
Research Article

A Novel Convolutional Neural Network Architecture for SAR
Target Recognition

Yinjie Xie ,1 Wenxin Dai ,1 Zhenxin Hu ,1 Yijing Liu ,1

Chuan Li ,1 and Xuemei Pu 2

1College of Computer Science, Sichuan University, Chengdu 610065, China
2College of Chemistry, Sichuan University, Chengdu 610065, China

Correspondence should be addressed to Chuan Li; lcharles@scu.edu.cn and Xuemei Pu; xmpuscu@scu.edu.cn

Received 10 January 2019; Revised 20 March 2019; Accepted 24 March 2019; Published 5 May 2019

Guest Editor: Hyung-Sup Jung

Copyright © 2019 Yinjie Xie et al.�is is an open access article distributed under theCreative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Among many improved convolutional neural network (CNN) architectures in the optical image classi�cation, only a few were
applied in synthetic aperture radar (SAR) automatic target recognition (ATR). One main reason is that direct transfer of these
advanced architectures for the optical images to the SAR images easily yields over�tting due to its limited data set and less features
relative to the optical images. �us, based on the characteristics of the SAR image, we proposed a novel deep convolutional neural
network architecturenamed umbrella. Its framework consists of two alternateCNN-layer blocks. One block is a fusion of six 3-layer
paths, which is used to extract diverse level features from di
erent convolution layers. �e other block is composed of convolution
layers and pooling layers aremainly utilized to reduce dimensions and extract hierarchical feature information.�e combination of
the two blocks could extract rich features from di
erent spatial scale and simultaneously alleviate over�tting. �e performance of
the umbrellamodel was validated by theMoving and Stationary Target Acquisition and Recognition (MSTAR) benchmarkdata set.
�is architecture could achieve higher than 99% accuracy for the classi�cation of 10-class targets and higher than 96% accuracy for
the classi�cation of 8 variants of the T72 tank, even in the case of diverse positions located by targets. �e accuracy of our umbrella
is superior to the current networks applied in the classi�cation ofMSTAR.�e result shows that the umbrella architecture possesses
a very robust generalization capability and will be potential for SAR-ART.

1. Introduction

Synthetic Aperture Radar (SAR) could provide very high
resolution images in all-weather day-and-night conditions
[1]. �us, it has been widely applied in national economy and
military �elds [2, 3]. Unlike optical image with rich colors,
the SAR images are characterized by the strength of the pixel
grayscale, in which the regions with high intensity represent
targets. �e pixel value is mainly derived from two kinds of
re�ection of the electromagnetic waves. �e �rst is the single
re�ection from the surface of the target, which depends on the
surface roughness, the shape, and the material of the target.
�e second is secondary re�ection of the electromagnetic
waves upon the dihedral corner between the target and the
ground, which has a great connection with the height of the
radar and the shooting angle. Overall, SAR has the character-
istics of scattering electromagnetic, high resolution, speckle

noise [4], huge size, and single channel. �ese characteristics
make the SAR image data information large and the target
electromagnetic scatter complicated, in turn taking a lot
of manual works to recognize targets in the massive SAR
images. �us, the SAR Automatic Target Recognition (ATR)
is challenging and becomes one of the research hotspots for
remote sensing technology. A general architecture of SAR
ATR is composed of three parts: detection, discrimination,
and classi�cation [5].�e detection is to extract target regions
by a constant false alarm rate (CFAR) detector [6]. �en,
the discriminator is used to identify these candidate regions
located by targets according to the output of the �rst stage. At
the �nal stage, a classi�er is utilized to recognize the category
of each target type.

