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ABSTRACT Fault diagnosis in photovoltaic (PV) arrays is essential in enhancing power output as well
as the useful life span of a PV system. Severe faults such as Partial Shading (PS) and high impedance
faults, low location mismatch, and the presence of Maximum Power Point Tracking (MPPT) make fault
detection challenging in harsh environmental conditions. In this regard, there have been several attempts
made by various researchers to identify PV array faults. However, most of the previous work has focused on
fault detection and classification in only a few faulty scenarios. This paper presents a novel approach that
utilizes deep two-dimensional (2-D) Convolutional Neural Networks (CNN) to extract features from 2-D
scalograms generated from PV system data in order to effectively detect and classify PV system faults.
An in-depth quantitative evaluation of the proposed approach is presented and compared with previous
classification methods for PV array faults – both classical machine learning based and deep learning based.
Unlike contemporary work, five different faulty cases (including faults in PS – on which no work has been
done before in the machine learning domain) have been considered in our study, along with the incorporation
of MPPT. We generate a consistent dataset over which to compare ours and previous approaches, to make
for the first (to the best of our knowledge) comprehensive and meaningful comparative evaluation of fault
diagnosis. It is observed that the proposed method involving fine-tuned pre-trained CNN outperforms
existing techniques, achieving a high fault detection accuracy of 73.53%. Our study also highlights the
importance of representative and discriminative features to classify faults (as opposed to the use of raw data),
especially in the noisy scenario, where our method achieves the best performance of 70.45%. We believe
that our work will serve to guide future research in PV system fault diagnosis.

INDEX TERMS Photovoltaic array, maximum power point tracking, fault classification, convolutional
neural network, scalograms, transfer learning.

I. INTRODUCTION
The photovoltaic (PV) industry has garnered prominence in
recent years due to the economic and environmental benefits
of freely available solar energy. From 2017 to 2022, the total
installed PV capacity is expected to rise up to 438 GW [1].
Despite its free availability and other desirable characteris-
tics, the PV industry is still facing challenges such as relia-
bility, reduction in output power, initial cost, vulnerability to
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faults and its colossal dependency on environmental condi-
tions [2]. As PV systems are exposed to harsh outdoor envi-
ronment, they are susceptible to several faults and anomalies
such as line-to-line (LL), line-to-ground (LG), open-circuit
(OC), Hot spot (HS), environmental effects (uniform and
non-uniform shading, humidity, snow and dust accumula-
tion), wiring losses and malfunctioning of power condition-
ing units. These faults may reduce the energy conversion
efficiency and lifetime of PV arrays and are reported to be
the major reason behind their catastrophic failure [3], [4].
A survey study conducted in 2010 showed that such faults can
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reduce the generated power of photovoltaic systems annually
by about 18.9% [5].

To investigate and mitigate the aforementioned faults,
article 690 in National Electric Code (NEC) recommends the
use of Ground Fault Protection Device (GFPD), Over Cur-
rent Protection Device (OCPD) and arc Fault Circuit Inter-
rupter (AFCI) to detect LL, LG and arc faults respectively.
However, the incompatibility of such protection devices
is portrayed in comprehensive studies such as [6]–[9].
Specifically, the nonlinear characteristics of PV arrays, low
irradiance, maximum power point tracker (MPPT), faults
impedance, degradation and presence of blocking diodes are
some factors that prevent protection devices to trip under cer-
tain conditions. Hence, sometime faults may go undetected
for a long time, showing practical limitations of conventional
protection schemes in PV arrays.

In addition to conventional protection schemes, a number
of advanced fault diagnosis and classification methods have
been proposed in existing literature to provide reliable pro-
tection. The effectiveness of advanced protection methods
for PV array fault detection have been discussed in detail
in [10]. The fault diagnosis and classification schemes pro-
posed in [9], [11] and [12] reveal that fault detection and
classification is challenging in PV systems due to weather
conditions, high impedance faults and when MPPT is in
operation. Differentiating faults from PS condition is also
essential for an efficient performance of PV system. More-
over, classification methods for PV array faults have been
demonstrated for only a few fault cases, as in [13] and [14].
Specifically, [13] have worked on only one case of fault i.e.
Line-Line (LL) fault, while only two cases of PV array faults
(LL fault and hotspot fault) were considered in [14], with
both works not incorporating MPPT. Another study [16] also
includes only two scenarios of PV array faults, i.e., LL fault
and open circuit (OC) fault.

To address the aforementioned challenges and shortcom-
ings of existing work in fault diagnosis, this paper presents
a novel approach that utilizes deep two-dimensional (2-D)
Convolutional Neural Network (CNN) to extract features
from 2-D scalograms generated fromPV system data, in order
to effectively detect and classify PV system faults in severe
conditions. The proposed approach is further divided into
two configurations – one in which the last few layers of a
pre-trainedAlexNet CNN [15] are fine-tuned to yield a 6-way
classifier, and another in which features are obtained from
a certain layer (fc7) of a pre-trained AlexNet and then used
in conjunction with classical classifiers. An in-depth quanti-
tative evaluation of the proposed approach is presented and
compared with previous feature extraction and classifica-
tion methods for PV array faults – both classical machine
learning (ML) based and deep learning (DL) based. Unlike
contemporary work, five different faulty cases (i.e., partial
shading (PS), line to line fault (LL), open-circuit fault (OC),
high-impedance series / arc fault, and faults in PS – on
which no work has been done before in the machine learning
domain), as well as the no fault case, have been considered

in our study, along with the incorporation of MPPT. We also
employ a consistent dataset over which to compare ours and
previous approaches, to make for the first (to the best of our
knowledge) a comprehensive and meaningful comparative
evaluation of fault diagnosis. It is observed that the proposed
method involving fine-tuned pre-trained CNN outperforms
other techniques, achieving high fault detection accuracies for
both noiseless and noisy data. As experimentally validated,
our study also highlights the importance of representative
and discriminative features to classify faults (as opposed to
the use of raw data), especially in the noisy scenario. At the
same time, deep learning based automatic feature extraction
is found to be superior as opposed to classical handcrafted
feature extraction.

