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Abstract—Cooperative communications have been demon-
strated to be effective in combating the multiple fading effects
in wireless networks, and improving the network performance
in terms of adaptivity, reliability, data throughput and network
life time. In this paper, we investigate the use of coopera-
tive communications for quality of service (QoS) provisioning
in resource-constrained wireless sensor networks, and propose
MRL-CC, a Multi-agent Reinforcement Learning based multi-hop
mesh Cooperative Communication mechanism for wireless sensor
networks. In order to disseminate data reliably in MRL-CC, a
multi-hop mesh cooperative structure is first constructed. Then
a cooperative mechanism with cooperative partner assignments,
and coding and transmission schemes is implemented using a
multi-agent reinforcement learning algorithm. We compare the
network performance of MRL-CC with MMCC [1], a Multi-hop
Mesh structure based Cooperative Communication scheme, and
investigate the impacts of network traffic load, interference and
sensor node’s mobility on the network performance. Simulation
results show that MRL-CC performs well in terms of a number
of QoS metrics, and fits well in large-scale networks and highly
dynamic environments.

I. INTRODUCTION

Wireless sensor networks (WSNs) have numerous poten-
tial applications, e.g., battlefield surveillance, medical care,
wildlife monitoring and disaster response. In mission-critical
applications, a set of QoS requirements (e.g., end-to-end
delay, packet delivery ratio, and communication bandwidth)
on network performance must be satisfied. However, due to
the dynamic topology, time-varying wireless channel, and
severe constraints on power supply, computation power and
communication bandwidth of sensor nodes, quality of service
(QoS) provisioning is challenging in WSNs.

Recently, a number of QoS support communication proto-
cols have been proposed for WSNs [2], [3]. Most of these
protocols are based on network traffic engineering, i.e., sensor
nodes maintain network state information and use various
algorithms to perform QoS routes’ computation and mainte-
nance. However, the network state information is inherently
imprecise due to the dynamic wireless channel, node mobil-

ity and varying duty cycles. Thus, research on distributed,
lightweight and highly adaptive communication protocols with
QoS support is still needed.

In recent years, cooperative communications have been
proposed to exploit the spatial diversity gains in wireless
networks [4], [5]. Users in cooperative communication systems
work cooperatively by relaying data packets for each other, and
thus forming multiple transmission paths or virtual multiple-
input-multiple-output (MIMO) system to the destination with-
out the need of multiple antennas at each user. Cooperative
mechanism is the key to the performance of cooperative
communication protocols, however it is challenging to find
the optimal cooperative policies in dynamic wireless networks,
where reinforcement learning algorithms can be used to find
the optimal control policy without the need of centralized
control.

In this paper, we investigate the use of cooperative commu-
nications for QoS provisioning in resource-constrained WSNs,
and propose MRL-CC, a Multi-agent Reinforcement Learn-
ing based Cooperative Communication protocol. In MRL-CC,
a multi-hop mesh cooperative structure is constructed for
reliable data disseminations, where the cooperative mecha-
nism that defines the cooperative partner assignments, and
coding and transmission schemes is implemented at each
node using a multi-agent reinforcement learning algorithm.
The cooperative nodes, regarded as multiple agents in the
context of reinforcement learning framework, learn the optimal
cooperative policy through experiences and rewards. Thus,
by considering the interactions among each others, multiple
agents can cooperatively learn the optimal policy by using
locally observed network information and limited information
exchange. Therefore, optimal network performance can be
achieved without the need of maintaining precise network state
information and centralized control.

The rest of the paper is organized as follows. Section II
presents the related work. Section III describes the architecture
overview, design issues and Q-learning algorithm implemen-



tations of MRL-CC. The performance analysis is presented in
Section IV. Finally, Section V concludes the paper and gives
future research discussions.

II. RELATED WORK

Various cooperative diversity protocols have been proposed
for wireless networks recently [4], [5]. Cooperation diversity
gains, receiving and processing overheads, are investigated
in [6]. A scalable, energy efficient and error-resilient routing
protocol, REER [7], is proposed for dense WSNs. Based on
geographical information, REER’s design harnesses the advan-
tages of high node density and relies on the collective efforts of
multiple cooperative nodes to deliver data, without depending
on any individual ones. In MMCC [1], a mesh structure is
established for reliable data dissemination, random based and
distance based values are used as the forwarding-node-election
criteria. However, the random timer based criterion incurs
extra delay, and the distance based value criterion is not always
effective in dynamic WSNs.

