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A Novel Cooperative Multi-Stage Hyper-Heuristic for

Combination Optimization Problems

Fuqing Zhao�, Shilu Di, Jie Cao, Jianxin Tang, and Jonrinaldi

Abstract: A hyper-heuristic algorithm is a general solution framework that adaptively selects the optimizer to address

complex problems. A classical hyper-heuristic framework consists of two levels, including the high-level heuristic

and a set of low-level heuristics. The low-level heuristics to be used in the optimization process are chosen by

the high-level tactics in the hyper-heuristic. In this study, a Cooperative Multi-Stage Hyper-Heuristic (CMS-HH)

algorithm is proposed to address certain combinatorial optimization problems. In the CMS-HH, a genetic algorithm

is introduced to perturb the initial solution to increase the diversity of the solution. In the search phase, an online

learning mechanism based on the multi-armed bandits and relay hybridization technology are proposed to improve

the quality of the solution. In addition, a multi-point search is introduced to cooperatively search with a single-point

search when the state of the solution does not change in continuous time. The performance of the CMS-HH

algorithm is assessed in six specific combinatorial optimization problems, including Boolean satisfiability problems,

one-dimensional packing problems, permutation flow-shop scheduling problems, personnel scheduling problems,

traveling salesman problems, and vehicle routing problems. The experimental results demonstrate the efficiency and

significance of the proposed CMS-HH algorithm.

Key words: hyper-heuristic algorithm; Multi-Armed Bandits (MAB); relay hybridization technology; combinatorial
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1 Introduction

Combinatorial Optimization Problems (COPs) widely

exist in actual applications, including flight itineraries,

scheduling, economic management, transportation, and

logistics management[1]. The applications in these

domains promote the rapid development of enterprises
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and the national economy.

The objective of COPs is to search for the optimal

solution from the feasible solution set of combinatorial

problems. COPs are normally difficult to be solved

because of a widespread and heavily constrained search

space. Numerous COPs are considered as the NP-hard

problems, which are difficult to be addressed with exact

methods. Classical mathematical methods were initially

used by researchers to address COPs. Nevertheless, the

performance of the mathematical methods is limited by

the problem scales. In contrast, meta-heuristics have

been used to solve COPs because this method can

reasonably find a feasible solution within an acceptable

timeframe[2–4]. The Swarm Intelligence (SI) algorithms,

which are used to address continuous optimization

problems or COPs, are widely studied and effective to

address large-scale problems[5, 6]. The SI algorithms are
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inspired by the laws of human intelligence and social or

natural phenomena in biological groups. Representative

SI algorithms include the Genetic Algorithm (GA)[7, 8],

Particle Swarm Optimization algorithm (PSO)[9], and

Ant Colony optimization algorithm (ACO)[10].

Studies of the SI algorithm have been sustained for

decades. The SI algorithms have achieved significant

success in distributed flow-shop scheduling[11–13]. A

Discrete Water Wave Optimization algorithm (DWWO)

was proposed for the blocking flow-shop scheduling

problem. The multi-constraint blocking flow-shop

scheduling optimization method, DWWO, first uses a

heuristic method and disturbance process to initialize

the population. Then, the two-step refraction process

is used to search the solution space effectively, and

the path reconnection mechanism is integrated into the

refraction process. Finally, a variable neighborhood

search algorithm is implemented to enhance the local

mining ability of DWWO[14]. A Discrete Fruit fly

Optimization Algorithm (DFOA) was proposed for

the distributed blocking flow-shop scheduling problem.

Three stages are included in a DFOA. In the initialization

stage, the central position of all populations is initialized

by the construction heuristic method. In the smell-

based foraging stage, a neighborhood structure based

on insertion is used to guide the algorithm for global

search. In the vision-based foraging stage, a local search

algorithm is used to strengthen the local search mining

capacity of the scope. At the same time, the simulated

annealing-like receiving mechanism is used to prevent

the algorithm from falling into a local optimum[15]. A

Multi-Objective Discrete Invasive Weed Optimization

(MODIWO) algorithm was proposed to address the

multi-objective blocking flow-shop scheduling problem

with a due date. In MODIWO, the initial population is

first constructed using certain heuristic methods. Then,

the amounts of seeds produced by each individual are

determined by a breeding strategy based on a reference

line. At the same time, a spatial diffusion model based

on sliding insertion is used to spread all the seeds to

the whole solution space. In addition, a self-tuning

phase in its main framework is added to promote the

local mining ability of the algorithm. Finally, the

next-generation population is generated through the

competition exclusion mechanism based on Pareto[16].

