points, which give rise to an underactuated
design. When forces are applied to tendons, compression and
bending deflections can be obtained. However, in such robots
compression and bending deflections are mechanically coupled,
leading to a bending actuation that results partially in compres-
sion [1]. Similar to spring backbone design, the bending flexure
joint type is an another form of constructing continuum ma-
nipulators and is often used in steerable MIS instruments [17].
These robots are made of compliant materials and the flexural
parts are carved from a single piece of thin-walled shell allowing
bending. This structure essentially acts like springs but suffers
from poor bending performance, which strongly depends on the
flexure joint and material properties. One main advantage of
using this design is a large open lumen within the metal shell.

Another popular design of continuum robots utilizes a later-
ally superelastic, but longitudinally incompressible rod/tube as
the backbone element. This continuous backbone design is com-
monly wire actuated [18]; however, there are exceptions from
this rule, in which case, the wires are replaced by a secondary
backbone and bending is achieved by means of a push–pull mode
[19]. A distinctive feature of using an elastic central backbone is
design simplicity. On top of this, both control and modeling will
be simplified. Some commonly used medical devices share this
feature as well, in [20], for example, a catheter is introduced,
which can be seen as an elastic tube steered by tendons. Further-
more, a multisection design emerged, producing S-shape and
more complex configurations. The following is a special case of
a continuum manipulator, known as active cannula or concentric
tube, proposed by Webster et al. [21], [22] and Dupont et al.

[23]. The main idea is to utilize precurved superelastic tubes
to achieve various backbone shapes. The bending of a contin-
uum manipulator can be formulated by beam-mechanics-based
models. More recently, the ideas of layer jamming [24] and
granular jamming [25] have been exploited to achieve tunable
stiffness of the continuum robot structure. They differ from pre-
vious designs being composed of multiple jamming elements.
The structure stiffness is changed by applying vacuum pressure
to control the friction between granular media.

Except for the aforementioned types of continuum manip-
ulators that employ different modalities of a backbone struc-
ture, there is also the “invertebrate” design. It is often termed
as “bioinspired soft continuum robot.” In this case, continuum
manipulators are integrated with artificial muscles but do not
possess a backbone or spine [26], [27]. The designs directly
resemble animals or animal appendages, for example, octopus
tentacles; different actuation mechanisms are used. Most often,
continuum structures are pneumatically actuated—an approach
closest to a muscular hydrostat [28]. That not only enables the
robot to achieve elongation/shortening and bending motions, but
also provides the capabilities of stiffening and force generation.
Recent advances in both soft actuators and sensing techniques
have led to an increased interest in the use of soft structures in
continuum manipulators; however, it is still an inchoate field and

Fig. 1. 3-D printed prototype of the proposed continuum manipulator
concept with multilayer deformable planar springs in series and articu-
lated by tendons which are actuated by motors in the periphery.

a number of fundamental scientific issues need to be addressed.
In particular, the fabrication and control of soft bodies would be
challenging. It is expected that this kind of continuum manip-
ulators embodies new robotic concepts and leads the design of
mechanisms to the essence of biological systems.

So far, these fundamental, related, and broader continuum-
style manipulator designs were reviewed. Nevertheless, the di-
versity of design strategies is not limited to the aforementioned
structures. We seek to put our work in the context of other
continuum manipulator designs and discuss its advantages and
negative aspects. It was recognized that no single design is
perfect.

B. Contribution

This paper builds on our previous work in [29], in which the
early idea of designing a continuum manipulator with multilayer
planar springs was introduced (see Fig. 1). This study further
investigates the characteristics of the proposed manipulator and
contains improvements in terms of extended content, analysis,
and experimental validation. One primary advantage of using
compliant planar springs is due to their linear output motion.
We systematically generalize the analytical method to study the
compliance characteristics of the planar spring and provide the
unified compliance matrix to represent the force–deflection re-
lationships, thus allowing us to accurately predict the robot’s
motion. Another advantage of the continuum manipulator is
due to the serial connection of the conjoined layers; thus, allow-
ing linear predictable bending even for large bends, although
the linear-motion approximation of each individual layer only
holds under the condition of small deflections. The proposed
structure behaves like a helical spring, but its contraction and
bending motion are decoupled, thus virtually eliminating any
uncontrolled compression when generating bending deflections.
Additionally, the structure is longitudinally compliant—a desir-
able feature in robotics, which improves safe interactions. On
the other hand, the compressible manipulator length extends the
achievable workspace and enhances the dexterity tuning manip-
ulator’s tip orientations.

The rest of paper is organized as follows: Section II presents
the structure and design of the proposed continuum manipulator



QI et al.: NOVEL CONTINUUM MANIPULATOR DESIGN USING SERIALLY CONNECTED DOUBLE-LAYER PLANAR SPRINGS 1283

Fig. 2. Schematic of a double-layer modular segment. (a) Top view; (b)
side view. The pattern-filled parts represent the flexible segments.

in detail. Section III derives the symbolic formulation of com-
pliance matrix of planar spring in the frame work of screw the-
ory and then gives compliance analysis and numerical studies;
furthermore, the finite-element analysis (FEA) simulations are
provided to validate the analytical model of the compliant pla-
nar spring. Section IV provides analysis on the compliance and
bending characteristics of the full robot and also an overview of
the kinematics and statics. In Section V, a set of experiments are
designed to evaluate the expected properties of this continuum
manipulator; finally, conclusions and future works are given in
Section VI.