Current mainstream classi�cation methods of SAR-ATR
generally include three types: template-based method [7],
model-based method [8], and pattern-based method [9].�e
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typical template-based SAR ATR system utilizes minimum
mean square error (MSE) criteria to identify the target type
froma database of stored target reference images or templates
[7, 10].�emodel-based system analyzes each image in detail
and identi�es each part of a signature contribution to recog-
nition [8, 11]. Compared with the two methods, the strategy
based on the pattern recognition devoted great contribution
to the image classi�cation in the past several years. In general,
the pattern-based architecture �rst designs a set of feature
extractors to convert the raw image into low-dimensional
feature vectors and then the output vectors are categorized by
a classi�er. Some ART algorithms have been widely applied
to the SAR image classi�cation and recognition, for example,
arti�cial neural networks [12], support vector machines [13],
and convolutional neural networks [14]. In particular, deep
learning based on convolutional neural networks (CNN)
has been considered to be one of the most comprehensive
methods in the SAR image classi�cation and detection.

However, due to the limited data set of SAR images [15],
the SAR ATR task using the convolutional neural network
easily causes over�tting. To address this problem, three main
strategies were employed. One is to use transfer learning
[16], which �rst pretrain a CNN from a large data set and
then �ne-tune the network on the speci�c task for the small
SAR data set. �e pretraining data set may be selected from
large number of labeled optical images. However, due to
the di
erence between the optical and SAR images, it may
not perform well for the SAR images. Alternatively, a lot of
unlabeled SAR images may be appropriate to take place of
the optical images [16]. But, the acquisition of unmarked
SAR data set is still di�cult and requires a lot of manual
works. �e third way to overcome the limitation of SAR
data set is data augmentation [17]. �e SAR image data set
used are mostly standard data, in which the target location is
usually �xed in the center. As known, in the actual situation,
the target location is o�en random. �erefore, considering
translation, speckle noise, and rotation as data augmentation
is a good way, which not only could overcome the limitation
of the small data set but also simulate the actual situation
of the locations of the targets. However, the way is usually
not taken into account in most studies. Furthermore, the
performance on the results of the works with inclusion of
the data augmentation using CNNs was not very high, which
should be attributed to that the CNN architecture used in the
works should be further improved.

In general, the improvement strategy regarding the CNN
architectures involves in the increase of the width and the
depth of the network. However, simply increasing the depth
size may cause a problem of vanishing/exploding gradients
[18, 19]. To solve this problem, residual network (ResNet) [20]
is proposed, which is composed of linear superposition of
many residual modules. Each module sums the input value
to the output value a�er two-layer convolution, which makes
the weight parameter adjustment of the network layer more
reasonable with the aid of the theory of identity mapping,
and thus could avoid the problem of vanishing/exploding
gradients with the increasing depth. Using a deep residual
network with more than 100 layers, the error was reduced
to be 3.57% for classi�cation task on the ImageNet data set

[20]. But, the increase in the depth is not unlimited because
too deep network still leads to the problem of over�tting.
�e other strategy is to increase the width of the CNN
architecture so that more features could be utilized. But,
simply increasing the width would lead to a large number of
parameters and more computational resources, which may
also cause the over�tting. In order to address the problem,
some techniques like inception [21, 22] and X-ception [23]
were introduced to the CNN architecture to optimize its
network structure. �e inception/X-ception modules do not
simply increase the width but divide a number of channels
into segments independent.�en the segments with di
erent
con�gurations are the concatenation fusion of the feature
extraction from di
erent scales so that enough features could
be obtained but computational di�culties could be avoid.
Recently, a joint network architecture was proposed through
adding an inception module into ResNet (Inception-ResNet)
so that it could simultaneously take into account the width
and the depth. �e experiment on OLSVRC-2012 proved
that the Inception-ResNet could signi�cantly accelerate the
training of the network and achieve better accuracy than
the single inception network [24]. Although these strategies
above were demonstrated to improve performance for the
optical image classi�cation, unfortunately, they were not
applied to the SAR �eld. Furthermore, the characteristics of
the SAR image are di
erent from the optical ones. �us, it
is inappropriate for the methods successfully applied in the
optical images to be directly and simply applied to the SAR-
ATR �eld. Further improvement will be needed.

