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Abstract-Cooperative communications have been demon
strated to be effective in combating the multiple fading effects
in wireless networks, and improving the network performance
in terms of adaptivity, reliability, data throughput and network
life time. In this paper, we investigate the use of coopera
tive communications for quality of service (QoS) provisioning
in resource-constrained wireless sensor networks, and propose
MRL-CC, a Multi-agent Reinforcement Learning based multi-hop
mesh Cooperative Communication mechanism for wireless sensor
networks. In order to disseminate data reliably in MRL-CC, a
multi-hop mesh cooperative structure is first constructed. Then
a cooperative mechanism with cooperative partner assignments,
and coding and transmission schemes is implemented using a
multi-agent reinforcement learning algorithm. We compare the
network performance of MRL-CC with MMCC [1], a Multi-hop
Mesh structure based Cooperative Communication scheme, and
investigate the impacts of network traffic load, interference and
sensor node's mobility on the network performance. Simulation
results show that MRL-CC performs well in terms of a number
of QoS metrics, and fits well in large-scale networks and highly
dynamic environments.

I. INTRODUCTION

Wireless sensor networks (WSNs) have numerous poten

tial applications, e.g., battlefield surveillance, medical care,

wildlife monitoring and disaster response. In mission-critical

applications, a set of QoS requirements (e.g., end-to-end

delay, packet delivery ratio, and communication bandwidth)

on network performance must be satisfied. However, due to

the dynamic topology, time-varying wireless channel, and

severe constraints on power supply, computation power and

communication bandwidth of sensor nodes, quality of service

(QoS) provisioning is challenging in WSNs.

Recently, a number of QoS support communication proto

cols have been proposed for WSNs [2], [3]. Most of these

protocols are based on network traffic engineering, i.e., sensor

nodes maintain network state information and use various

algorithms to perform QoS routes' computation and mainte

nance. However, the network state information is inherently

imprecise due to the dynamic wireless channel, node mobil-

ity and varying duty cycles. Thus, research on distributed,

lightweight and highly adaptive communication protocols with

QoS support is still needed.

In recent years, cooperative communications have been

proposed to exploit the spatial diversity gains in wireless

networks [4], [5]. Users in cooperative communication systems

work cooperatively by relaying data packets for each other, and

thus forming multiple transmission paths or virtual multiple

input-multiple-output (MIMO) system to the destination with

out the need of multiple antennas at each user. Cooperative

mechanism is the key to the performance of cooperative

communication protocols, however it is challenging to find

the optimal cooperative policies in dynamic wireless networks,

where reinforcement learning algorithms can be used to find

the optimal control policy without the need of centralized

control.

In this paper, we investigate the use of cooperative commu

nications for QoS provisioning in resource-constrained WSNs,

and propose MRL-CC, a Multi-agent Reinforcement Learn

ing based Cooperative Communication protocol. In MRL-CC,

a multi-hop mesh cooperative structure is constructed for

reliable data disseminations, where the cooperative mecha

nism that defines the cooperative partner assignments, and

coding and transmission schemes is implemented at each

node using a multi-agent reinforcement learning algorithm.

The cooperative nodes, regarded as multiple agents in the

context of reinforcement learning framework, learn the optimal

cooperative policy through experiences and rewards. Thus,

by considering the interactions among each others, multiple

agents can cooperatively learn the optimal policy by using

locally observed network information and limited information

exchange. Therefore, optimal network performance can be

achieved without the need of maintaining precise network state

information and centralized control.

The rest of the paper is organized as follows. Section II

presents the related work. Section III describes the architecture

overview, design issues and Q-Iearning algorithm implemen-



Fig. 1. A reinforcement learning model

tations of MRL-CC. The performance analysis is presented in

Section IV. Finally, Section V concludes the paper and gives

future research discussions.

Fig. 2. Multi-hop mesh cooperative structure for data dissemination in WSNs

In WSNs, data packets are usually routed to the destination

node through multi-hop communications. The QoS perfor

mance of the route relies on the overall routing procedures, i.e.,

each node, which involves in the routing procedure, contributes

to the end-to-end QoS performances. It is worth noting that,

nodes which are not directly involved in the routing procedure

but are within the communication range of the forwarding

nodes, may take actions (e.g., packet originating, forwarding)

and have impacts on the route's QoS performance as well, due

to the shared and contention nature of the wireless channel.