The remaining sections of the paper are organized as fol-
lows. Section II presents related work, while Section III
provides the description of the proposed methodology.
Section IV gives a comprehensive quantitative evaluation and
analysis of the proposed and existing classification methods
for PV array faults. Finally, Section V presents our conclu-
sions and future directions.

II. LITERATURE SURVEY
In recent years, a number of online fault diagnosis and clas-
sification approaches have been devised to counteract the
aforementioned protection challenges. These detection and
classification methods may be divided up into three cate-
gories namely; signal processing, performance comparison
and machine learning techniques [16]. In signal processing
based methods, faults are detected on the basis of reflected
signals. Using the time specific characteristic of reflected sig-
nals, Time Domain Reflectometry (TDR) detects and locate
faults. In TDR, an impedance variation in the reflected sig-
nal is examined by injecting an external voltage signal into
system. An experimental analysis was perform on 1 MW
PV plant using TDR to detect and locate faults in [17].
Another paper [18] explains spread spectrum time domain
reflectometry for the identification of LG faults. Neverthe-
less, this method detects LG faults of any mismatch level
but its accuracy is greatly affected by the distance between
the device and fault location. Moreover, this method requires
high speed sampling, external function generator and baseline
for comparison.

The second domain makes fault detection by using
performance comparison techniques. Jenitha and Immanuel
Selvakumar [19] explained the fault detection method by
calculating the power loss between the measured and pre-
dicted AC power production. In [2], a fault detection scheme
was proposed by employing MPPT algorithm to estimate the
expected maximum power, which is then compared with the
meter-read power. In [20], an entropy-based fault detection
scheme was proposed to detect LL, LG and OC faults under
low irradiances and in the presence of blocking diodes. The
proposed scheme could distinguish the faults from PS. String
to string (SS), string to ground (SG) and OC faults were
identified in [1]. Hariharan et al. have presented a fault
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FIGURE 1. A typical configuration of PV system consisting of 5× 3 PV array and a boost converter programmed with an MPPT algorithm to operate the PV
module at their maximum power point (MPP).

diagnosis schemewith an ability to distinguish LL faults from
normal conditions and impermanent faults such as PS in [21].
However, the proposed technique is not appropriate for large
PV plants where themodules have different irradiance values.
The accuracy of the aforementioned techniques depends on
the quality of threshold limit. Even though the performance
comparison techniques are comparatively simple to design
but may not be effective due to following reasons stated
in [9]: (1) They lack the ability to detect the type of faults,
(2) dependence on MPPT operation, so MPPT failure may
affect the diagnosis performance, (3) Model needs to be
updated on regular basis, since PV parameters greatly depend
upon seasonal conditions.

Machine learning techniques having an ability to classify
faults according to their fault type have been propounded for
fault detection in [13], [14] and [21]–[25]. Yi and Etemadi
have proposed a support vector machine (SVM) based fault
detection scheme for LL faults in [13]. The method suffers
from the need for a large number of filters which makes the
system expensive. Recently, deep learning based fault detec-
tion has been proposed in [14] for the identification of LL
and HS faults. Although the proposed algorithm has achieved
an impressive accuracy, MPPT was not deployed in the PV

system as fault detection then becomes very challenging due
to the presence ofMPPT. Another research [22], utilizes Ran-
dom Forest (RF) classifier for PV array faults classification,
but the presented framework does not include high impedance
LL faults. In [23], [24], a graph based semi supervised
learning technique (GBSSL) was presented to detect and
classify PV array faults. A probabilistic neural network-based
fault detection scheme in [25] discusses the effects of LL and
LG faults in the presence of blocking diodes by performing
analysis of DC circuit of PV array. The proposed scheme,
however, has not considered high impedance faults. More-
over, its feasibility in real PV arrays is not validated and
it is complex in nature with high implementation cost. The
existing literature shows that the detection of faults is difficult
due to the presence of an MPPT, high fault impedance, low
location mismatch, PS and due to degradation. It is very
important to distinguish the faults from PS to avoid the false
tripping of system.

A. FAULTS IN PV ARRAYS
PV systems are frequently challenged by the occurrence of
a number of electrical faults that may evolve due to several
abnormalities in internal configuration [10]. Fig. 1 depicts
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some of faults that have been analyzed in this study to perform
the quantitative evaluation of classicalML andDL based fault
detection schemes.

1) LL FAULT
LL faults occur due to an unexpected short-circuiting between
two points in PV array which are at different potential lev-
els [26]. It may occur within same string or between two
adjacent strings [10]. LL faults with low level of mismatch
fault under low irradiances are difficult to detect because
the fault current have low magnitude which remain unde-
tected [13]. This mismatch level indicates the number of PV
modules involved in the fault [26], [27]. The severity of LL
fault usually depends on the impedance of fault path and level
of mismatch. If the impedance is high and mismatch level is
low, the fault current will be of small magnitude [13], [21].
Moreover, presence of MPPT optimizes the output power of
PV array under various operating conditions which further
makes LL fault detection challenging [8].