In the work, we proposed a novel CNN architecture
suitable for the SAR data through improving the Inception-
ResNet architecture from the optical images. In the architec-
ture, we more focused on the extraction of features due to
fewer representatives from the SAR image than the optical
one. �us, di
erent from the Inception-ResNet algorithm in
the optical classi�cation, we embedded the ReNet module
into the Inception one so that the network could extract
su�cient features through the inception module and simul-
taneously utilize the advantage of the ResNet for the network
depth. �e novel CNN architecture is named umbrella
algorithm in thework. It is composed of six separate segments
based on inception, each of which has di
erent convolution
con�gurations extracting di
erent levels of features with the
aid of the ResNetmodule.�e architecture possesses stronger
ability to fuse the feature extracted from di
erent scales than
the common inception module. Our experimental results
con�rm that the umbrella architecture could achieve excel-
lent classi�cation accuracy for 10-class targets of vehicles and
eight variants of T72 tanks from the Moving and Stationary
Target Acquisition and Recognition (MSTAR) program.

2. Materials and Methods

2.1. Learn about Convolutional Neural Networks (CNNs).
Figure 1 shows a typical deep learning network, which
generally includes convolutional layers, pooling layers, and
fully connected layers. �e convolutional layer consists of a
number of convolution kernels, which is a two-dimensional
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Figure 1: �e structure of CNN.

matrix of weights W. �e convolution kernel convolves an
input image (also a two-dimensional matrix) in the form
of a sliding window. �en a matrix called feature map is
obtained. Consequently, the convolutional layer implements
di
erent channels of feature extraction through multiple
convolution kernels. �e pooling layer is also called the sam-
pling layer, which could use the sliding window to convolve
the input or the feature map so that it could reduce the
feature dimension and the amount of calculation.�epooling
process is generally implemented using maximum pooling
or average pooling, which denotes the maximum value or
average value of the selected sliding window. Di
erent from
the convolutional layer, the pooled layer does not involve in
weights and parameters. In general, each feature map of the
input is pooled in the same way and the number of features
of the original input remains unchanged. �en, the fully
connected layer is used to map the feature representations
from the convolutional layer to the sample space in order
for classi�cation, which is composed of a group of neurons
and connections with weight values. Since the number of
the parameters of the fully connected layers is very large,
some networks used the convolutional neural networks to
take place of the fully connected layers. In order to improve
the prediction ability of the CNN model, the following
ways were usually utilized. One e
ective way is to train a
large number of data set to learn enough sample feature
information so that the test set can be better explained. In
addition, a good network architecture model is required,
which generally consists of reasonable network layers and
network width as well as addition of some other processing
ways, for example, adding batch normalization [27] layer,
dropout [28] layer, and regularization [29]. Another way is
to con�gure the network’s hyperparameters like the number
of convolution kernels and the size of the convolution kernel.
�ese parameters are closely associated with the number of
the weight W, which directly a
ects the performance of the
model. �ese parameters are o�en designed according to
some experiences, which also refer to the con�gurations of
some existing models. In a whole, a key is to consider the size
of the task when designing a model. �is includes the size of
the sample set and the size of the sample feature information.
When the feature information is relatively rich, the model
could achieve a good result by designing a network with
su�cient depth.
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Figure 2: �e umbrella module of the basic component of the
proposed architecture.

2.2. Module of Umbrella from the Work. Similar to the
previous Inception-ResNet network in the optical image, the
umbrella module decomposes the input into independent
feature mapping channels so that it could learn diverse char-
acteristics of the input space from di
erent levels. However,
di
erent from the previous architecture, the ResNet module
was embedded into the Inception module in the work, rather
than the inception one embedded in the ResNet, considering
that the samples and feature information of the SAR image
are generally less than those of the optical one. Figure 2
illustrates the structure of onemodule of umbrella. It contains
six di
erent feature extraction paths, which are represented
by six brackets with speci�c roles. Each path contains 3
convolution layers. �e six paths were divided into two
categories, as shown in Figure 2. �e three paths on the le�
use the residual network [20] to su�ciently extract the input
space features, in which the parameters of each layer of the
convolution layer can be fully trained so that it could avoid
falling into local optimum. �e three paths in the right are
convolved in terms of the traditional convolution method.
But, di
erent from the traditional convolution method, we
obtain the feature map of each convolutional layer through
concatenating three layers in order to extract more feature
information. Finally, the output of the six paths is further
concatenated by the feature extracted from di
erent depth.