The Discrete Pigeon-Inspired Optimization algorithm

(DPIO) that uses the metropolis acceptance criterion

was proposed to address Traveling Salesman Problems

(TSP)[17]. The effectiveness of the DPIO is verified by

numerous experimental results. The optimal foraging

algorithm was proposed to address multi-objective

Permutation Flow-shop Scheduling Problems (PFSP)[18].

In this algorithm, a PFSP model that contains four

objectives is established. These four objectives include

the make-span, total tardiness, energy consumption cost,

and inventory holding cost. A variant of Vehicle Routing

Problems (VRP) that considers carbon emissions was

proposed in fresh food e-commerce[19]. A variable

neighborhood search approach is introduced to address

the VRP. An Improved Artificial Bee Colony algorithm

(IABC) was proposed to address VRP with time

windows (VRPTW)[20]. In the IABC, two problem-

specific lemmas are derived to address the cross-

synchronization problem. Furthermore, a local search

static, which is based on variable length, is introduced to

promote the exploitation ability. The effectiveness of the

IABC is verified by a statistical analysis of 55 instances.

Most of the optimization methods are custom-tailored

to specific problems. Usually, the tailored heuristic

methods depend on problem-specific knowledge.

Therefore, the specific methods do not always perform

well when applied to other problems without significant

modification. On the basis of the above shortcomings,

the operations of specific problems are encapsulated

as Low-Level Heuristics (LLHs). The High-Level

Heuristics (HLHs) are used to control the selection of

LLHs. The proposed algorithm is not used to optimize

a single problem, but to optimize multiple problems

without making major parameter adjustments. A

classical hyper-heuristic framework consists of a control

layer and a set of LLHs. A hyper-heuristic is used

to explore a solution space composed of a given set

of LLHs. The LLH is applied in solutions directly

and a new solution is created subsequently[21]. The

pivotal motivation behind hyper-heuristic research is

to enhance the level of generality of solution methods

for computational search problems[22]. One of the

motivations of this paper is to use one algorithm to

optimize multiple problems. Another purpose is to

integrate the advantages of several heuristic components

into a hyper-heuristic framework. In the classical hyper-

heuristic framework, the domain barrier is used to

logically separate the problem domain from the control

layer[23]. Early work on hyper-heuristic focuses on

the research of selection hyper-heuristic algorithms,

which consist of the heuristic selection mechanism and

acceptance criteria. In the iterative process, a suitable

heuristic is chosen from a set of LLHs and applied to
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the incumbent solution. Then, the candidate solution

is judged whether to be accepted according to the

acceptance criteria[24]. The LLHs are certain problem-

specific operators that are diverse for different problem

domains[25]. The meta-heuristics and hyper-heuristics

are used as LLHs with the development of hyper

heuristics. The size of an LLH set is controlled by

specific approaches that are relay hybridization or tabu

search. Because each instance has a different landscape,

the components of HLHs have a great effect on the

performance of hyper-heuristics[26]. Therefore, interest

is growing in designing a novel heuristic selection

mechanism or developing different acceptance criteria.

A good high-level heuristic design requires that an

appropriate LLH is selected at any particular point

according to the current state of the solution, and a good

design of acceptance criteria guides the search process

toward an optimistic region[27].

Most of the hyper-heuristic algorithms published

are selection hyper-heuristics. The LLHs, which are

categorized as construction heuristics and perturbation

heuristics, are operators related to specific problems.

The high-level heuristic intelligently selects an LLH that

is appropriate for the state of the solution. The heuristic

selection mechanism and acceptance criteria are two

crucial components of hyper-heuristics. For example,

the Monte Carlo Tree Search (MCTS) was introduced

to explore a search space that is modeled as a tree[28].

In the tree, each LLH is considered as a node. A few

steps of the MCTS are performed to update the binary

tree. The Monte Carlo acceptance criterion, which is

introduced to the hyper-heuristics, is used to accept

the novel solution. The Gene Expression Programming

(GEP) algorithm was introduced to generate HLHs[29].