2) OC FAULT
An OC fault in PV arrays is an accidental disconnection
problem within a string or between two adjacent strings [28].
It may occur due to a number of reasons like breakage of
the cable that connects two strings, any object falling on
panels, loose connection between two points or an accidental
disconnection at a current carrying conductor [25]. OC fault
detection is studied in [20], [21] and [24].

3) PARTIAL SHADING
Partial shading is a situation in which some modules are
partially shaded while others are uniformly shaded. It is an
impermanent condition which results in transitory reduc-
tion in output power [9]. Shading is categorized into two
types [29]. One is static shading and the other is dynamic
shading. Accumulation of dust, leaves and bird droppings on
glass causes static shading, whereas dynamic shading occurs
due to temporary shadow caused by nearby buildings or trees.
In dynamic shading, shaded part changes with time so there is
continuous variation in output power. Partial shading leads to
the presence of multiple peaks in PV characteristics. Global
maximum control helps to address this problem with the help
of array reconfiguration method [30], [31]. In array reconfig-
uration, switches are involved to automatically disconnect the
shaded module and reset the configuration in such a way that
it can harvest maximum power from a PV array. The effects
of PS on PV arrays are described in [21].

4) ARC FAULT
In the ideal scenario, PV arrays have nearly zero impedance
between module interconnections [32]. Arc faults occur due
to loose connection at a conductor joint or cable insulation
failure. There are two types of arc faults, namely series and
parallel arc faults [33], [34]. Series arcs can often be observed
within a module when there is a loose wired connection
between modules or at the junction point. When two parallel

conductors with different potential are placed close to each
other parallel arcs are caused. Electrical simulations of series
arc faults have been performed in [32].

B. CONVOLUTIONAL NEURAL NETWORKS (CNNs)
A CNN is a special class of DL algorithms [35] commonly
used for image recognition in computer vision [39]–[45].
A CNN architecture includes (besides various other param-
eters and special-purpose layers) three major layers, namely
the convolutional layer, pooling layer and fully connected
layer. The 2D convolution operation produces an optimal
feature map of input data with the use of a number of learned
filter kernels (as opposed to handcrafted or engineered filters
typical in classical signal or image processing). The pooling
layer serves as a down sampling layer in order to reduce the
feature dimensions of data. Finally, fully connected layer is
employed for the classification [36]. As the convolution and
pooling operations are responsible for the feature extraction,
it helps to learn patterns from the time-frequency represen-
tation and eliminates the requirement of hand-crafted expert
features [37].

CNNs are learned using error-backpropagation, an opti-
mization technique that allows a CNN to minimize classifi-
cation error over the network parameters (i.e., filter kernels /
weights). In other words, we are training the network to
learn / mine discriminative features from the underlying data
that would subsequently be conducive to classification of this
data using a classifier like SVM or the CNN’s softmax layer.

Training a CNN from scratch requires huge datasets to
train and hence needs sufficiently large number of labeled
data samples. Therefore, employing a pre-trained network
has been recommended and successfully demonstrated by
various studies [37], [38], [42]. In other words, a CNN
network pre-trained on a large benchmark dataset that may
be easily available (e.g., the ImageNet dataset for object
recognition), can potentially be applied as an off-the-shelf
feature extractor for completely different targeting a differ-
ent domain (such as PV system faults, where a huge num-
ber of training samples may not be available). A number
of well-known CNN architectures have been proposed in
the computer vision community, such as the AlexNet [15],
VGGNet [39], GoogLeNet [40], etc. and their pre-trained
versions made publicly available.

1) ALEXNET CNN
In this study, a pre-trained AlexNet CNN has been utilized as
the feature extraction and classification algorithm. AlexNet
is a CNN model presented by the seminal work of Alex
Krizhevesky et al. in [15] that significantly outperformed
the classical state-of-the art methods on the ImageNet Large
Scale Visual Recognition Challenge ILSVRC), and went
on to usher an era of deep learning trends in computer
vision and related fields, supported in part by the widespread
availability of massively parallel- processing hardware such
as distributed clusters and GPUs. AlexNet was trained on
1.2 million high-resolution images depicting 1000 different
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object categories. Fig. 2 depicts the AlexNet architecture
along with fine-tuned AlexNet CNN. The AlexNet accepts
an image of 227× 227 as an input. Three operations namely,
convolution, max pooling and Local Response Normaliza-
tion (LRN) are performed in the first convolutional layer
with the use of 96 different receptive filters with size of
11×11 which reduces image size to 55×55. In second layer,
the image size reduces to 27 × 27 by applying 256 filters of
3 × 3 size when max pooling operation is applied. In third,
fourth and fifth convolutional layers, ReLU is used and the
image size is further reduced to 13 × 13. At the end, two
fully connected layers having 4096 outputs with a dropout
operation are utilized followed by a softmax layer [41]. ReLU
non-linearity is applied after every convolutional and fully
connected layer. ReLU is the most commonly used activation
function in deep learning due to an ability to solve the nonlin-
ear solving problems [42]. In [15], deep convolution neural
networks with ReLUs trains much faster than the networks
employed with standard tanh activation function. Further-
more, deep convolutional neural network with ReLU shows
better performance with fast convergence [43]. Dropout is
applied before the first and the second fully connected layer
to reduce the risk of overfitting. For classification, softmax
layer generates a distribution over 1000 class labels.