In order to avoid increasing calculation overhead, the
number of convolution kernels of each layer is controlled
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Figure 3:�e umbrella architecture of the proposed method.

to be lower than 64, which is enough to learn rich feature
information due to the module’s independent decoupling
of the input feature space. In the �rst path, we �rst used
1x1 convolution kernels. It could reduce the parameters and
the amount of computation because the convolution kernel
requires weight sharing. In addition, the 1x1 convolution
kernel could preserves all the information of the input space
and increase depth of one layer, which was proved to be
useful in deep learning [21, 30]. In order to extracting deeper
features, we used the 2x2 and 3x3 convolution kernel in
the subsequent step. �e second path also �rst uses the 1x1
convolution kernel. In order to extract di
erent features, we
used the 1x3 and 3x1 convolution kernel in the subsequent
step, which could reduce parameters with respect to the
2x2 and 3x3 convolutional kernel. �e third path uses the
conventional convolution kernel with the 3x3 convolution
kernel. �e right three paths are similar to the le� ones. A�er
that, we used the BR layer behind the path to normalize the
input values, which enables the activation function to obtain a
reasonable feature map from the input space and was already
proved to be e
ective for improving the network [27].

2.3. Methodology. �e complete framework of Umbrella
model is shown in Figure 3.�e network contains a total of 3
convolutional blocks and 2 umbrella blocks, which contain 12
convolutional layers, 2 fully connected layers, and 3 pooling
layers. Consequently, the whole architecture of the umbrella
model contains a total of 1344 convolution kernels and 131
full connected layer neurons, which lead to a total of 26368
weights. �e full connection layer parameters vary according
to the input size. For example, if the image is the 128x128 in
size, the parameters of the full connection layer are 30080.
�e convolutional layer is mainly applied to extract the
features while the fully connected layer serves as a regression

classi�cation. Only one dropout layer is used in the network
in order to reduce over�tting.

�e network was implemented by Keras [31], which is a
high-level neural network API with the backend of Tenser-
Flow, CNTK, and �eano. In training, stochastic gradient
descent was utilized with a momentum of 0.9, a learning
rate of 0.005, and a decay of 0.0004. �e experiment was
performed on the Linux operating system and an NVIDAI
GPU GTX1080Ti.

3. Results and Discussion

�e proposed method is veri�ed and discussed by experi-
mental results in this section, which is organized in terms
of the four sections. Subsection 3.1 gives a brief introduc-
tion of the data set. �e main experimental results and
discussions are listed in Subsection 3.2, in which our result
is also compared with some current state-of-the-art SAR
recognition methods. Subsection 3.3 takes into account the
case of data augmentation with the aid of the algorithm of
noise. In addition, the results from our CNN architecture are
also compared with those from some advanced algorithms
of the optical image classi�cation in the Subsection 3.4. In
Subsection 3.5, our method is further applied to classify the
eight variants of T72 tanks, which were not nearly covered by
previous SAR-ATR systems due to their high similarities. In
the work, the performance evaluation is mainly based on the
two criteria. One is the accuracy rate measured in terms of
the following equation:

� = ����
(1)

It is the ratio of the correct number �� predicted to the
total number �� in the sample sets. It is one of the most
important indexes in the classi�cation and recognition. �e
other criterion is the loss value, which could measure the loss
and error of the true value and the predicted value, as shown
by the following[32]:

� = − 1�
�
∑
�=1
[��log (�̂�) + (1 − ��) log (1 − �̂�)] (2)

where �̂� denotes the predicted value, �� denotes the ground
truth, and � is the number of samples. Contrary to the
accuracy, the lower the loss value, the better the model per-
formance. �erefore, the two parameters are taken together
to evaluate the performance of one model.