In the framework, a population formed by HLHs was

used to evolve. Each high-level heuristic is divided

into the heuristic selection mechanism and acceptance

criteria according to specific rules. The roulette wheel

tactic is used to choose the individual according to the

fitness values. A hyper-heuristic, which circularly uses

two interactional hyper-heuristics in multiple stages,

was proposed[30]. In the algorithm, the dominance-based

hyper-heuristic is used to decrease the number of LLHs,

which helps to exclude the inferior heuristic from the

set of the LLHs. In addition, the relay hybridization,

which uses the second heuristic for the novel solution

generated by the previous heuristic, is introduced in

another stage. The purpose of relay hybridization is to

obtain more potential heuristics by pairing two existing

heuristics. Furthermore, a method based on the adaptive

threshold acceptance was introduced to accept the novel

solution. Reinforcement learning was embedded in a

hyper-heuristic framework to address the multi-objective

optimization problems[31]. In the algorithm, a robust

selection method of LLHs and multiple acceptance

methods were used to generate adequate solutions.

The selection of LLHs depends on the feedback from

the subsequent decisions[32]. The feedback mechanism

embedded in diverse search methods was used to

guide the next search direction. The online learning

static is embedded in the hyper-heuristic framework to

handle feedback during the search process. A choice

function based on online learning was proposed to

address aircraft flight deck operations scheduling[33].

The online learning mechanism, which is based on

dynamic Thompson sampling, has a considerable effect

on the performance of local search[26]. Offline learning

is another learning mechanism that is trained on sample

problem instances[34]. The parameters are determined

according to the feedback information and used to guide

test instances. The mixed learning mechanism, which

combines online and offline learning, was proposed

to select the appropriate low-heuristics. In this study,

the online learning mechanism is used in the single-

point search. Furthermore, the relay hybridization is

embedded in the single-point search to promote the

search ability of the Cooperative Multi-Stage Hyper-

Heuristic algorithm (CMS-HH). The contributions of

this paper are summarized as follows:

A GA is introduced to perturb the initial solution to

increase the diversity of the solution.

An online learning mechanism based on the

Multi-Armed Bandits (MAB) mechanism and relay

hybridization technology is proposed to improve the

quality of the solution.

The multi-point search is introduced to cooperatively

search with a single point when the state of the solution

does not change in continuous time.

The remainder of this paper is described below. The

description of problems is introduced in Section 2. The

proposed algorithm is introduced in Section 3, and

Section 4 is the experiment and discussion. Conclusions

and future work are presented in Section 5.

2 Problem Description

The Hyper-heuristic Flexible framework software

(HyFlex) is used to study the hyper-heuristic
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algorithm. HyFlex is an interface that is used to support

the research of hyper-heuristics. The interface, which

involves six domains, is achieved by Java[21]. The

purpose of the Cross-domain Heuristic Search Challenge

(CHeSC) is to determine the best algorithm that is

well generalized to various examples of cross-domain

problems. This hyper-heuristic flexible framework

contains six problem domains. Five instances need to be

optimized for each domain. The researchers only focus

on the design of the high-level strategies.

In HyFlex, each domain contains a set of LLHs,

initial solution construction methods, and optimization

functions. A set of different LLHs is used to disturb the

complete solution, and a complete candidate solution is

established subsequently. These heuristics are classified

as mutation heuristics that modify a solution by moving,

exchanging, adding, or deleting components of the

solution, not ensuring the quality of the solution. The

ruin-recreate heuristic is used to destroy a part of

a complete solution, rebuild a novel, and complete

solution. The local search heuristic iteratively generates

a neighborhood solution and then receives a solution of

equal or better quality until the termination conditions

are met. The difference between the two heuristics is

that the local search heuristic is an iterative process

that merely accepts improved solutions. The crossover

heuristic combines the partial components of two given

solutions to produce a novel solution. In HyFlex, each

LLH is related to two parameters. The behavior of

an LLH is controlled by two parameters: the search

depth and mutation intensity. The number of heuristics

provided by HyFlex for each supported problem domain

are shown in Table 1. In Table 1, the variable “Xover”

represents the crossover heuristics, “HC” represents

the hill climbing heuristics, “R&R” represents the

ruin-recreate heuristics, “M” represents the mutational

heuristics, “Total” represents total number of heuristics

for each problem domain. The diverse instances in

HyFlex are derived from eminent benchmark suites. Six

optimization problem domains are provided via HyFlex.

Table 1 Number of different types of low-level heuristic in

different problem domains.

Number Domain Xover HC R&R M Total

1 SAT 2 2 1 6 11

2 BP 1 2 2 3 8

3 PFSP 4 4 2 5 15

4 PS 3 5 3 1 12

5 TSP 4 3 1 5 13

6 VRP 2 3 2 3 10

(1) Boolean SATisfiability (SAT) problems: The

SAT determines the maximum number of clauses in

the conjunctive normal form of a given Boolean form.