Reinforcement learning provides a framework in which an
agent can learn control policies based on experiences and
rewards. In the standard reinforcement learning model, an
agent is connected to its environment via perception and
action, as shown in Fig. 1. On each step of interaction, the
agent receives an input, i, some indication of the current
state, s, of the environment; the agent then choose an action,
a, to generate as an output. The action changes the state
of the environment, and the value of the state transition is
communicated to the agent through a scalar reinforcement
learning signal, r. The agent’s behavior, B, should choose
actions that tend to increase the long-term sum of values of
the reinforcement signal [8].

System Environment state sE S
(State: S)
Reward: R
reward reR
action aE A
Agent: A
Fig. 1. A reinforcement learning model

The underlying concept of reinforcement learning is Markov
Decision Process (MDP). A MDP models an agent acting in
an environment with a tuple (S,A,P,R), where S is a set of
states, A denotes a set of actions. P(s |s,a) is the transition
model that describes the probability of entering state s’ € S
after executing action a € A at state s € S. R(s,a,s ) is the
reward obtained when the agent executes a at s and enters
s". The goal of solving a MDP is to find an optimal policy,
7 : S — A, that maps states to actions such that the cumulative
reward is maximized. Detailed information on reinforcement
learning can be found in [8].

In WSNs, data packets are usually routed to the destination
node through multi-hop communications. The QoS perfor-
mance of the route relies on the overall routing procedures, i.e.,
each node, which involves in the routing procedure, contributes
to the end-to-end QoS performances. It is worth noting that,
nodes which are not directly involved in the routing procedure
but are within the communication range of the forwarding
nodes, may take actions (e.g., packet originating, forwarding)
and have impacts on the route’s QoS performance as well, due
to the shared and contention nature of the wireless channel.
WSNs can be characterized as multi-agent systems, where
sensor nodes can be considered as agents, and the wireless
channel and packet flows are regarded as the environment. In
the multi-agent reinforcement learning algorithm, by exchang-
ing local state values with immediate neighboring agents,
an agent can consider both the rewards of neighboring and
non-neighboring agents when it chooses actions, thus global
cooperation can be achieved [9].

III. COOPERATIVE MECHANISM DESIGN AND
ALGORITHM IMPLEMENTATIONS

In this section, we present the architecture and design issues
of MRL-CC. First, an architecture overview of the network
organization is presented. Then we describe the three phase
operations of MRL-CC, namely mesh cooperative structure
construction, Q-learning initialization and data dissemination
phases. Finally, the design and implementations of the Q-
learning algorithm are illustrated.

A. Architecture Overview

As shown in Fig. 2, MRL-CC employs a multi-hop mesh
cooperative structure for reliable data dissemination in WSNs,
i.e., data packets originated from the source are forwarded
to the sink node by groups of cooperative nodes (denoted as
CNs) relaying [7], [1]. In each group of CNs, a node will
be elected as a forwarding node to forward the data packet to
the adjacent group of CNs towards the sink node, and other
nodes play as cooperative partners and will help in the packet
forwarding in case the forwarding-node-election fails or the
packet is corrupted in the transmissions.
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Fig. 2. Multi-hop mesh cooperative structure for data dissemination in WSNs

The forwarding-node-election in the C'Ns is based on a
multi-agent learning algorithm, i.e., each node is implemented
with a Q-learning algorithm, a model-free method which learns
the value of a function Q(s,a) to find an optimal decision



policy. Each node maintains the Q-values of itself and its
cooperative partners, which reflect the qualities (e.g., delay,
packet delivery ratio) of available routes to the sink. When
a packet is received by a group of C'Ns, each node will
compare its own Q-value with those of other nodes in the
C N s; the node which determines it has the highest Q-value
will be elected to forward the data packet to the adjacent CN's
towards the sink.

Each time a packet is forwarded, all the nodes in the group
of CNs will receive an immediate reward from the envi-
ronment, which represents the quality of packet forwarding
in terms of delay and packet loss rate. Nodes then use the
rewards to update the Q-values, which will influence their
future decisions of forwarding-node-election.