II. CONCEPTUAL DESIGN OF THE ROBOT

A. Segment Design

Fig. 2(a) depicts a top view of the compliant planar mod-
ule. Howell et al. first constructed similar types of designs and
identified different configurations [30] and considered them as
a unique type of planar springs. We further put forward that this
planar spring not only undergoes an out-of-plane motion along
an axis orthogonal to the parent plane, but also has the poten-
tial for angular deflection. In Fig. 2(a), the radial-leg design is
presented in detail: three legs (120° apart) radially extend away
from the central platform and are anchored to the outer base;
each leg has two flexible segments shaped like a “U” (U-shape
design); the intermediate platform is considered infinitely stiff.
In the current prototype design, the circular outer contour has a
29 mm diameter and the length of each leg is 8 mm. The thick-
ness of the flexible beam elements is 1 mm, the width 1.2 mm,
and both can be varied to change the beam compliance. Part of
the base is cut in order to reduce the mass. Three tendon chan-
nels with a 0.8 mm diameter are reserved for guiding tendons
through each module layer. The tendons are positioned on the
far edge of the base and along the extension line of the leg.
Optimization of the design is needed regarding different prac-
tical specifications and fabrication materials. Due to the elastic
flexing of the slender leg beams, this compliant planar spring
possesses motions to raise and lower the platform relative to the
fixed base and to allow the platform to freely perform titling mo-
tions around the center. A three-legged design is chosen because
having three legs is the minimum odd number leg count to allow
reducing the rotational tendencies of each leg and increasing the
stability of the platform [30].

Fig. 2(b) depicts the modular segment design for our contin-
uum manipulator. It integrates two layers of compliant planar
springs opposing each other; a prism-like shaft and a mating fe-
male cylinder are, respectively, fixed on each platform at the top

Fig. 3. Partial views of a continuum manipulator assembly.

and the bottom. The polygonal cross-sectional design of the ax-
ial coupling resists relative rotation between the two segments,
while enabling torque transmission. They are fitted precisely to
connect from segment to segment. This design simplifies the
assembly of the current 3-D prototyped modules. Except for
the flexible segments and the two platforms with their “verte-
brae,” any other part of the segment is a part of the frame [see
Fig. 2(b)], which is idealized to be a rigid body. If fixing the
bottom cylinder rigidly to the ground and applying a load to the
prism shaft, the relative displacement and/or rotation of the two
platforms would be double when compared to that of one layer
for the same load. The gap between the two layers currently is
5 mm, providing enough space to keep the deformed legs or two
platforms of the top and bottom layers, respectively, from col-
liding during a bending motion. The segmented modular design
allows the length of the continuum manipulator to cope with
various intended bending scenarios.

B. Continuum Robot Assembly

Our current continuum manipulator prototype consists of ten
modular segments. Fig. 3 shows partial views of the assembly.
Including a distal plate and a bottom support, the total length is
143 mm. The distance between the lower layer of one segment
and the upper layer of the subsequent segment is 5 mm, and
in our prototype, the same gap of 5 mm is chosen as distance
between the upper and lower layers of each segment. Three
tendons are routed along the aligned segments through tendon
channels and secured to the distal plate, which is connected to
upper layer platform of the last segment; this approach leads
to a tendon-driven underactuated design. By pulling the ten-
dons, the load will be transmitted from the distal top platform to
the proximal bottom support, thus generating compression and
steering motions. Moreover, depending on the intended opera-
tions, the design could be extended by incorporating additional
groups of tendons to increase the mobility and functionality. The
set of tendons are secured to some selected pillar and produce
torques to the section down to the tendon termination point.
Other continuum robots utilizing local spring elements along
the backbone have appeared and been presented in [14]–[16]
and [31], however these spring elements are the basic helical
springs. The design features of the proposed continuum robot,
in this paper, are utilizing a type of planar springs and introduc-
ing the double-layer modules.

III. COMPLIANCE OF A PLANAR SPRING

From the perspective of the mechanical design, this planar
spring is a type of hybrid flexure mechanism [30]. Each flexible
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Fig. 4. Illustration of local and global coordinate frames on the planar
spring plane.

segment in each leg can be treated as a beam flexure. Each
leg is a folded serial chain of two fixed-guided beam flexures.
This planar spring is formed by connecting the central platform
to the outer base through three legs in parallel. Thus, we can
stepwise derive the compliance matrix for the entire module
with a bottom-up approach. Stiffness and compliance analysis
for the general robots has also been represented in other different
ways before [32], [33].

A. Compliance Matrix Derivation

Fig. 4 depicts the establishment of the local and global co-
ordinate frames. The linear elasticity is considered throughout
the derivation. In the framework of a screw theory [34], a small
deformation of a beam is defined as a twist deflection, which in
axis coordinates can be denoted by

S =
[

δx δy δz θx θy θz

]T
(1)

where the first three elements represents the three translational
deflections along their corresponding axes, while the last three
elements reveal the corresponding rotational deflections. A twist
deflection S is an element of the Lie algebra se(3) of Lie group
SE(3).

In-line with (1), the loading force is considered as a general
wrench in ray coordinates

W =
[

fx fy fz mx my mz

]T
(2)

in which the location of the axis of the wrench is given by the

primary part f =
[

fx fy fz

]T
, while the secondary part m =

[

mx my mz

]T
is the vector attached with the force intensity,

representing the direction of the axis of the wrench. A wrench
is an element of the dual Lie algebra se∗(3).