This result is achieved by assigning truth values to the

formula variables. The goal is to minimize the number of

items that are not met[35]. The properties of the problem

instances are exhibited in Table 2. In Table 2, “Variables”

represents the number of variables in a given Boolean

logic formula, and “Clauses” represents the number

of clauses of Boolean formula. The initial solution is

constructed by randomly assigning a true or false value

to each variable of the conjunctive normal form formula,

and the quality of the solution is measured by the number

of unsatisfied terms in the given formula. In SAT, the

physical meaning of the objective function value is the

number of clauses in the conjunctive normal form of a

given Boolean form.

(2) One-dimensional Bin Packing problems (BP):

Given items with stationary weight and bin with a

specific capacity, the purpose is to put all the items

into the bins using a minimum number of bins. This

optimization process must satisfy the specific constraints.

Every item is only packed into one bin. The overall

size of items for every bin is not allowed to exceed

the capacity of the bin. The ultimate objective of the

optimization is to use the minimum number of bins

as much as possible[36]. The properties of the problem

instances are exhibited in Table 3, where “Capacity”

represents the capacity of single bin, and its unit is kg.

“Pieces” represents the total number of goods. The initial

Table 2 Boolean satisfiability problems instance.

Number Instance Name Variables Clauses

1 SAT1
parity-games/instance-

n3-i3-pp
525 2276

2 SAT2
parity-games/instance-

n3-i4-pp-ci-ce
696 3122

3 SAT3
parity-games/instance-

n3-i3-pp-ci-ce
525 2336

4 SAT4
jarvisalo/eq.atree.braun.

8.unsat
684 2300

5 SAT5
highgirth/3SAT/HG-

3SAT-V300-C1200-4
300 1200

Table 3 One-dimensional bin packing instance.

Number Instance Name Capacity (kg) Pieces

1 BP1 triples2004/instance1 1000 2004

2 BP2 falkenauer/u1000-01 150 1000

3 BP3 test/testdual7/binpack0 100 5000

4 BP4 50–90/instance1 150 2000

5 BP5 test/testdual10/binpack0 100 5000
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solution is constructed by the first fit heuristic method. A

sequence of items is randomly generated, and the items

are put into bins in turn until the constraints of the bin

are violated. The quality of the solution is assessed in

the following:

quality D 1 � .1=nb/ �

nb
X

iD1

.fi=C /2 (1)

where nb is the number of bins, fi is the total size of

the items in bin i , and C is the bin capacity. In BP, the

physical meaning of the objective function value is the

percentage of empty parts of bins in the capacity of all

used bins.

(3) PFSP: The PFSP is described as follows: given

n jobs, each job is processed on m machines according

to the same process route. The mission is to seek

the sequence of n jobs on m machines with the

minimal completion time of the last job. The following

constraints must be respected by the generated sequence.

Each job must be processed on one machine at a time,

and each machine cannot process multiple jobs at the

same time. Following the processing sequence of the

jobs, the machine cannot remain idle when a job is

ready to be processed[37]. The properties of the problem

instances are exhibited in Table 4. In Table 4, “Jobs”

represents the total number of jobs for processing, and

“Machines” represents the total number of machines in

a single factory. The initial solution is generated by the

Nawaz-Enscore-Ham(NEH) algorithm. It first assigns

priority according to the total processing time of the

jobs and then continuously inserts the job to obtain a

complete schedule. In PFSP, the physical meaning of

the objective function value is the completion time of

the last job in a job sequence. The unit of the objective

function value is hour.

(4) Personnel Scheduling problem (PS): Personnel

scheduling is a famous combinatorial optimization

problem. The personnel scheduling is described as

follows. The detailed arrangement shifts of a working

day, predefined working days, and specific work are

categorized to some employees. The task is to arrange

for all employees to satisfy specific requirements and

some preferences within a reasonable period[38]. The

Table 4 Permutation flow shop instance.

Number Instance Name Jobs Machines

1 PFSP1 100 � 20/2 100 20

2 PFSP2 500 � 20/2 500 20

3 PFSP3 100 � 20/4 100 20

4 PFSP4 200 � 20/1 200 20

5 PFSP5 500 � 20/3 500 20

properties of the problem instances are exhibited in

Table 5. In Table 5, “Staff” represents the number of

employees, “Shift types” represents the number of shift

types, and “Days” represents the predefined working

days of a single shift. The initial solutions are created

by a method based on the neighborhood operator. In this

method, the new shifts are gradually added to the roster

until all staff are scheduled. The quality of the solutions

is measured by the number of satisfied soft constraints.