3.1. SAR Data Set. �e experimental data comes from the
measured SAR ground static Target announced by the
MSTAR (Moving and Stationary Target Acquisition and
Recognition) program, supported by the Defense Advanced
Research Project Agency (DARPA) and the Air Force
Research Laboratory (AFRL) [33]. �e sensor that collects
the data set is a high-resolution spotlight synthetic aper-
ture radar with a resolution of 0.3m x 0.3m, operating
in the x-band and polarization mode of HH polarization.
�e data set contains 10 types of ground vehicles, such as
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Table 1: �e number of samples for the 10 class vehicles.

Class 2S1 BMP2 BRDM2 BTR 60 BTR 70 D7 T62 T72 ZIL131 ZSU 234 Total

Train set(17) 200 200 200 200 200 200 200 200 200 200 2000

Test set(15) 274 195 274 196 196 274 273 196 274 274 2425

Table 2: �e number of samples for eight T72 variants.

Variants A04 A05 A07 A10 A32 A62 A63 A64 Total

Train set(17) 299 299 2999 296 298 299 299 299 2388

Test set(15) 274 274 274 271 274 274 274 274 2189

Table 3: Accuracy for umbrella versus state-of-the-art method.

Method Date Train Test Acc(%)

MSRC [25] 2014 2747(17) 3203(15) 93.66

TSJR [26] 2015 3671(17) 3203(15) 93.41

A-ConvNet [1] 2016 2747(17) 2426(15) 99.13

DCHUN [15] 2017 2000(15) 2462(17) 99.09

CNN-TL [16] 2017 2747(17) 2425(17) 99.09

Umbrella 2017 2000(17) 2425(15) 99.54

�e numbers 17 and 15 in parentheses indicate the shooting angle of SAR. �e date denotes publication time.

BTR70 (armored transport vehicle), BMP2 (infantry �ghting
vehicle), T72 (tank), 2S1 (self-propelled howitzer), BRDM2
(armored reconnaissance vehicle), BTR60 (armored trans-
port vehicle), D7 (bulldozer), T62 (tank), ZIL131 (cargo
truck), and ZSU234 (self-propelled artillery). In addition,
the data set also includes the 8 variants of T72 tanks with
di
erentmilitary-con�gurations, for example, machine guns,
fuel tanks, and the antennas. Since the SAR image is very
sensitive to the azimuth factor, the images with di
erent
orientations were collected, in which the range of orientation
is from 0∘ to 360∘ at the interval of 1∘ to 2 ∘.

In the work, for the 10 types of object targets and the eight
variants of T72, we used data with a shooting angle of 17∘ for
the training set and one with 15∘ for the test set, which have
128x128 resolution. �e number of each class under study is
listed in the Tables 1 and 2.

Figure 4 representatively shows the optical and the SAR
images for the ten vehicles and the eight variants of the T72
tanks. It can be seen that most vehicles have high intensities,
except for BMP2, BTR70, and T72. �e low intensities of the
three vehicles may be attributed to their relatively low heights
which lead to a drop in the dihedral corner re�ection and
special surface materials with respect to the other vehicles
which decrease the single re�ection. Another possible reason
is that the di
erence in radiation correction between di
erent
images makes the overall scattering intensity of these three
targets lower than others.

3.2. Experiments on the Standard Data Set of 10 Class Vehicles.
As shown in Table 2, the training set contains 2000 samples
and the test set includes 2425 samples for the 10 categories
of targets. Each category between the training set and the
test set is the same for the serial, the con�guration, and the
version of the target. �e di
erence is only the shooting angle
(17∘ for the train set and 15∘ for the test set). In addition,

each of the images contains only one complete target in its
central location. Figure 5 shows the result of the confusion
matrix for the test set.�e abscissa denotes the predicted label
while the ordinate indicates the real label.�e digit in the grid
of the diagonal position denotes the number of predictions
matching the real labels. �e other digits in the �gure denote
the number of targets misclassi�ed.