The algorithm will reach convergence after a certain amount
of time, depending on the network size, node mobility and
density. Nodes can simply use the learned policy to take
appropriate actions, i.e., node with the highest Q-value will
forward the packet to the adjacent groups of C'Ns towards
the sink. To adapt to the dynamic nature of WSNs, MRL-CC
explores the environments with a certain probability £, namely
e-greedy method [10]. That is, with the probability of 1 — ¢,
the node with the the highest Q-value will forward the packet
to the adjacent C N s; and with the probability of <, a randomly
chosen node will forward the packet to the adjacent C'Ns.

Thus, without using complicated prediction techniques, or
explicitly frequent updating and maintaining of precise net-
work state information, nodes can find the optimal cooperative
policies through experiences and rewards in dynamic environ-
ments.

B. Multi-hop Cooperation Structure Construction Phase

To construct a multi-hop mesh cooperative structure, a set of
nodes, termed as reference nodes (denoted as RN s) between
the source and the sink (the source and the sink are also
RN s) is first selected. The RN s are determined sequentially
starting from the source node to the sink node, and the distance
between two adjacent RNs is an application specific value,
which is a trade-off between reliability and energy efficiency.
Once the RN s are determined, a set of nodes around each RN
will be selected as cooperative nodes (denoted as CN's), and
thus, a multi-hop mesh cooperative structure is constructed in
this phase. Data packets originated from the source will be
forwarded to the sink by groups of C'Ns relaying.

A part of the mesh structure is shown in Fig. 3, where
the set of ny, cooperative group is denoted by V,,, and its
adjacent groups are denoted as V,,_; and V}, 1, which are one
hop farther and closer towards the sink than V,,, respectively.
Ideally, each node in V,, is connected with all the nodes in
Vn—1 and V,41; however, the links are unreliable and the
qualities are varying over time and space due to the time-
varying wireless channels and dynamic network topology.

The number of cooperative nodes in each CNs, and the
number of CNs in the network, depend on the network size,
node density and the trade-off between reliability and energy
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Fig. 3. Cooperation between adjacent groups of cooperative nodes

efficiency. Details of mesh cooperative structure construction
and parameter selection can be found in [7], [1].

C. Q-learning Initialization Phase

In the initialization phase, each node is assigned with an
initial Q-value. For node 7 € V,,, its initial Q-value (denoted
as ()7"*) is calculated based on the relative distance (compared
with its cooperative partners in V,,) from node 7 to the nodes
in V41, as shown in (1).

Z:Z = anyVn+1/di7Vn+1 D
where dy;, v, ., is the average distance between V;, and V,, 1,
which can be calculated as (2).

N
Wt =5 O it @
i=0,i€V;,
where N is the number of cooperative nodes in the V,, (for
simplicity, we assume [V is identical for each group of CNs).
div,,, is the average distance between node i and Vi,
which can be calculated as (3).

1 N
¥ 2

j=0,j€Vh11

diVoyr = dij A3)

In the initialization phase, node ¢ exchanges its initial Q-

value with the nodes in V;,_;, V,, and V 41, by broadcasting
initialization messages.

D. Data Dissemination Phase

When a data packet is received by a number of nodes
in V,, each node will compare its Q-value with those of
other cooperative nodes. The node which determines it has
the highest Q-value will forward the data packet to V., and
other nodes in V,, will deduce whether the packet forwarding
is successful or not, by overhearing the packet transmission
from V41 to Vi4o.

If the data packet is received by V11, nodes in V,;’s task
of the current round of data forwarding are finished. Thus, all
the nodes in V,, will receive positive rewards and update their
Q-values, accordingly. !

If the packet forwarding fails, all the nodes in V,, will
receive negative rewards (i.e., get punishment) and their

In the Q-learning algorithm, not only the data forwarding node m will
receive positive reward, but also the other cooperative nodes will get the
premium. It is because the other cooperative nodes make the correct decision
of electing m as the data forwarding node.



Q-values will be updated. Then, another forwarding-node-
election will be conducted in V,, for packet re-transmission
based on the updated Q-values. There are two reasons may
cause the failure of packet forwarding:

o forwarding election failure: in this case, the node elected
to forward the data packet is not eligible due to the out-
of-date Q-value stored in other nodes in V,,,

o packet transmission failure: the packet is corrupted or
collided during the transmission from V,, to V1.