Consider one beam of the leg (see pictured in red in Fig. 4), a
local coordinate frame {x1y1z1} generally can be established at
the centroid of the beam. With the coordinates of both the twist
deflection and the wrench written in the same frame {x1y1z1},
then the compliance matrix of this beam can be derived [35] and
expressed as

C1 = diag
[

l
EA

l3

12EIz

l3

12EIy

l
GJ

l
E Iy

l
E Iz

]

(3)

where the primary part represents linear compliance and the
secondary part the torsional compliance. The beam has a length l

and a rectangular cross section with the width b and the thickness
h(b > h). The area of the cross section is represented by A which
is equal to bh, E denotes the elastic module of the material, and

G denotes the shear module of the material with G = E/(2(1 +
v)) and v being Poisson’s ratio. The moments of inertia of the
beam at the cross section with respect to the y-axis and z-axis are
Iy = b3h/12 and Iz = bh3/12, respectively, and the torsional
moment of inertia is described by J.

Equivalent results are also produced in [35]–[37] and there
exists remarkable similarity, however due to coordinate frame
choices, they are diverse in form. The compliance of an individ-
ual link or a whole mechanism system is their intrinsic property,
but the expression of the compliance matrix may vary depending
on the coordinate frame choice.

For (1)–(3), we have the relations between a twist deflection
and a loading wrench as summarized below

S = C1W , W = K1S, C1 = K−1
1 (4)

where K1 is the stiffness matrix in the local coordinate frame
{x1y1z1}.

The second beam of the U-shaped leg is an identical flexible
segment to the first one, thus the compliance matrix is the same
but expressed in its own local coordinate frame {x2y2z2} as
shown in Fig. 4. Two beams in the leg are connected by an
intermediate platform, but it is modeled as a fixed pin joint with
its compliance ignored, when we consider the force–deflection
relationship of the leg [30]. At the connecting edge between the
leg and the platform, we established the leg global coordinate
frame {xeyeze}. To shift the local coordinate frame of each
beam into the global coordinate frame {xeyeze}, an adjoint
action of Lie group SE(3) on its Lie algebra is introduced through
a 6 × 6 matrix representation [34]:

Adg =

[

R 0

DR R

]

(5)

where R is a 3 × 3 rotation matrix representing the orientation
of frame {xeyeze}, relative to frame {x1y1z1}; in this case,
R = Ry (π). D is a skew-symmetric matrix spanned by the
position vector d of the origin of {x1y1z1} from the origin of
frame {xeyeze}; in this case, d = [−l/2, 0, d]T .

Then, the coordinates of a twist deflection and a wrench in
the coordinate frame {xeyeze} are calculated as [35], [38]

S′ = Ad−T
g S, W ′ = AdgW . (6)

To obtain the compliance matrix C1
′ in the new coordinate

frame, we deduct it as follows based on (4):

S′ = Ad−T
g

S = Ad−T
g

(C1W ) = Ad−T
g

C1Ad−1
g

W ′. (7)

Thus, we find that the compliance matrix will be transformed
to the new coordinate frame according to the relation

C ′
1 = Ad−T

g C1Ad−1
g . (8)

Similarly, we can derive the stiffness matrix in the new coor-
dinate frame {xeyeze} as

K ′
1 = AdgK1AdT

g . (9)

Here, the inverse and the inverse transpose of such adjoint
transformation matrix are given, respectively, by

Ad−1
g =

[

RT
0

−RT D RT

]

, Ad−T
g =

[

R DR

0 R

]

. (10)
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If all deformations are presented into the same coordinate
frame {xeyeze}, then the overall compliance matrix of the leg
as a serial flexure chain is [37]:

C l1 =

2
∑

i=1

(Adg )
−T
i Ci (Adg )

−1

i =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2l
EA + d2 l

E Iy
0 d2 l

2EIy

0 2l3

3EIz
+ d2 l

GJ 0

dl2

2EIy
0 2l3

3EIy

0 − dl
E Iy

0

dl
GJ 0 l2

EIz

0 − l2

EIy
0

0
dl
GJ

0

− dl
E Iy

0 − l2

EIy

0
l2

EIz

0

2l
GJ 0 0

0 2l
E Iy

0

0 0 2l
E Iz

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(11)

Given a compliance matrix of one leg, its corresponding stiff-
ness matrix K = C

−1 is first calculated. It is noted that all twist
deflections and wrenches here must be transformed into the
same coordinate frame, and, correspondingly, the stiffness ma-
trix of each leg will be expressed in such a global coordinate
frame. We establish the module global coordinate frame {xyz}
in the center of the triangular platform (see Fig. 4). The radius
of the plate is labeled by parameter r. The coordinate trans-
formation operation from the connecting edge between the leg
and the platform, i.e. the edge of the disc to the center of the
disc follows the aforementioned relationship [see (9)]. Further
considering that the overall layer’s stiffness is isotropic [39], it
gives the unified form as

K0 =

2
∑

i=0

N iK ′
1

(

NT
)i

(12)

where K1
′ is the stiffness matrix of leg 1 in the global coordi-

nate frame {xyz}; it is derived by the relation K1
′ = T K1T

T

based on (9), which indicates a coordinate transformation from
the leg global coordinate frame at the connecting edge to the
module global coordinate frame of the platform center. In this
case, T only possesses the translation action along the x-axis. N

describes the rotation action based on the fact that three legs are
symmetrically connected to the platform with an angle of 120°.