As shown inTable 3, the accuracy for the classi�cation can
achieve 99.54% for the test set, derived from our method. It
can be seen from Figure 5 that the maximum number is only
three for samples misclassi�ed, in which three BTR 60 vehi-
cles are misidenti�ed as BRDM-2 due to their similarities, as
re�ected by Figure 4. Even so, the correct recognition rate of
this category still reaches 98.90%. Furthermore, BMP2 and
BTR70 and T72 with low pixel values also show almost 100%
accuracy, further con�rming the reliability of our method.

In addition, the performance of our umbrella network is
also compared with some recent results from advanced SAR
identi�cation methods, including transfer learning based
method (CNN-TL-bypass) [16], sparse representation of
monogenic signal (MSRC) [25], tritask joint sparse repre-
sentation (TJSR) [26], A-ConvNet [1], and DCHUN [15].
As evidenced by Table 3, the accuracy rate of our method
is improved by 0.41%∼0.45% with respect to these methods
based on deep learning.

3.3. Experiments on Augmentation Data for the Ten Classes
of Vehicles. �e result of Section 3.2 only takes into account
the situation that all targets of the image set are �xed in the
middle position. However, in actual situations, most image
acquisitions are not the standard, which do not uniformly
constrain all targets to the same position. �us, it is more
practical to consider the case that the positions of the targets
on the image should be random. Based on the consideration,
we extended the original data set through translation of the
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Figure 4: �e comparison between optical images and SAR images. (a) Examples on the 10 class vehicle; (b) examples on the 8 variants of
T72 tanks.
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Figure 5: �e confusion matrix of 10 classes vehicles. �e accuracy
of the test set is 99.54%.

image by di
erent levels (10%, 20%, and 30%), as shown
in Figure 6. In order to evaluate the necessity of the data
extension, we designed and discussed several models. One
model is that data of the train set is standard without any
translation while ones of the test set were translated by 10%,
20%, and 30%.As shown inTable 4, the accurate rates are very
low. �e larger the translation-extent, the lower the accurate
rate. Not unexpectedly, the features derived from the train set
almost focus on the center position located by the target while
the targets are deviated from the center position in the test
set. �us, based on the feature from the center position, the
model hardly gets accurate identi�cation for the test set.

Figure 6: Illustration of random translation. �e levels of transla-
tion are 10%, 20%, and 30%, respectively.

Table 4: Accuracy across the level of shi�.

Shi� 10% 20% 30%

Accuracy(%) 31.79 22.39 21.19

In other words, the model only considering the center
position cannot cope with the actual needs. In order to
improve the robustness of themodel, we constructed the train
set with consideration of the uncertainty of target positions,
in which the number of the targets at the original image
was extended by 10 times through the random translation
manner. �e random shi� levels involve in 10%, 20%, and
30%. Similarly, the test set was also extent by the same
translation. Consequently, the data of the train set and the
test set are 10 time larger than the previous ones, as shown in
Table 5. It can be seen from Table 5 that the accurate rates are
increased from the 31.79% to 99.12%-99.34%.

�e result indicates that the generalization ability of
the test set is signi�cantly improved when the training set
considers the translation. �e result veri�es the necessity
of data extension. In other words, if the test set contains
the targets in diverse situations, the train set must learn the
information from the samples in the train set. When more
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Table 5: �e number of samples in the train set and the test one and their accuracies1.

Data set Train Test Acc(%)

Standard 2000 2425 99.54

Ag of test set 2000 24250 31.79

Ag of train set 36710 2425 99.34

Ag of all targets 20000 24250 99.12
1
Standard denotes the targets without any translation and Ag denotes the targets in the data set including 10% random shi�.

Table 6: �e loss and accuracy for umbrella versus other methods.