To address the problem of packet forwarding failure issues,
each node maintains a timer 7. for packet re-forwarding. That
is, if nodes in V;, do not overhear that the packet delivery from
Vi+1 to V4o before the timer expires, nodes in V,, deduce
the packet is not successfully forwarded from V,, to V,,,1 and
another forwarding procedure will be restarted by nodes in V,,
using the updated Q-values.

When the Q-learning algorithm reaches convergence, nodes
can simply use the learned cooperative policy to take appropri-
ate actions, i.e., node with the highest Q-value will be elected
to forward the packet to V,, 1, and nodes with lower Q-values
are monitoring the packet forwarding and will help the packet
delivering if the packet forwarding from V,, to V4, fails.

E. Q-learning Algorithm Implementations

In the context of reinforcement learning, for node i € V,,,
we define the states, actions and rewards as follows:
a) State: S; = {k}, k€ {Vn—h Va, Vn+1}.

b) Action:
A= { f 4)

Execution of a; means that node i’s forwarding of the
packet from V, to V,41, and a,, denotes that node ¢ is
monitoring the packet’s forwarding.

¢) Reward Function: The reward function is defined as

5).

Ay, ,sink—dVv,, 1 ,sink ) /(Tvn_*_1 ~Tv, )
rwd(i) = { ( T, vy, sink Trmn (5a)
G p— (5b)
%)
Eq. (5a) is used to calculate the reward when the packet for-
warding is successful, where dv,, sni is the average distance
between V,, and the sink, which can be calculated as (6).

N
1
an ,sink — N E dz’,sink (6)
1=0,i€V,,

Ty,,, and Ty, are the packet forwarding time at V4,
and V,,, respectively, observed at node ¢ using the local
clock. Ty, is the maximum amount of time that can be
elapsed in the remaining path to the sink to meet the QoS
requirements on end-to-end delay. T.,,,,, is updated after each
packet forwarding, and the value is encapsulated in the data
packet. The positive reward reflects the quality of the packet
forwarding, i.e., relative progress towards the sink over a time
unit.

Eq. (5b) is used to calculate the reward when the packet
forwarding fails, The negative reward reflects the delay caused
by the unsuccessful packet transmission from V,, to V, ;1.

The updating of Q-value iterates at each node in each for-
warding procedure, and distributed value function - distributed
reinforcement learning algorithm (DVF-DRL) [11] is used in
the updating iteration.

For 1-hop forwarding, at iteration ¢, node ¢ € V,, forwards
a packet to V11, and then j € V,,;; is elected to continue
packet forwarding. Node ¢ updates its Q-value as (7).

QUtl(st,al) = (1 — a)Qi(st,al) + a(ri* ! (st*h) +

yw(i, j) max Q;(sj, a;) +

v Y w(i i) max Qi(sy,al)) ()

€
i ELLi'#) !

where ¢ is the learning rate, which models the updating rate
of Q-values. r denotes the immediate reward of execution of
the action. The weight of future rewards is defined by ~. I is
the set of ¢’s cooperative partners in V,,. w(¢, ) models how
strongly node ¢ weights of j’s rewards in average. Eq. 7 shows
that node ¢’s Q-value is a weighted sum of the action’s reward,
1’s Q-value, the maximum Q-value of j, and those of all ¢’s
cooperative partners.

IV. PERFORMANCE EVALUATION

To study the network performance of MRL-CC, we compare
it with MMCC, a multi-hop mesh structure based cooperative
communication scheme. A random forwarding-node-election
scheme is also implemented and its performance is used as a
comparison baseline.

A. Simulation Environments

We simulate a WSN where 200 sensor nodes are randomly
distributed in a 400m X 200m rectangular area. We assume
nodes are stationary in the simulations, except in the mobile
scenario where 50 nodes are randomly chosen as mobile nodes
and other are stationary. The source and the sink nodes are
chosen randomly in each simulation run. Constant packet
arrival rate with 5p/s, and varying packet arrival rate (the
probability of packet arrival rate of each sensor node follows
a Poisson distribution with average A = 5p/s), are used in the
simulations.