FIGURE 2. The AlexNet architecture and fine-tuned AlexNet CNN.

For classification, CNNs are mainly trained by employing
three major methods, namely: training the CNN from scratch,
using a pre-trained CNN as an off-the-shelf feature extractor
followed by a separate classifier, and transfer learning, i.e.,
fine-tuning the pre-trained CNN model for the application
under consideration [44] and [45]. Transfer learning is capa-
ble of solving the classification problems with small amount
of data.

III. PROPOSED METHODOLOGY
Fig. 3 represents the flow chart of the proposed technique
(as well as other existing methods for fault diagnosis in PV
arrays). First, collection of a dataset is performed, consist-
ing of a total of 3456 samples with 576 samples per class,
as discussed in Section III-B below. This dataset serves as a
consistent test bench for the evaluation of ours aswell existing
approaches in our evaluation presented later in Section IV,
to make for a meaningful comparison. We then process this
1D data using continuous wavelet transform (CWT) to gener-
ate 2D scalograms that efficiently capture the time-frequency
characteristics of the PV system’s 1D data (Section III-C).
The resulting 2-D data is now in a form that can be read-
ily used in conjunction with a pre-trained 2D convolutional
neural network (CNN) for feature extraction (we used the
AlexNet [15], but this proposed approach is independent of
the exact CNN employed) and subsequent classification via
classical techniques i.e., SVM and random forests (we used
the AlexNet [15], but this proposed approach is indepen-
dent of the exact CNN employed) and subsequent classifi-
cation via classical techniques i.e., SVM and random forests.
We also fine-tune the pre-trained AlexNet to yield a 6-way
classifier that extracts features as well as performs classifi-
cation in a joint framework. The description of each stage is
discussed in detail in the following subsections.

A. SIMULATED PV SYSTEM
Fig. 1 illustrates the PV System configuration considered
in the proposed framework. It consists of 5×3 PV array,
bypass diodes, a DC-DC boost converter with an MPPT
programmed with perturb and observe (PO) algorithm. The
studied PV array includes three parallel strings and each
string is composed of five series modules. To build our PV
array in Simulink, we use the widely referenced single diode
model of [47], whose equivalent circuit (adopted from [46])
is shown in Fig. 4. The circuit consists of a current source
Iph that represents the cell photocurrent, one Shockley diode
represents PN junction of solar cell, Rs and Rsh represent the
intrinsic series and shunt resistances of the cell respectively.
G is irradiance in W/m2, T is temperature in ◦C.

Our resulting Simulink model is presented in Fig. 5.
It mathematically models the PV array in Fig. 1 using the
terminal current and voltage relationship of the solar cell
given by Eq. (1) in [3].K is Boltzmann constant (1.3806503×
10−23×10−23 J/K), q is the electron charge (1.60217646 ×
10−1917646 × 10−19C) and Io is the saturation current. The
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FIGURE 3. Flowchart of proposed PV array fault diagnosis method and existing methods.

FIGURE 4. Single diode model (SDM) of PV cell [46].

TABLE 1. PV module specification at STC.

PV cell output current is I :

I = Iph − Io

[
exp

(
q(V + RsI )
n× KT

)
− 1

]
−
V + RsI
Rsh

(1)

Table 1 shows the standard test condition (STC) parameter
specification of PV module. The irradiance and temperature
fluctuations greatly affect the maximum power point (MPP)
of PV array characteristic curves [48]. Figs. 6, 7 and 8 respec-
tively describe the current-voltage (I-V) characteristic curves
for the normal, LL fault and PS conditions of the PV array.

Fig. 6 depicts the output current of the PV array reduces
as irradiance decreases and vice versa. It shows that PV array
fault occurring at low irradiances will result in lower magni-
tude of fault current. Fig. 7 presents the LL fault at different
fault impedances. We can observe that current remains unaf-
fected as LL fault occurs with low mismatch level and at
fault high impedance. From Fig. 8, we can examine that PV
array under PS and faults in PS lead towards multiple peaks
in characteristic curve.

B. DATA ACQUISITION
To investigate the methodology proposed in Fig. 3, we have
employed our Simulink model presented in Section III-A
to collect a dataset under faulty and non-faulty operating
conditions.

No fault, LL, OC, PS, fault in PS and series arc fault
were the six cases considered for the evaluation of proposed
method. Data attributes such as irradiance (G), tempera-
ture (T), short circuit current (Isc), open circuit voltage (Voc),
photovoltaic current (Ipv), MPP current (Imp), MPP voltage
(Vmp) and MPP power (Pmp) were the eight values from the
PV array output and three values from the boost converter
such as maximum current, voltage and power were selected
as data samples shown in Table 2. The reason for using
them as data samples is that these values are directly or indi-
rectly affected by the occurrence of faults in PV system.
Total 3456 data samples and labels were collected. Each
class (No Fault, LL, OC, PS, Fault in PS and arc fault) has
576 instances. For the simulation of arc fault, approached
adopted in [32] is utilized in this study. Two faults namely,
LL and OC have been generated for faults in PS case.
These 3456 samples were collected by performing PV array
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FIGURE 5. Simulink model of whole PV system.

FIGURE 6. I-V Characteristics of PV array with ambient temperature
of 25◦C.