Finally, the compliance matrix of the overall planar spring as
a type of hybrid flexure mechanisms is computed by inverting
the stiffness matrix K0

C0 = K−1
0 = diag

[

c11 c22 c33 c44 c55 c66

]

.
(13)

Here, the nonzero compliance elements are denoted by the
variables with two subscripts unnumbered equation shown at

the bottom of the next page.

c11 = c33 =
l3

(

Ad2 + 4Iy

)

3EIy (3Ad2 + Al2 + 12Iy )

c22 =
l
(

3EIz d3 + GJl2
)

18EIz GJ

c44 = c66 =
4

3

·
l
(

EIz 3d3 + GJl2
)

EIz GJ
(

6d2 + 4l2 + 12r2 − 6
√

3lr + 6dr
)

+ (EIz )2 3d2 + (GJ )2 l2

The compliance elements are all determined by both material
parameters and geometric parameters of the mechanical design
of the compliant planar spring structure.

B. Compliance Analysis and Numerical Example

The compliance matrix in (13) is symmetric positive definite,
and the diagonal entries represent the translational and rota-
tional compliance in/about all directions, respectively. Besides,
all diagonal compliance elements of C0 can factor out a fac-
tor that coincides with the corresponding elements of beam’s
compliance matrix in (3). By observing compliance elements of
C0 , we notice that the xz planar motion (x, z, θy ) is decoupled
from out-of-plane forcing and vice versa. On the other hand, the
entries outside the main diagonal are all zero, revealing that the
out-of-plane rotation and translational motion of the platform
are decoupled. This further verifies that the contraction effort
and bending motion of the multilayer structured continuum ma-
nipulator will be theoretically independent to each other.

Referring to Fig. 4, the current global coordinate frame {xyz}
can be rotated about its y-axis, and, therefore, the action in (12)
needs to include a rotation matrix Ry (ϕ). Nevertheless, the
compliance matrix of the planar spring keeps invariant

K ′
0 = Adg0K0AdT

g0 (14)

where

Adg0 =

[

Ry (ϕ) 0

0 Ry (ϕ)

]

and it is a 6 × 6 matrix representation of the special Euclidean
group SE(3), which means that AdT

g0 = Ad−1
g0 . Hence, the con-

gruence transformation in (14) is equivalent to a similarity trans-
formation of K0 . Considering that K0 is a diagonal matrix, there-
fore it is an invariant with respect to the similarity transforma-
tion, i.e., K ′

0 = K0 . This reveals the isotropism of this planar
spring.

The above proves that this type of planar spring displays the
isotropic rotational compliance, which means that a moment
about any lines passing through the origin in the xz plane of
the global coordinate frame {xyz} produces the same angular
displacement. This is an attractive characteristic in considering
tendon channel arrangements and multiple groups of tendon
path for multisegment continuum manipulator. Equation (14) is

c55 =
2

3
· l3

(

Ad2 + 4Iy

)

EIy

(

A
(

5d2 l2 + 9d2r2 − 6
√

3d2 lr + 2dl2r
)

+ Iy

(

16l2 + 36r2 − 24
√

3lr
)) .
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TABLE I
NUMERICAL EXAMPLE OF COMPLIANCE ELEMENTS

Compliance element Polyethylene

c1 1 6.23 × 10−5 m/N

c2 2 3.28 × 10−4 m/N

c3 3 6.23 × 10−5 m/N

c4 4 9.54 rad/(N · m)

c5 5 2.71 rad/(N · m)

c6 6 9.54 rad/(N · m)

valid for any planar spring configurations that have the diagonal
stiffness matrix, and we verify that four-leg and six-leg symmet-
ric configurations possess such isotropic rotational compliance
as well.

In the following, we use a numerical example to further re-
veal the information embodied in the compliance matrix. The
dimensions of the planar spring of our prototype are l = 8 mm,
b = 1.2 mm, h = 1 mm, d = 2 mm, r = 3.5 mm. Polyethylene
(Young’s module E = 1.1 GPa and Poisson’s ratio v = 0.42) is
selected as fabrication material (as tabulated in Table I) for use
in the example, thus deriving each element of the corresponding
numerical compliance matrix.

By analyzing the numerical results, we can draw the following
conclusions.

1) In the group of translational compliance elements (c11 ,

c22 , and c33), the vertical compliance element c22 is about

five times larger than both the horizontal compliance el-

ement c11 along x-axis and the horizontal compliance

element c33 along z-axis. This result agrees with our intu-

ition and the qualitative study by Howell et al. [30]. Such

translational motion along the vertical axis of the planar

module has been investigated for use in many applica-

tions, such as a pneumatic valve controller for Flowserve

[30] and a force sensor [40].

2) In the group of rotational compliance elements (c44 , c55 ,

and c66), the rotational compliance elements both c44

and c66 about the horizontal x- and z-axes are more than

three times larger than the rotational compliance element

c55 about the vertical y-axis, indicating its potential to

be used for bending motions in continuum manipulator,

while resisting in-plane rotations.
Overall, c22 , c44 , and c66 are the major compliance elements.

Thus, reasonably, further analysis can focus on the major dis-
placements δy , θx , and θz that are produced by the loads fy ,mx ,
and mz , respectively.