WSNs can be characterized as multi-agent systems, where

sensor nodes can be considered as agents, and the wireless

channel and packet flows are regarded as the environment. In

the multi-agent reinforcement learning algorithm, by exchang

ing local state values with immediate neighboring agents,

an agent can consider both the rewards of neighboring and

non-neighboring agents when it chooses actions, thus global

cooperation can be achieved [9].

III. COOPERATIVE MECHANISM DESIGN AND

ALGORITHM IMPLEMENTATIONS

In this section, we present the architecture and design issues

of MRL-CC. First, an architecture overview of the network

organization is presented. Then we describe the three phase

operations of MRL-CC, namely mesh cooperative structure

construction, Q-Iearning initialization and data dissemination

phases. Finally, the design and implementations of the Q

learning algorithm are illustrated.

A. Architecture Overview

As shown in Fig. 2, MRL-CC employs a multi-hop mesh

cooperative structure for reliable data dissemination in WSNs,

i.e., data packets originated from the source are forwarded

to the sink node by groups of cooperative nodes (denoted as

CNs) relaying [7], [1]. In each group of CNs, a node will

be elected as a forwarding node to forward the data packet to

the adjacent group of CN s towards the sink node, and other

nodes playas cooperative partners and will help in the packet

forwarding in case the forwarding-node-election fails or the

packet is corrupted in the transmissions.

The forwarding-node-election in the CN s is based on a

multi-agent learning algorithm, i.e., each node is implemented

with a Q-Iearning algorithm, a model-free method which learns

the value of a function Q(s, a) to find an optimal decision

state sESSystem Environment

(State: S)

II. RELATED WORK

Various cooperative diversity protocols have been proposed

for wireless networks recently [4], [5]. Cooperation diversity

gains, receiving and processing overheads, are investigated

in [6]. A scalable, energy efficient and error-resilient routing

protocol, REER [7], is proposed for dense WSNs. Based on

geographical information, REER's design harnesses the advan

tages of high node density and relies on the collective efforts of

multiple cooperative nodes to deliver data, without depending

on any individual ones. In MMCC [1], a mesh structure is

established for reliable data dissemination, random based and

distance based values are used as the forwarding-node-election

criteria. However, the random timer based criterion incurs

extra delay, and the distance based value criterion is not always

effective in dynamic WSNs.

Reinforcement learning provides a framework in which an

agent can learn control policies based on experiences and

rewards. In the standard reinforcement learning model, an

agent is connected to its environment via perception and

action, as shown in Fig. 1. On each step of interaction, the

agent receives an input, i, some indication of the current

state, s, of the environment; the agent then choose an action,

a, to generate as an output. The action changes the state

of the environment, and the value of the state transition is

communicated to the agent through a scalar reinforcement

learning signal, r. The agent's behavior, B, should choose

actions that tend to increase the long-term sum of values of

the reinforcement signal [8].

The underlying concept of reinforcement learning is Markov

Decision Process (MDP). A MDP models an agent acting in

an environment with a tuple (S,A,P,R), where S is a set of

states, A denotes a set of actions. P(s' Is, a) is the transition

model that describes the probability of entering state s' E S

after executing action a E A at state s E S. R(s, a, s') is the

reward obtained when the agent executes a at s and enters

s'. The goal of solving a MDP is to find an optimal policy,

1r : S t---+ A, that maps states to actions such that the cumulative

reward is maximized. Detailed information on reinforcement

learning can be found in [8].



Fig. 3. Cooperation between adjacent groups of cooperative nodes

1In the Q-Iearning algorithm, not only the data forwarding node m will
receive positive reward, but also the other cooperative nodes will get the
premium. It is because the other cooperative nodes make the correct decision
of electing m as the data forwarding node.

(3)

(2)

(1)

where dVn ,v
n
+

1
is the average distance between Vn and Vn +1 ,

which can be calculated as (2).

1 N

dVn ,vn+l = N L d i ,vn+l
i=O,iEVn

where N is the number of cooperative nodes in the Vn (for

simplicity, we assume N is identical for each group of eNs).

di 'V n +1 is the average distance between node i and Vn +1,

which can be calculated as (3).

1 N

di,vn+l = N L di,j
j=o,jEVn +l

In the initialization phase, node i exchanges its initial Q

value with the nodes in Vn- 1, Vn and Vn+1, by broadcasting

initialization messages.