FIGURE 7. I-V Characteristics of PV array under LL fault.

simulation for the six cases with multiple combinations of
following situations depicted in Table 3. Note that the high
impedance parameter is employed only to generate instances

FIGURE 8. I-V Characteristic for PS and LL faults under PS.

TABLE 2. Data attributes selected for dataset collection.

for the arc fault. The nature of collected data is 1-D. This 1-D
data is passed to four existing methods of classification, some
of which have been proposed previously for PV system fault
diagnosis, while some we have adopted from the machine
learning community.

The idea is to quantitatively evaluate all of these methods
on a consistent dataset (as defined by Table 3) for a mean-
ingful comparison. To the best of our knowledge, this kind
of consistent comparative evaluation has not been done in
past literature on fault diagnosis. Instead, authors have chosen
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TABLE 3. Combinations of parameter values adopted for dataset
collection.

to apply their techniques on their own datasets, collected
with respect to different environmental conditions and system
configuration (c.f. Table 3), differing array sizes, differing
parameters, usually just two to three fault classes, and typ-
ically in the absence of MPPT. Thus, insofar as the previous
literature on fault diagnosis is concerned, it is effectively
meaningless to quote the performance presented in one work
vs. that presented in some other paper. We briefly describe
here the configurations employed for the various methods
we have compared with our approach. In the first method,
various features were extracted from Multiresolution Signal
Decomposition (MSD) and classification is performed using
SVM and RF, following [13].

Raw data without any feature extraction is directly passed
to SVM and RF in the second method. In the third and fourth
methods, this 1-D data is applied on DL algorithms LSTM
(as proposed in [14]) and Bi-LSTM respectively for feature
extraction and PV array fault classification.

In contrast, our approach first computes a 2D scalogram as
discussed in the upcoming subsection, before it is used with
pre-trained or fine-tuned CNNs (subsections III- D, E).

C. 2-D SCALOGRAM GENERATION
CNNs work effectively by learning patterns from images.
Nowadays, CNNs are widely used in biomedical domain by
transforming signals from time domain (1-D) to frequency
domain (2-D) using wavelet transform [36], [49]. As AlexNet
CNN accepts only RGB images as input, we apply continuous
wavelet transform (CWT) to data under analysis to generate
scalograms (2-D image) presented in Fig. 3 and 9 respec-
tively. The mathematical expression of CWT is given in (2)
where ψ(t) is a wavelet prototype provided in (3). ψ(t) is
shifted by b and dilated by a factor a before its product with
X (t) which is a time varying signal [50]. A Scalogram is
a visual representation of signals based on time-frequency
representation using wavelet transform (WT). Having created
the scalogram plots for the data samples in Matlab, all scalo-
gram images are cropped to a standard size of 227 × 227
to meet the requirement of input image layer of pre-trained
AlexNet.

CWT {x (t) ; a, b} =
∫
x(t)ψ∗a,b(t)dt (2)

ψa,b (t) =
1
√
|a|
ψ

(
t − b
a

)
(3)

D. PRE-TRAINED CNN FEATURE EXTRACTION
An important attribute of CNNs is that they automati-
cally learn class-discriminative features from labeled training
data, that go on to facilitate classification. As reviewed in
Section II-B, re-training a CNN from scratch is not only com-
putationally expensive, it also demands large amounts of data.
Nevertheless, various works in the machine learning commu-
nity have successfully demonstrated the generalization power
of deep nets pre-trained on one, huge dataset performing
well with regards to classification on other datasets, even
from differing domains. Motivated by these observations,
we apply (rather successfully as we shall see in Section IV) an
AlexNet [15] pre-trained on a large-scale image classification
dataset to our task of fault classification in PV arrays. Specif-
ically, we use activations from the neurons on the second
fully connected layer ‘fc7’ shown in Fig. 9. These extracted
features from pre-trained AlexNet CNN were then passed to
the fifth method of classification using SVM and RF depicted
in Fig. 3 and 9, respectively.

E. FINE-TUNED ALEXNET CNN
As a second configuration of our proposed method, we per-
form transfer learning by fine-tuning the last three layers
(fully connected layer fc7, a softmax layer and a classifi-
cation output layer) of a pre-trained AlexNet CNN (which
is originally configured for 1000 classes) to finally yield a
6-dimensional output (which is the number of our classes) as
depicted in Fig. 2.

The softmax layer calculates the probability distribution
over each possible class and classifies the data according to
most probable class. At the classification layer, the output
with six classes was obtained as depicted in Fig. 9.

IV. QUANTITATIVE EVALUATION
A. METHODS COMPARED
As depicted in Fig. 3, we have considered six methods for
PV array fault classification. We briefly describe them here.
The first two are essentially our proposed techniques i.e.,
fine-tuned AlexNet (which jointly extracts features and per-
forms classification), and pre-trained AlexNet (which is used
to extract features that are subsequently classified using either
SVMs or random forests, RF). As a thirdmethod, we employ
SVMs and RF classification in conjunction with the raw 1D
data as obtained from the PV system (i.e., the 11 dimensional
parameter set described in Section III-B). The fourthmethod
is the long-short term memory (LSTM) network, a deep
learning paradigm originally proposed for fault diagnosis
in [14]. Note however that we employ 11 features instead of
the 3 originally used by this work, and that we apply it for
the 6 fault cases in our standardized testbed (Section III-B)
instead of the 2 faults considered in [14]. The fifth method
is the Bi-directional LSTM (or Bi-LSTM), which trains the
data both from front to back and as well as from back to
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FIGURE 9. Framework of proposed 2-D CNN approach.