C. FEA Simulations to Validate the Analytical Model

FEA simulation was conducted using the commercial soft-
ware package (ANSYS 12.0.1 Release). The geometry of a
double-layer modular segment model was imported with a
SolidWorks geometrical part. The same dimensions and ma-
terial data were assigned to this simulation study as we noted
for the calculations in the previous numerical example. Fig. 5
illustrates the simulation results for two types of loads applied
to one layer’s central platform, while fixing another layer’s cen-
tral platform. The left line chart depicts the moment–rotation
curves of both simulated one layer and double-layer module ro-

Fig. 5. Moment-rotation diagram (left) and force–deflection diagram
(right) for the double-layer compliant module via analytical model predi-
cation and FEA simulation results.

tational deflections, where it validates the double-layer module
rotation angle doubles the single-layer rotation angle at the same
amount of moment. Besides, the line curves indicate that the lin-
ear relationships are applicable for the designed module in the
range of simulated rotation. Combining the analytical curve of a
single-layer model that was previously derived, we can also see
that the results agree well with those correspondingly obtained
in an FEA simulation. The right line chart indicates the same
conclusion in the case of longitudinal displacements. Regarding
the minor discrepancy between the analytical prediction and the
simulation result, we suspect that it originates from the connec-
tion part [intermediate platform, see Fig. 2(a)] between the two
parallel beams of each U-shape leg. Because the intermediate
platform ideally should be fully rigid, while this part built in
FEA simulation possesses the same material properties as the
rest of the module.

In summary, the double-layer compliant module demonstrates
an ideal simulation of rotational deflections and longitudinal dis-
placements, which simultaneously can be well predicted with a
screw-theory-based analytical model. This simulation verifica-
tion assures that there are no additional unmodeled effects in the
components of the structure that are contributing significantly
to the overall system compliance.

IV. ANALYSIS ON THE CONTINUUM MANIPULATOR

A helical spring is commonly used to provide the axial dis-
placement proportional to an applied force in the same direction
according to Hooke’s law. In this paper, under the framework
of the general Hooke’s spring law, we analyze another type
of springs—planar springs, and for the first time utilize their
both translational and angular motions to generate the bending
and/or contraction deflections of the continuum manipulator.
Before proceeding to the following analysis, there arise two
assumptions. One is that the loads exerted on the top plate of
the robot are uniformly distributed to each compliant layer. The
other is that the frictional effects of tendons are neglected. In
the literature, some local spring-based models for continuum
robots have been proposed previously in [41] and [42].

A. Compliance of the Robot

The serially connected assembly of multiple layers of planar
springs has the compliance attribute equal to the sum of compli-
ance matrix of each layer of the planar spring, i.e., theoretically,
C = nC0 , where C represents the equivalent compliance of the
continuum manipulator in form of a 6 × 6 diagonal matrix,
and n is the total number of planar spring layers. On the other
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Fig. 6. (a) Configuration of a bending continuum manipulator and its
attached coordinate frames; (b) 2-D view of the bending configuration;
the zoomed-in view shows the equivalent force and moment acting on
the last module when a pulling force is exerted to the top plate via a
tendon.

hand, as we discussed in the end of Section III-C, among the
total six compliance elements in (13), only major compliance
elements c22 , c44 , and c66 are of our interest. The rest of compli-
ance elements are at relatively small values and can be neglected
[37]. Thus, the effectual compliance matrix of the continuum
manipulator is

C̄ = nC̄0 = diag
[

n · c22 n · c44 n · c66

]

(15)

where C̄, C̄0 , respectively, denotes the compliance matrix that
only contains three major compliance elements of the robot and
a planar spring.

With (15), the following relation between end-point force and
robot deflection holds
⎡

⎢

⎣

Ψy

Ωx

Ωz

⎤

⎥

⎦
= C̄

⎡

⎢

⎣

Fy

Mx

Mz

⎤

⎥

⎦
=

⎡

⎢

⎣

n · c22 0 0

0 n · c44 0

0 0 n · c66

⎤

⎥

⎦

⎡

⎢

⎣

Fy

Mx

Mz

⎤

⎥

⎦

(16)
where [Fy ,Mx ,Mz ]

T represents the effective Cartesian force-
moment vector on the end-point of the robot; Ωx ,Ωz are the
two rotation angles of the moving frame {xyz}attached to the
end-point of the continuum manipulator, illustrated in Fig. 6(a);
particularly, Ψy is the change of the total length of the continuum
manipulator.

B. Discussions on Bending Deflection Decoupled
With Contraction

There are two factors giving rise to the decoupling property
that the robot effectively decreases the contraction when gen-
erating bending deflections. One is that the compliance matrix
in (16) is diagonal. Otherwise, if the entries outside the main
diagonal are not all zero, the applied moment intended for the
bending deflection will simultaneously generate the contraction
(or the compression force will result in bending).