D. Data Dissemination Phase

When a data packet is received by a number of nodes

in Vn , each node will compare its Q-value with those of

other cooperative nodes. The node which determines it has

the highest Q-value will forward the data packet to Vn +1, and

other nodes in Vn will deduce whether the packet forwarding

is successful or not, by overhearing the packet transmission

from Vn +1 to Vn +2 •

If the data packet is received by Vn+1 , nodes in Vn's task

of the current round of data forwarding are finished. Thus, all

the nodes in Vn will receive positive rewards and update their

Q-values, accordingly. 1

If the packet forwarding fails, all the nodes in Vn will

receive negative rewards (i.e., get punishment) and their

efficiency. Details of mesh cooperative structure construction

and parameter selection can be found in [7], [1].

C. Q-learning Initialization Phase

In the initialization phase, each node is assigned with an

initial Q-value. For node i E Vn , its initial Q-value (denoted

as Q~~i) is calculated based on the relative distance (compared

with its cooperative partners in Vn ) from node i to the nodes

in Vn +1, as shown in (1).

policy. Each node maintains the Q-values of itself and its

cooperative partners, which reflect the qualities (e.g., delay,

packet delivery ratio) of available routes to the sink. When

a packet is received by a group of eNs, each node will

compare its own Q-value with those of other nodes in the

eNs; the node which determines it has the highest Q-value

will be elected to forward the data packet to the adjacent eNs

towards the sink.

Each time a packet is forwarded, all the nodes in the group

of eNs will receive an immediate reward from the envi

ronment, which represents the quality of packet forwarding

in terms of delay and packet loss rate. Nodes then use the

rewards to update the Q-values, which will influence their

future decisions of forwarding-node-election.

The algorithm will reach convergence after a certain amount

of time, depending on the network size, node mobility and

density. Nodes can simply use the learned policy to take

appropriate actions, i.e., node with the highest Q-value will

forward the packet to the adjacent groups of eNs towards

the sink. To adapt to the dynamic nature of WSNs, MRL-CC

explores the environments with a certain probability c, namely

c-greedy method [10]. That is, with the probability of 1 - c,

the node with the the highest Q-value will forward the packet

to the adjacent eNs; and with the probability of c, a randomly

chosen node will forward the packet to the adjacent eNs.

Thus, without using complicated prediction techniques, or

explicitly frequent updating and maintaining of precise net

work state information, nodes can find the optimal cooperative

policies through experiences and rewards in dynamic environ

ments.

B. Multi-hop Cooperation Structure Construction Phase

To construct a multi-hop mesh cooperative structure, a set of

nodes, termed as reference nodes (denoted as RNs) between

the source and the sink (the source and the sink are also

RNs) is first selected. The RNs are determined sequentially

starting from the source node to the sink node, and the distance

between two adjacent RNs is an application specific value,

which is a trade-off between reliability and energy efficiency.

Once the RNs are determined, a set of nodes around each RN

will be selected as cooperative nodes (denoted as eNs), and

thus, a multi-hop mesh cooperative structure is constructed in

this phase. Data packets originated from the source will be

forwarded to the sink by groups of eNs relaying.

A part of the mesh structure is shown in Fig. 3, where

the set of nth cooperative group is denoted by Vn , and its

adjacent groups are denoted as Vn - 1 and Vn +1, which are one

hop farther and closer towards the sink than Vn , respectively.

Ideally, each node in Vn is connected with all the nodes in

Vn - 1 and Vn +1 ; however, the links are unreliable and the

qualities are varying over time and space due to the time

varying wireless channels and dynamic network topology.

The number of cooperative nodes in each eNs, and the

number of eNs in the network, depend on the network size,

node density and the trade-off between reliability and energy



(5).

Q ~ + l ( s L a ~ ) = (1 - a)Q~(sL a~) + a(r~+l(s~+l) +
Jiw(i,j) max Q j ( s ~ , a ~ ) +

ajEAj

Ji '" w( i, if) max Qi' ( s ~ " a ~ , )) (7)
L..J a.,EA.,

i'EI,i'¥=j 'L 'L

where a is the learning rate, which models the updating rate

of Q-values. r denotes the immediate reward of execution of

the action. The weight of future rewards is defined by Ji. I is

the set of i's cooperative partners in Vn . w( i, j) models how

strongly node i weights of j's rewards in average. Eq. 7 shows

that node i's Q-value is a weighted sum of the action's reward,

i's Q-value, the maximum Q-value of j, and those of all i's

cooperative partners.