TABLE 4. Fault classification performance (averaged over four
independent runs) of proposed vs. existing methods based on noiseless
data (top two accuracies emboldened).

front [56]. The sixth and last method is the Multiresolution
Signal Decomposition (MSD) of [13], with classification
performed by SVM. We also evaluate MSD with RF clas-
sification. Again, we have used our standardized testbed of
11 parameters and 6 fault classes, unlike the original work
in [13]. The results for these methods and their various pos-
sible configuration are summarized in Tables 4 and 5 for
noiseless and noisy data, respectively.

B. COMPUTER SYSTEM CONFIGURATION
The work is carried out in Matlab 2018a, running on an
Intel Core i7-7500U processor at 2.70GHz with 8GB RAM.
The model of proposed framework is implemented in Matlab
using the Deep Learning Toolbox and the Signal Processing
Toolbox. The employed Simulink model of the PV system
has already been presented in Section III-A (Fig.5).

TABLE 5. Fault classification performance (averaged over four
independent runs) of proposed vs. existing methods based on noisy data
(top two accuracies emboldened).

C. NOISY DATA
The evaluation is performed on both noiseless and noisy data.
For noisy data, white noise is added to data samples in order
to reflect real world values of electrical sensors and measur-
ing devices. Electrical sensors have thermal noise which is
equivalent to white noise. Studies conducted in [53] and [54]
used white noise in their framework. White noise is a random
signal having equal intensity over the full spectrum. The
approach used for noise generation in this study is expressed
in (4).

Noisy signal = Noiselesss signal + wgn(m, n, p) (4)

where wgn () is a predefined Matlab function for white noise
which creates m× nmatrix of white Gaussian noise, and p is
the power of signal in decibels.

D. EVALUATION METRICS
The performance is quantified using accuracy (also called
sensitivity or recall), averaged over four independent runs
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(during which the dataset is randomly split into 70-30 to give
training and testing samples). The standard deviation over
these runs is also reported.

While accuracy is the typically employed evaluationmetric
in classification literature (as well as in previous works on
fault diagnosis such as [13], [14]), we also briefly describe
here additional metrics that may be obtained from the pre-
sented confusion matrices to judge a method’s performance.
Denote the number of true positives, false positives, true neg-
atives and false negatives as TP, FP, TN and FN, respectively.
We then define accuracy (also called sensitivity or recall,
i.e. true positive rate) as TP / (TP+FN), i.e., the proportion
of relevant examples that are correctly classified as relevant.
Next, precision is defined as TP / (TP+FP), i.e., the propor-
tion of classified examples that are actually relevant. Finally,
specificity (also called true negative rate) is defined as TN /
(TN+FP), i.e., the proportion of irrelevant examples that are
correctly classified as irrelevant.

E. CHOICE OF CNN IN PROPOSED APPROACH
We have performed an experiment to compare the perfor-
mance in terms of accuracy and execution time of two
other CNN architectures besides AlexNet [15] for our
approach. Table 6 depicts the results showing that AlexNet
not only has roughly half the execution time, but provides
comparable, if not better, accuracy vs. GoogLeNet [40]
and ResNet [52]. Similar observations are seen in other
studies (e.g., [51]). Therefore, we choose to use AlexNet
for all subsequent experiments involving our proposed
approach. We believe the reason may have to do with the
fact that AlexNet is a considerably simpler (shallower) archi-
tecture compared with the other two, more sophisticated,
architectures and, since our PV system fault data is not as
feature-rich and complex as natural images, AlexNet per-
forms quite satisfactorily here.

TABLE 6. Fault classification accuracies of pretrained models of CNNs.

F. TRAINING AND HYPER-PARAMETERS
Performance of DL algorithms can be improved by tuning
the hyperparameters. In this study, several combinations of
hyperparameter values were tried and the best combination
was adopted, as described in the following. The minimum
batch size was set to 5 to boost the training accuracy for
both the algorithms. The batch size refers to the number of
training samples used for one iteration. Stochastic gradient

descent with momentum set to 0.9 was used for fine-tuning
our 2D CNN, while adaptive moment estimation (Adam)
optimization algorithm was used to learn the LSTM. The
learning rate chosen for both the algorithmswas 0.0001. Fine-
tuned CNN was trained with 70% randomly selected data
with 100 epochs (an epoch is one complete round of training
over the entire dataset), and maximum iterations of 48300 per
epoch. Accuracy and loss were the two parameters utilized for
performance evaluation. Training progress plotted in Fig. 10
shows the accuracy and losses over time based on noiseless
data. Initially training accuracy is observed to be low due
to small batch size, and it gradually increases and reaches
around 98.67%. By inspection, it can be observed that loss
slowly decreases and converges to around 0.092.

FIGURE 10. Convergence curves of training process.