The other is that the rotational compliance has much more
significant effects on the robot deflection than the translational
compliance. This can be clarified as follows. Assuming a fulling
force f exerted to the distal plate via the tendon [see Fig. 6(b)],
this load is equivalent to a moment m = f · s, where s is the
lever-arm distance to produce the moment of force, and a force
f acting on upper layer platform of the last module and further
being transmitted to the full robot. According to the previous

Fig. 7. Overview of kinematic and static relations of the continuum
manipulator. The variables in each ellipse represent the chosen math-
ematical description with respect to the proposed three-tendon driven
robot in this paper. l1 , l2 , l3 are three tendon lengths; k, φ, l are the
configuration space variables [k is curvature; φ is bending angle; l is the
total length; all the three variables are frequently used in references, all
are defined in Fig. 6 (a)]. x, y, z denote the tip position of the continuum
manipulator in Cartesian space. Fc is a three-dimensional vector and
its elements are related to the corresponding configuration variables. F
is the effective Cartesian force-moment vector and is represented as
the vector [F y, Mx, Mz]T in (16). The notation (·) denotes the time
derivative.

compliance analysis, this moment on the robot will generate a
total angular displacement Ω = n · cr · f · s, and this force will
generate a translational displacement Ψ = n · ct · f . (cr and ct

denote the rotational compliance and translational compliance;
referring to Table I, cr = 9.54 rad/(N·m), ct = 3.28 × 10−4

m/N; in the current robot design, s = 13.4 mm, and the to-
tal number of planar springs n = 20.) Thus, if the exerted
force f = 1 N, we can calculate Ω = 146.5◦ and Ψ = 0.328
mm (the total length of the robot is 143 mm). This numeri-
cal comparison reveals that when the robot bends to a very
large angle, the total contraction of the robot almost remains the
same.

Both of the above discussed factors stem from the properties
of the planar spring. Other kinds of compliant modules, such
as helical springs [14] and pneumatic actuators [27], [28] as
reviewed in Section I-A, do not possess this feature that makes
the bending deflection of this continuum manipulator effectively
decoupled from the contraction.

C. Overview of Continuum Manipulator Kinematics
and Statics

We put this continuum manipulator design in the context of
continuum robotics. Kinematics and statics of such robots have
been widely studied, and review papers can be referred to [1],
[10]. As for our three-tendon driven continuum manipulator in
this paper, an overview is summarized in Fig. 7, to clarify kine-
matic relation between tendon lengths and task space variables,
and static force relation between tendon tensions and end-point
force. For the detailed functions of these kinematic mappings
listed in Fig. 7, i.e., submappings h, g, and their corresponding
Jacobians Jh , Jg , see [1], [10], [31], where the same notational
convention is employed. Besides, the mapping j is derived with
the concept of simultaneous rotation and the use of Rodrigues’
formula [43], and it is presented in [44].

The kinematic modeling of this continuum manipulator also
complies with the constant-curvature approximation [10], and,



1288 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 21, NO. 3, JUNE 2016

Fig. 8. Experimental setup for modular segment test and quantitative
analysis.

thus, the configuration of the backbone can be described by
3-D arc parameters, as given in Fig. 7. In this regards, the static
analysis will treat the manipulator as an elastic unit only with
three independent DOFs—two rotational DOFs Ωx ,Ωz and
one translational DOF Ψy . Here, the robot does not behave as
an arbitrarily deformable structure with infinite DOFs [1], [10].

Although the manipulator is supposed to be in the three-
tendon actuation manner, one tendon actuation still enables a
simple bending deflection, as illustrated in Fig. 6(b). Three-
tendon actuation increases the rotational DOF from 2-D to 3-D,
and enables the third translational DOF underlying the physical
structure. The varying length of the robot results in an enlarged
work space, as discussed in the following section. The motion
control of the continuum manipulator is commonly conducted
by controlling the lengths of tendons to accomplish the tip posi-
tion tracking tasks with inverse kinematics. Particularly, in our
manipulator design, the length of the continuum manipulator
can be controllable and further the bending deflection is de-
coupled from contraction; thus, for each certain length, the tip
position can be simply controlled based on the frequently used
constant-curvature kinematics [10].

V. EXPERIMENTAL VALIDATION

This section presents experimental results to verify the perfor-
mance of the proposed continuum manipulator. The experiments
validated the cumulative large linear bending characteristic, de-
coupling property between bending and compression of this
continuum manipulator, and its enlarged workspace.

A. Experimental Setup

The double-layer modular segment is made of UV curable
acrylic plastic material (VisiJet EX200) and is 3-D printed using
a rapid prototyping machine [ProJet HD 3000, Resolution 328×
328 × 606 DPI (xyz)]. Other geometrical dimensions remain the
same as before. Modular design here allows the overall length
and maximum bending to be easily modified to suit the intended
applications.

Fig. 8 shows the experimental test platform and environment,
where the double-layer module and the multisegment assem-
bly can be mounted to the holder at one side of a linear guide

Fig. 9. One modular segment and three-segment assembly, respec-
tively, are mounted to the holder at one side of the linear guide. Forces
are exerted via tendon(s): (a) One segment moment-rotation test; (b) one
segment contraction test; (c) three-segment assembly moment-rotation
test; (d) three-segment assembly contraction test.

(KK40-2001, Hiwin). One nonstretchable transmission tendon
was routed through the segments and one end terminates at the
distal plate (as illustrated in Fig. 3) and another end is fas-
tened to a commercial force sensor (ATI Nano 17 six-DOF
force/torque sensor) that is used to record the reaction pull force
along the tendon. In order to eliminate the gravity effect, the seg-
ment/continuum manipulator was laid on the horizontal plane
and only horizontal bending motion is performed via the ten-
don actuation. The force sensor was held on a moving block
attached to the linear guide allowing only linear translation. The
taut tendon is always perpendicular to the holding block and
corresponds to a consistent moving direction of the slider. The
linear guide was driven by a DC motor (Maxon Motor) that
was connected to a positioning controller. A LABVIEW pro-
gram was developed to control the linear guide with the desired
speed and to record the reaction force data acquired by the force
sensor.