A. Simulation Environments

We simulate a WSN where 200 sensor nodes are randomly

distributed in a 400m x 200m rectangular area. We assume

nodes are stationary in the simulations, except in the mobile

scenario where 50 nodes are randomly chosen as mobile nodes

and other are stationary. The source and the sink nodes are

chosen randomly in each simulation run. Constant packet

arrival rate with 5p/s, and varying packet arrival rate (the

probability of packet arrival rate of each sensor node follows

a Poisson distribution with average ,\ = 5p/ s), are used in the

simulations.

Castalia [12] wireless sensor network simulator, which is

based on the OMNeT++ discrete event simulation platform, is

used as the simulation environment.

Table I lists the detailed simulation parameters.

B. Comparison with MMCC

The average end-to-end delay to the sink node in different

wireless channel conditions are shown in Fig. 4 and Fig. 5,

respectively.

The simulation results show that when the wireless channel

is in a perfect condition, i.e., no error occurs in transmissions,

Eq. (5b) is used to calculate the reward when the packet

forwarding fails, The negative reward reflects the delay caused

by the unsuccessful packet transmission from Vn to Vn +1•

The updating of Q-value iterates at each node in each for

warding procedure, and distributed value function - distributed

reinforcement learning algorithm (DVF-DRL) [11] is used in

the updating iteration.

For I-hop forwarding, at iteration t, node i E Vn forwards

a packet to Vn +1, and then j E Vn +1 is elected to continue

packet forwarding. Node i updates its Q-value as (7).

IV. PERFORMANCE EVALUATION

To study the network performance of MRL-CC, we compare

it with MMCC, a multi-hop mesh structure based cooperative

communication scheme. A random forwarding-node-election

scheme is also implemented and its performance is used as a

comparison baseline.

(6)

(4)

1 N

dVn,sink = N L di,sink

i=O,iEVn

A = { af
am

Execution of af means that node i's forwarding of the

packet from Vn to Vn +1, and am denotes that node i is

monitoring the packet's forwarding.

c) Reward Function: The reward function is defined as

{

( dVn,sink-d~n+l,sink) /(Tvn+1 -TVn) (5a)
rwd(i) = dVn,s'Lnk Trrnn

Trf (5b)- Trrnn
(5)

Eq. (5a) is used to calculate the reward when the packet for

warding is successful, where dVn ,sink is the average distance

between Vn and the sink, which can be calculated as (6).

TVn+
1

and TVn are the packet forwarding time at Vn +1

and Vn , respectively, observed at node i using the local

clock. Trmn is the maximum amount of time that can be

elapsed in the remaining path to the sink to meet the QoS

requirements on end-to-end delay. Trmn is updated after each

packet forwarding, and the value is encapsulated in the data

packet. The positive reward reflects the quality of the packet

forwarding, i.e., relative progress towards the sink over a time

unit.

E. Q-learning Algorithm Implementations

In the context of reinforcement learning, for node i E Vn ,

we define the states, actions and rewards as follows:

a) State: Si = {k}, k E {Vn - 1 , Vn , Vn +1 }.

b) Action:

Q-values will be updated. Then, another forwarding-node

election will be conducted in Vn for packet re-transmission

based on the updated Q-values. There are two reasons may

cause the failure of packet forwarding:

• forwarding election failure: in this case, the node elected

to forward the data packet is not eligible due to the out

of-date Q-value stored in other nodes in Vn ,

• packet transmission failure: the packet is corrupted or

collided during the transmission from Vn to Vn +1•

To address the problem of packet forwarding failure issues,

each node maintains a timer Trf for packet re-forwarding. That

is, if nodes in Vn do not overhear that the packet delivery from

Vn +1 to Vn +2 before the timer expires, nodes in Vn deduce

the packet is not successfully forwarded from Vn to Vn +1 and

another forwarding procedure will be restarted by nodes in Vn

using the updated Q-values.

When the Q-Iearning algorithm reaches convergence, nodes

can simply use the learned cooperative policy to take appropri

ate actions, i.e., node with the highest Q-value will be elected

to forward the packet to Vn +1, and nodes with lower Q-values

are monitoring the packet forwarding and will help the packet

delivering if the packet forwarding from Vn to Vn +1 fails.