G. TESTING AND EVALUATION
Testing was performed on the 30% held-out data and best
average accuracy and loss (over four random runs), averaged
over the six classes (No fault, LL, OC, PS, fault in PS and arc
fault) are observed to be 74.6% and 25.4% respectively. The
confusion matrix is presented in Fig. 11, which portrays the
per-class accuracy (sensitivity) along the bottom-most row,
and the per-class precision along the right-most column. The
bottom right cell indicates the overall accuracy, averaged over
all the 6 classes. The worst accuracy obtained from AlexNet
CNN is 72.1% with a loss of 27.9%, as depicted in the confu-
sion matrix given in Fig. 12. In similar vein, the performance
of LSTM [14] and BiLSTM are captured in the confusion
matrix presented in Fig. 13 and 14. Accuracies of the various
methods (averaged over the four independent runs as well as
over all six classes) are presented in Table 4. Interestingly,
the best performance is achieved when raw data (i.e., our
11 set of parameters) are directly used with either SVM
(85.23%) or RF (79.55%) classifier. Our proposed methods
closely follow behind in performance. But their real strength
(and that of the other DL technique i.e. LSTM) will become
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FIGURE 11. Best case of fault classification results for fine-tuned
pre-trained AlexNet CNN based on noiseless data.

FIGURE 12. Worst case of fault classification results for fine-tuned
pre-trained AlexNet CNN based on noiseless data.

evident shortly in Section IV-J, where noisy data is used to
more accurately simulate sensor data).

To compute accuracy (sensitivity), precision or specificity
from a confusion matrix, we must first compute the four
parameters TP, FP, TN and FN from it with respect to a certain
class. For instance, consider the matrix presented in Fig. 11,
and assume the analysis is for arc fault. TP (number of arc
fault instances correctly classified as arc fault) is found to
be 131. FP (number of irrelevant instances mistakenly classi-
fied as arc fault) is found by summing up the numbers in the
first row (except in the first column), i.e., 37. TN (number of
irrelevant instances correctly classified as irrelevant, i.e., not
belonging to arc fault) is found as total number of irrelevant
test instances minus FP, i.e., (5 × 173 - 37), where 5 is the
number of irrelevant classes and 173 is the number of test
instances for each of those classes. This comes out to be 828.

FIGURE 13. Fault classification results for LSTM based on noiseless data.

FIGURE 14. Fault classification results for Bi-LSTM based on noiseless
data.

FN (number of arc fault instances mistakenly classified as
some other fault) is found by summing up the numbers in the
first column (except in the first row), i.e., 42. Note that TP +
FN is the total number of relevant instances (i.e., the number
of test instances of class arc fault), and is a constant, i.e., 173.

Based on the above discussion, accuracy or sensitivity for
class arc fault is TP / (TP+FN) = 131 / (131+42) = 0.76
(bottom row), precision is TP / (TP+FP)= 131 / (131+37)=
0.78 (rightmost column), while specificity is TN /
(TN+FP) = 828 / (828 + 37) = 0.96. Note the values
for accuracy presented in the Tables 4 and 5 are based on
averaging the results over all the 6 classes.

H. INCREASING FAULT CLASSES
Performance of the proposed method (fine-tuned AlexNet) as
the number of classes is increased can be analyzed in Fig. 15.
This shows that faults with low magnitude of fault current
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FIGURE 15. Performance as number of classes is increased (fine-tuned
pre-trained CNN).

FIGURE 16. Performance as number of classes is increased (LSTM).

like LL faults are difficult to distinguish from other faults as
the number of classes increase and for the severe conditions
depicted in section IV-B (Table 3). The accuracy of LL fault
falls to a considerable extent when PS is added as a fourth
class. It may be noted that with two-class classification,
individual accuracies for the two classes are more than 90%,
but performance reduces as number of classes increases.
Fig. 16 and 17 respectively give the analysis for LSTM [14]
and Pretrained AlexNet + SVM.

I. INCREASING TRAINING DATA SIZE
The performance of proposed algorithm has also been exam-
ined by fixing test data to 300 samples and increasing
training samples to 286 samples. The results are depicted
in Fig. 18, illustrating that as the number of training samples
increases, accuracies are improved. Similar analysis is given
in Fig. 19 for LSTM [14].

J. NOISY DATA
The performance of proposed method (fine-tuned AlexNet)
with noisy data with a power level of -3.01db is summarized
in the confusion matrix (best performing average over the

FIGURE 17. Performance as number of classes is increased (pretrained
AlexNet + SVM).

FIGURE 18. Evaluation of fault classification results for fine-tuned CNN
based on increasing training samples.

FIGURE 19. Evaluation of fault classification results for LSTM based on
increasing training samples.

four independent runs) presented in Fig. 20. Performance for
different noise levels is depicted in Fig. 21 for deep learning
methods i.e., pre-trained AlexNet (proposed) vs. LSTM [14]
and Bi-LSTM. Similarly, Fig. 22 gives the performance for
classical machine learning methods. We observe that the
proposed technique demonstrates resilience to noise at all
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FIGURE 20. Fault classification results for fine-tuned pre-trained AlexNet
CNN based on noisy data.

FIGURE 21. Fault classification results for deep learning algorithms based
on noisy data.

power levels tested, and maintains a higher accuracy than the
other two compared methods.

The average accuracies (over all classes and all runs) for
the various methods are given in Table 5. We note that,
in the presence of noise, the two configurations of our pro-
posed approach yield the best fault classification performance
of 70.45% and 69.39% among all tested methods. Another
interesting conclusion is that for deep learning techniques
(proposed, LSTM, Bi-LSTM), performance drops in the pres-
ence of noise is not as pronounced compared to approaches
which either use raw data in conjunction with SVM / RF
classifier, or handcrafted feature extraction i.e., MSD [13].
In other words, data-driven ‘‘learning’’ of discriminative fea-
tures is indispensable for robust classification in the face of
noise.