B. Modular Segment Test

The FEA simulation results (see also earlier section) show
a highly linear correlation between the twist measurement and
the exerted wrench, and agree well with our analytical compli-
ance analysis. Here, the experiments started with single modular
segment tests and then three-segment assembly tests. Based on
the experimental results, the linear and decoupled behaviors of
this multilayer planar spring-based design are further studied.
Fig. 9 shows several snapshots of the configurations of a double-
layer module and a three-segment assembly when experiencing
known loads applied via tendon(s). The other end of the string
is tied to the Nano 17 force/torque sensor which is held on the
slider and moves along the rail quasi-statically and slowly at a
constant speed of 10 mm/min, thus forces are produced along
the taut tendons.

1) Results of Segment Bending Test: Fig. 10 illustrates
the measured force–displacement curves for the moment loads
acting on a double-layer modular segment and a three-segment
assembly. A single tendon is utilized in this scenario. Both the
x- and y-values are directly from the collected sensor readouts.
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Fig. 10. Plot of experimental results regarding the moment loads on
one modular segment and one three-segment assembly. The ATI Nano
17 F/T sensor is adjusted on the holder to allow only one axis force
readout along the tendon direction.

The curves are closed loops, revealing the pulling and releasing
tendon processes—hysteresis behavior is exhibited. We suspect
that the hysteresis is mainly due to material properties and is
partly because of the changes in the direction of the friction
force. The influence of material properties is a stress relaxation
phenomenon where a decrease in stress is observed in response
to the same amount of applied strain. In the end of both releas-
ing tendon processes, the total amount of such plastic strain is
depicted in magenta in Fig. 10. The single segment relaxation
indicated in Fig. 10 is 0.29 mm and it is 7.25% of the total
strain measured during this test. The three-segment assembly
relaxation is 0.90 mm and it is 9% over the total strain. The
increase of stress relaxation is due to the accumulation effect of
the multiple segments.

2) Discussions of Segment Bending Test: The forward
path corresponding to the pulling tendon process in both one-
segment and three-segment tests, as depicted in Fig. 10, displays
strong linearity. The reverse path corresponding to the releasing
tendon process shows a smooth transition at the very beginning
but then exhibits the linear feature. For both tests, the steady
slopes of the forward and reverse paths are almost equal. A
robust regression technique is utilized to formulate the forward
path of each test; the derived slopes ksr for single module test
and ktr for three-segment test are labeled in Fig. 10, respectively.
It is noted that there exists a multiple relationship between the
two slopes (ksr/ktr ≈ 3), and this matches the fact that the
number of segments of the test object has tripled.

This empirical test validates the linearity of the stress–strain
relationship. Since the properties of these 3-D printed parts
are not completely consistent with the original printing
materials, even parts made within the same printing batch
exhibit different mechanical performance, thus the comparisons
between the experimental and simulation results are not further
discussed.

We continue to study the bending configuration of the three-
segment assembly in this test and examine its total length. It
shows that the maximum coupled contraction is as small as 4%
of the original and we can regard the length being invariant.
Therefore, these experiments confirm the predicted decoupling

Fig. 11. Plot of experimental results regarding the forces exerted on a
segment and a three-segment assembly. The same procedure with the
bending tests is followed. The tendon tension is given by the ATI Nano
17 F/T sensor.

between bending and contraction. This is an important aspect
and the primary contribution of our multilayer planar spring
stacked concept, and, as such, very different from the way helical
springs behave. Besides, we observed that each layer’s bending
angle or contraction distance was about equal and uniformly
distributed across the total deformations in all the four tests (see
Fig. 9). The maximum reachable bending angle depends on the
material properties and segment design.

3) Results of Segment Contraction Test: Fig. 11 shows
the measured stress–strain curves for the forces exerted per-
pendicularly to a double-layer modular segment and a three-
segment assembly. Motion snapshots are shown in Fig. 9(b) and
(d). In this scenario, three tendons are utilized and they are tied
together before they are affixed to the force/torque sensor. The
advantage of this is that the test procedure is simplified with
only one sensor being needed; however, this approach ampli-
fies the frictional forces between tendons and tendon channels.
Since the frictional forces act against the direction of pulling
tendons, the reaction forces recorded using the force sensor will
be higher than the loads on the test objects. The reverse paths
also include the effect of the frictional force but in the different
direction, which reduces the tendon tension. In order to reduce
the friction, applying the lubrication to tendons and teflon coat-
ing and if possible reducing the number of actuated tendons are
suggested.

4) Discussions of Segment Contraction Test: The curves
in Fig. 11 exhibit the same linear trend as those in Fig. 10; thus,
we come to same conclusions as the bending tests in terms of
linearity, multiple relation, and hysteresis behavior. The contrac-
tion rate here is limited to 80% of the original length and the total
relaxation percentage over the total tested contraction is 18.2%
for one segment test and 15.9% for the three-segment assembly
test. This is much larger than the bending deformation. Using
other more homogeneous and low-hysteresis materials, such as
aluminum alloy and superelastic NiTi, to fabricate the compliant
planar springs can reduce the hysteresis of the modular segment
as well as of the assembled continuum body.
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Fig. 12. Proposed continuum manipulator performing bending and
contraction deformations. The tip is a mock end effector. (a) Before and
(b) after longitudinal contraction; (c)—(e) 2-D bending motion; (f) 3-D
bending motion.