Castalia [12] wireless sensor network simulator, which is
based on the OMNeT++ discrete event simulation platform, is
used as the simulation environment.

Table I lists the detailed simulation parameters.

B. Comparison with MMCC

The average end-to-end delay to the sink node in different
wireless channel conditions are shown in Fig. 4 and Fig. 5,
respectively.

The simulation results show that when the wireless channel
is in a perfect condition, i.e., no error occurs in transmissions,



TABLE 1

SIMULATION PARAMETERS

Parameters Value
Number of sensor nodes 200
Simulation area 400 m x 200 m

Wireless channel model

Log shadowing wireless model

Path loss exponent

24

Collision model

Additive interference model

Mobility model

Random waypoint model

Physical and MAC layer

IEEE 802.15.4 standard

1500

Packet length 40 bytes
Communication range 50 m
Data transmission rate 250 kbps
Simulation time 400 s

Number of simulation runs | 10

N 4

€ 0.1

« 0.1

¥ 0.5

w(i,7) 0.5, if j is the forwarding node

55, if j is the cooperative partners
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Fig. 4. Average end-to-end delay to the sink node (link failure ratio = 0)

MRL-CC and MMCC (distance based) have similar perfor-
mances on the end-to-end delay. However, when the error-
prone wireless channel is used in simulation, MRL-CC has
better performance than MMCC. The reason is that in perfect
wireless channel conditions, distance based protocols such as
MMCC, are always effective, i.e., nodes which are closet to
the sink are often the best forwarding candidates. However, in
realistic channel conditions, it is not true that nodes closer to
sink always have higher link qualities and should be elected
as the forwarding nodes, and thus the use of distance based
criterion in forwarding election is not always effective. For
MRL-CC, by utilizing the knowledge learned from experiences
and rewards, nodes with higher link qualities are more likely
to be elected as the forwarding nodes in the C'Ns, and thus,
the forwarding node assignments in MRL-CC is more adaptive
than that in MMCC.

Fig. 6 and Fig. 7 illustrate the average packet delivery ratio
from the source node to the sink node with constant and
varying packet arrival rate, respectively.

We can observe that with constant packet arrival rate, MRL-
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CC and MMCC have similar performances on the packet
delivery ratio. However, when the packet arrival rate varies,
MRL-CC performs better than MMCC. The simulation results
also verify that MRL-CC is more adaptive and flexible than
MMCC in dynamic network conditions.

The impact of network traffic load on average end-to-end
delay, and the impact of node mobility on average packet
delivery ratio are shown in Fig. 8 and Fig. 9, respectively.

The simulation results show that MRL-CC performs better
than MMCC, especially when the network traffic becomes
heavy and/or the network mobility level increases. It is because
that MMCC selects data forwarding nodes either by a random
value based criterion or a distance based criterion, and thus
is lacking of flexibility to handle the network dynamics.
In comparison, MRL-CC is much more intelligent in data
forwarding-node-election since it learns the optimal cooper-
ative policy through experiences and rewards. The flexible
nature of computer machine learning allows it to adapt to the
dynamic environment well, especially in networks with heavy
traffic in highly dynamic scenarios.

We also notice that for all the QoS metrics in simulations,
MRL-CC performs better after the simulation runs for a certain
amount of time (i.e., around 50s). This is mainly because that
there is a learning period in any learning based protocols, in
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which agents (sensor nodes in this paper) explore all the avail-
able decisions (cooperative policy) and estimate the decision
qualities, so that the network performance are improved over
time. When the learning procedure is finished, nodes can take
the optimal actions according to the state information.

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we have investigated the use of cooperative
communications for QoS provisioning in resource-constrained
wireless sensor networks, and proposed MRL-CC, a multi-
agent reinforcement learning based multi-hop mesh coopera-
tive communication mechanism for wireless sensor networks.
Simulation results show that MRL-CC performs well in terms
of a number of QoS metrics and fits well in large scale
networks and highly dynamic environments.

In future research, service differentiation and system fair-
ness will be considered in the cooperative mechanism design.
Moreover, we will examine the use of adaptive cooperative
coding scheme (e.g., channel coding) and employ power
allocation scheme to improve the network performance and
prolong the network lifetime.
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