Method Loss Acc(%)

Umbrella 0.027 99.54

Vgg16 0.073 97.23

ResNet50 0.164 95.51

Inception ResNet 0.047 98.35

Inception v4 0.109 96.12

Xception1 0.096 96.90
1
When the network was applied to the MSTAR data set, the number of layers of the network was reduced slightly to �t the image size.
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Figure 7: �e loss-iteration of di
erent methods in 10 categories
classi�cation task.

practical situations are taken into account in the data set, the
model is undoubtedly more robust and easier to identify the
targets under di
erent scenarios.

3.4. Experiments vs. the State-of-the-Art CNNArchitecture. In
order to further evaluate the performance of the umbrella
method proposed by us, we compared it with some excellent
network architectures, based on the same data sets of the
ten-class vehicles. �ese architectures exhibit excellent per-
formance in the optical image but have not been applied to the
SAR image. �e performance comparison of these methods
is shown in Figure 7 and Table 6.

As re�ected by Figure 7, the loss value is decreased with
increasing iterations and that from our umbrella is lowest. It
can be seen that the Umbrella model also presents the best
accuracy, compared with the others. Although these deep
convolutional neural networks applied in the optical images
also took into account increasing the depth and width in
order to improve their performances, they do not improve
the performance of the recognition for the SAR images with
respect to our umbrella method. As mentioned above, the
optical images are rich in color information and have distinct
target characteristics while the SAR images are displayed by
the grayscale values of di
erent intensities with a small target.
�erefore, the direct application of these methods with high
performance in the optical images cannot achieve the same
performance. �e result further indicates the necessity of
constructing one new architecture appropriate for the SAR
image like our umbrella.

3.5. Experiments on the Standard Data Set of Eight Types of
T72 Tanks. �e similarity of the eight types of T72 tanks is
much higher than that of the ten types of vehicles. In order
to further assess the performance of the umbrella model, it
is further applied to identify the eight types of T72 tanks,
which was nearly not taken into account in previous SAR-
ART works. As one of few, Dr. Du [34] used a CNN network
to classify the eight variants of T72, achieving 94.8% accuracy.
Figure 8 shows the classi�cation results of the T72 variants.

It can be seen that the number of targets matching real
labels is large and only few samples in every classes were
wrongly predicted, not more than 15. �e recognition rate of
the umbrellamodel still achieves 96.35%.�e result is slightly
inferior to one of the 10 types of vehicles above since the
high similarity of the T72 variant increases the di�culty of
recognition. However, the accuracy is still satisfactory and
higher than the previous work, further demonstrating the
outstanding performance of our method. �us, the umbrella
model will be promise for the classi�cation tasks of the SAR
images.
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Figure 8: �e confusion matrix of T72 8 variants. �e accuracy of
the test set is 96.35%.

4. Conclusions

Recently, the development of deep learning has been signif-
icantly advanced in the classi�cation of optical images, in
whichmany excellent CNN architectures emerge and achieve
high performances. Compared to the optical recognition,
the development of SAR-ART has been limited. �us, it is
highly desired to introduce advanced architectures into SAR-
ART. However, since the SAR image presents fewer features
than the optical one, these CNN architectures with high
performance in the optical image easily cause over�tting for
the SAR classi�cation. �us, in the work, based on the SAR
characteristics, we constructed a novel CNN architecture
(named umbrella) through minimizing its depth but extract
enough features at di
erent levels so as to achieve rapid and
accurate detection of the SAR targets. Umbrella was applied
to detect ten types of vehicles and eight classes of T72 variants
from the MSTAR data set, where we also took into account
the diverse positions of targets with the aid of the random
translation manner. In all the cases under consideration, the
umbrella model can achieve more than 99% accuracy for the
classi�cation of 10-class targets and higher than 96% accuracy
for the 8 variants of the T72 tank. �e performance of the
umbrella model is higher than previous methods reported.
�e results clearly indicate that the architecture proposed by
us will be potential for SAR-ATR in practice.
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