C. Continuum Manipulator Prototype Experiments

A 3-D printed prototype of the multilayer structured con-
tinuum manipulator was tested; test procedures and results are
described in this section. The length of this ten-segment assem-
bled continuum structure is 143 mm and its diameter is 29 mm.
Three tendons at the periphery are independently driven by three
DC motors (Maxon Motor) with pulleys. The 128:1 reduction
gearhead employed allows tendon actuation with a high rota-
tional resolution. The previous three-segment assembly can be
used as a flexible robotic tip/wrist, and this continuum manipu-
lator due to its much larger bending and contraction ranges can
be used in different scenarios with different end effectors, such
as a detachable gripper, sensor module, or cutting tools.

Fig. 12 shows several snapshots of the manipulator’s bend-
ing and contraction configurations. Fig. 12(a) and (b) presents
a comparison of before and after the longitudinal contraction,
which indicates the longitudinal compliance, and, to some ex-
tent, ensures safety when interacting with the environment. Due
to the limited compliance of the fabrication material, the pro-
totype only serves as a preliminary setup for the investigation
of the performance of contraction and bending motions. The
contraction ratio of the currently fabricated prototype is 0.7,
which is determined by material properties, dimensions of the
flexible leg segments, and the structure constraints between two
adjacent planar springs. On one hand, the longitudinal compli-
ance characteristic is an advantage compared to longitudinally
incompressible rod/tube-based continuum manipulators. On the
other hand, compared to the helical-spring-backbone-based con-
tinuum manipulator, it has the capability of maintaining better
structural rigidity for the whole continuum body.

Fig. 13. Normalized workspace of the proposed continuum manipula-
tor compared with constant length and helical-spring-backbone-based
continuum manipulators.

TABLE II
EXPERIMENTAL RESULTS FOR DIFFERENT BENDING CONFIGURATIONS

Bending angle Manipulator length Contraction

0° 143 mm 0

10° 143 mm 0

20° 143 mm 0

30° 142 mm 0.7%

60° 141 mm 1.4%

90° 140 mm 2.1%

120° 138 mm 3.5%

160° 135 mm 5.6%

Fig. 12(c)–(f) illustrates the bending motion of the manipu-
lator. The continuum manipulator is actuated by three tendons
simultaneously and this enables the manipulator to deflect in 3-
D space [see Fig. 12(f)]. In order to determine the workspace of
the manipulator tip, the 2-D tip positions in the horizontal plane
are marked on coordinate paper. The position is later normal-
ized as shown in Fig. 13. Theoretically, the corresponding 3-D
workspace is the area of a 2-D workspace swept about its central
vertical axis. This results in a large number of possible bending
configurations. Several of these configurations were selected for
the experiments. The central length of the bending manipulator
was then measured for each configuration. The results are listed
in Table II. It is noted that the length of the manipulator is almost
invariant, however, with the bending angle increasing to values
higher than 30° certain levels of contraction are exhibited. The
maximum contraction rate is less than 6% and given the fact
that the material is nonhomogenous, we can still consider the
bending motion to be decoupled from the contraction. The bend-
ing and contraction decoupling characteristic makes the design
simple to control, while for the helical-spring-backbone-based
designs or tendon-driven pneumatic-backbone-based designs,
the control effort leading to a bending actuation is partially lost
in compression [1]. From Fig. 13, we can see that the red trajec-
tory indicates the tip positions of a spring backbone continuum
manipulator when exerted with a bending force.
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In Fig. 13, the outermost curve pictured in green indicates
the tip trajectory of the continuum manipulator without control
efforts to generate compressions. When contracting the manipu-
lator, the bending deflection results in the tip trajectory shrinking
to the inner curve layers. Due to the structure constraints, the
maximum sweep range of a contracted continuum manipulator
is narrowed. It is obvious that the inner curve is always slightly
shorter than its adjacent outer curve. All the reachable tip po-
sitions form a crescent workspace, which verifies the enlarged
workspace compared to a constant length manipulator, for exam-
ple, a longitudinally incompressible rod/tube-based continuum
structure.

VI. CONCLUSION AND FUTURE WORK

This paper presented the design of a continuum manipula-
tor with multiple layers of compliant planar modules linked in
series. First, we reviewed frequently applied continuum manip-
ulator constructions to date based on the distinctive backbone
architecture. Through the study, we found that our structure has
advantages over other existing traditional continuum manipula-
tors. These advantages are longitudinal compliance, large linear
displacement motions, effectively decoupled contraction, and
bending motions, as well as an enlarged workspace.

Second, we derived the compliance matrix of the planar spring
and conducted a FEM analysis to further confirm the predicted
behavior. Finally, we built and tested a prototype and proceeded
with a series of experimental studies. The results verified the
claimed characteristics of the manipulator.

Future work will include a broader investigation on different
design variations of this type of planar springs as the com-
pliance characteristics of the planar spring are determined by
its geometric parameters. We have already noted that changing
the U-shape legs’ position would enable the design to be more
compact, while largely increasing the compliance of the pla-
nar spring. Further, we may integrate different designs into one
continuum manipulator such that the bending configuration can
demonstrate various curvatures as well as various compliances
along the continuum manipulator.

Moreover, we will fabricate the continuum manipulator with
other materials such as metal; thus, smaller size will be made
possible and the hysteresis behavior is expected to be reduced.
Kinematic control on this continuum manipulator will be inves-
tigated, making fully use of the decoupled bending/contraction
feature. Potential applications will be studied with suitable end
effectors attached, such as a detachable gripper for medical
applications.
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