K. DISCUSSION
In Table 3, we have utilized 200� high impedance value for
the arc fault. Since such high impedance values would indeed

FIGURE 22. Fault classification results for classical machine learning
algorithms based on noisy data.

not arise in practice. To ascertain the effect on the perfor-
mance due to such samples, we first identify the samples of
the arc fault class involving the 200� value. These are found
to be 96 of a total of 576 arc fault class samples (note that
training is undertaken on a randomly selected subset of 70%
of the 576 samples, so it is difficult to exactly ascertain how
many of these 96 samples were used for training and how
many for testing for the originally reported results in Table 4).
We re-run the experiment and find that while the original
accuracy for arc fault class is 75.7% (c.f Fig. 11, bottom,
left-most cell), the accuracy when removing the aforemen-
tioned 96 samples is interestingly higher, i.e., 83.3%. Never-
theless, the effect on the overall performance (averaged over
all the six classes) is minimal, i.e., 75.4% as opposed to the
originally reported 74.6%.

With regards to exactly what features are extracted by a
CNN, there does exist some literature in the computer vision
community. One such work is by Girshick et al. [57]. These
works attempt to visualize the various kernels learned at
different layers of a deep convolutional neural network.

Corroborating the findings in the studies of biological net-
works in the neuroscience community, these works suggest
that the earlier layers of the network typically learn low-level
image features such as oriented edges and bars, whereas sub-
sequent layers learn to capture higher-level information such
as shapes, and even higher layers learn to discern contextual
constrains and semantic meaning from an image.

However, as far as our work is concerned, we note that the
aforementioned 1D data consisting of only 11 features lacks
the high dimensionality, as well as the semantic meaning and
structure inherent in natural images. Therefore, visualization
of the weights and kernels at various layers of a deep CNN
would not be intuitive for human interpretation. Nevertheless,
we have performed some analysis wherein we have computed
the average of the 576 samples per class and visualized the 2D
scalogram generated for that class. Fig. 23 reproduced below
depicts these ‘‘average scalograms’’ for our various classes.
One may observe the subtle differences between the images,
and it is this typical difference which is probably learned by
the 2D CNN in order to distinguish between the classes.
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FIGURE 23. Visualization of ‘‘average scalograms’’ for our six classes.

To understand the limitation of our method in a scenario
where MPPT may fail (and assuming the system can auto-
matically receive a notification about its failure in a real
setting), wemake use of only 8 features (i.e., remove the three
values obtained from the boost converter). Thus, training and
testing system is performed on this feature-reduced dataset
of 576 samples per class, each having only 8 instead of 11 fea-
tures. The test results are presented in the Table 7.

TABLE 7. Fault classification accuracies with MPPT failure.

We observe that the performance of our approaches drops
significantly due to the failure of MPPT. This is because
3 out of 11 data values are altogether lost, and now the
method must work with a limited data per sample. The rea-
son can be attributed to the requirement of 2D CNNs to
be fed high-dimensional, structured data upon which they
can mine discriminative and representative patterns and class
typicalities. The deeper the network, the higher the dimen-
sionality it subsequently expects to give good performance.
We note however that a PV system is by nature a simple
power generation system which typically may be monitored
only based on its electrical output and meteorological data,
as done in this paper (no further parameters are available
due to the absence of turbines or generators or other mov-
ing mechanical parts). Hence, while our work has certainly
shed light on the favorable potential of 2D CNNs for fault
diagnosis, we believe that similar potential in 1D CNNs can
be tapped to possibly yield better performance with limited
monitored parameters. In similar vein, a custom 2D CNN
design, with fewer parameters could also be investigated,

instead of adopting large networks from the computer vision
community, as done in this pioneering work. Furthermore,
utilizing larger data sets for training CNNs from scratch could
also improve the performance.

V. CONCLUSION AND FUTURE WORK
In this paper, two convolutional neural network based config-
urations have been proposed for PV array fault classification.
One in which the last few layers of a pre-trained AlexNet are
fine-tuned to yield 6-way output, and another in which the
features are obtained from fc7 layer of a pre-trained AlexNet
and then used in conjunction with classical ML methods
for classification. The proposed method measures the basic
characteristics of a PV array to develop the fault classification
algorithm without using any high end equipment (Thermal
imagers). Moreover, a quantitative evaluation of PV array
faults based on feature extraction and classification methods
for six cases (No fault, LL fault, OC fault, PS, fault in
PS and arc fault) under severe conditions (in which faults
have remained undetected in past work) has been performed.
Following contributions in this research have been made:
firstly, a novel approach to PV array fault classification
using 2D scalogram generation based on PV system data,
followed by a 2D CNN, giving a high fault detection accu-
racy of 73.53%. Secondly, our study also highlights the
importance of representative and discriminative features to
classify faults (as opposed to the use of raw data), especially
in the noisy scenario, where our method achieves the best
performance of 70.45%.Thirdly, unlike contemporary work,
five different faulty cases (along with the no fault case) have
been considered in our study, along with a consistent dataset
over which to compare ours and previous approaches, tomake
for the first (to the best of our knowledge) comprehensive
and meaningful comparative evaluation of fault diagnosis.
Further work is certainly needed in this seminal direction to
systematically ascertain the strengths and weaknesses of deep
learning paradigms such as CNNs and LSTMs in the context
of fault diagnosis for efficiency enhancement of PV systems.
We also intend to perform lab experiments on physical PV
arrays to explore the techniques presented in this paper.
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