TABLE I

SIMULATION PARAMETERS

Parameters Value

Number of sensor nodes 200

Simulation area 400mx200m

Wireless channel model Log shadowing wireless model

Path loss exponent 2.4

Collision model Additive interference model

Mobility model Random waypoint model

Physical and MAC layer IEEE 802.15.4 standard

Packet length 40 bytes

Communication range 50 m

Data transmission rate 250 kbps

Simulation time 400 s

Number of simulation runs 10

N 4

€ 0.1
Q 0.1

~ 0.5

w( i, j) 0.5, if j is the forwarding node

~, if j is the cooperative partners
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Fig. 4. Average end-to-end delay to the sink node (link failure ratio = 0)

MRL-CC and MMCC (distance based) have similar perfor

mances on the end-to-end delay. However, when the error

prone wireless channel is used in simulation, MRL-CC has

better performance than MMCC. The reason is that in perfect

wireless channel conditions, distance based protocols such as

MMCC, are always effective, i.e., nodes which are closet to

the sink are often the best forwarding candidates. However, in

realistic channel conditions, it is not true that nodes closer to

sink always have higher link qualities and should be elected

as the forwarding nodes, and thus the use of distance based

criterion in forwarding election is not always effective. For

MRL-CC, by utilizing the knowledge learned from experiences

and rewards, nodes with higher link qualities are more likely

to be elected as the forwarding nodes in the eNs, and thus,

the forwarding node assignments in MRL-CC is more adaptive

than that in MMCC.

Fig. 6 and Fig. 7 illustrate the average packet delivery ratio

from the source node to the sink node with constant and

varying packet arrival rate, respectively.

We can observe that with constant packet arrival rate, MRL-

1

-·- MRL-CC t
......... MMCC:distance-based
---.A.--- Random-based

60 L..-.l.....-L...-.l.....-L.........iI..........lL.........iI..........lL.........iI.........JL.........iI.........JL.........l...........L.........l----l

o 50 100 150 200 250 300 350 400

Simulation time (s)

Fig. 6. Average packet delivery ratio to the sink node with constant packet
arrival rate

CC and MMCC have similar performances on the packet

delivery ratio. However, when the packet arrival rate varies,

MRL-CC performs better than MMCC. The simulation results

also verify that MRL-CC is more adaptive and flexible than

MMCC in dynamic network conditions.

The impact of network traffic load on average end-to-end

delay, and the impact of node mobility on average packet

delivery ratio are shown in Fig. 8 and Fig. 9, respectively.

The simulation results show that MRL-CC performs better

than MMCC, especially when the network traffic becomes

heavy and/or the network mobility level increases. It is because

that MMCC selects data forwarding nodes either by a random

value based criterion or a distance based criterion, and thus

is lacking of flexibility to handle the network dynamics.

In comparison, MRL-CC is much more intelligent in data

forwarding-node-election since it learns the optimal cooper

ative policy through experiences and rewards. The flexible

nature of computer machine learning allows it to adapt to the

dynamic environment well, especially in networks with heavy

traffic in highly dynamic scenarios.

We also notice that for all the QoS metrics in simulations,

MRL-CC performs better after the simulation runs for a certain

amount of time (i.e., around 50s). This is mainly because that

there is a learning period in any learning based protocols, in
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Fig. 8. The impact of network traffic load on average end-to-end delay

which agents (sensor nodes in this paper) explore all the avail

able decisions (cooperative policy) and estimate the decision

qualities, so that the network performance are improved over

time. When the learning procedure is finished, nodes can take

the optimal actions according to the state information.

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we have investigated the use of cooperative

communications for QoS provisioning in resource-constrained

wireless sensor networks, and proposed MRL-CC, a multi

agent reinforcement learning based multi-hop mesh coopera

tive communication mechanism for wireless sensor networks.

Simulation results show that MRL-CC performs well in terms

of a number of QoS metrics and fits well in large scale

networks and highly dynamic environments.

In future research, service differentiation and system fair

ness will be considered in the cooperative mechanism design.

Moreover, we will examine the use of adaptive cooperative

coding scheme (e.g., channel coding) and employ power

allocation scheme to improve the network performance and

prolong the network lifetime.
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