In PS, the physical meaning of the objective function

value is the time required to complete all shifts. The unit

of the objective function value is hour.

(5) TSP: Given some cities and related coordinates,

the purpose is to seek the shortest path. Every city

is reached only one time, and the route is ended

at the starting city. The target is to minimize the

sum of traveling distances[39]. The properties of the

problem instances are exhibited in Table 6. In Table 6,

“Cities” represents the total number of cities. The initial

solution is created by randomly generating permutation

sequences. The quality of the solution is measured by the

total traveling distance of the solution path. The value of

the objective function of a given solution is calculated

as follows:

f D

nc
X

iD1

nc
X

i¤j;j D1

Dij xij (2)

where xij is the path from city i to j , Dij is the distance

between cities i and j , and nc is the number of cities.

In TSP, the physical meaning of the objective function

value is the total traveling distance of connecting all

cities. The unit of the objective function value is km.

(6) VRP: Various customers have different demands

and service times. A few vehicles have a definite capacity.

Table 5 Personnel scheduling problem instance.

Number Instance Name Staff Shift types Days

1 PS1
Ikegami-3Shift-

DATA1.2
25 3 30

2 PS2 MER-A 54 12 42

3 PS3 ERRVH-B 51 8 42

4 PS4 BCV-A.12.1 12 5 31

5 PS5 ORTEC01 16 4 31

Table 6 Traveling salesman problem instance.

Number Instance Name Cities

1 TSP1 pr299 299

2 TSP2 usa13 509 13 509

3 TSP3 rat575 575

4 TSP4 d2152 2152

5 TSP5 D1291 1291
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The mission is to seek the minimum cost sets of routes

that serve all customers. The starting and ending points

for each vehicle must be the same depot. The vehicle

capacity cannot exceed the total demand of each route.

Furthermore, every customer may only be visited once

by one vehicle during its time window[40]. The properties

of the problem instances are exhibited in Table 7.

In Table 7, “Vehicle” represents the total number of

vehicles, and “Capacity” represents the capacity of single

vehicle. The unit of Capacity is kg. The set of an initial

solution are created by the following rules: An empty

route is created first, and any customer who does not

breach any constraints will be added to the present route

until all customers are visited. Furthermore, a new route

will be created if no customer is added to the current

route. The procedure is reduplicated until the customers

who meet the constraints are allocated to the related

route. The quality of the solution is measured by the

total travel distance, which is calculated in the following:

F D nv � Cv C

nv
X

iD1

di (3)

where nv is the number of vehicles, Cv is a fixed constant

with a value of 1000, and di is the distance traveled

by the vehicles. In VRP, the physical meaning of the

objective function value is the total length traveled by all

vehicles. The unit of the objective function value is km.

3 Proposed CMS-HH Algorithm

3.1 Proposed hyper-heuristic framework

The HLHs and LLHs are included in the hyper-

heuristic framework. The high-level heuristic consists

of two ingredients: a heuristic selection mechanism

and acceptance criterion. A series of perturbative LLHs,

initial solution construction, objective function, and the

memory mechanism are included in the framework. The

proposed algorithm is started from an initial solution,

and the neighborhood structure is iteratively explored

by applying perturbed LLHs. This hyper-heuristic

framework continuously calls the following steps at a

certain stage:

Table 7 Vehicle routing problem instance.

Number Instance Name Vehicles Capacity (kg)

1 VRP1 Homberger/RC/RC2-10-1 250 1000

2 VRP2 Solomon/RC/RC103 25 200

3 VRP3 Homberger/C/C1-10-1 250 200

4 VRP4 Solomon/R/R101 25 1000

5 VRP5 Homberger/RC/RC1-10-5 250 200

� The selection mechanism is invoked, and a

disturbance heuristic is chosen from the set of LLHs.

� A solution is randomly selected from the memory

mechanism.

� The selected LLH is applied to the incumbent

solution to create a candidate solution.

� The candidate solution is assessed by invoking the

objective function. If the candidate solution is superior

to the existing solution, accept it. If not, decide whether

to accept it by using the selection mechanism.

� The memory mechanism and related parameters are

updated, and the next-generation iteration is continued.

The entire framework of the multi-stage hyper-

heuristic is presented in Fig. 1. In this framework, the

control layer of the proposed hyper-heuristic algorithm

is separated from the problem domain through the

domain barrier. The multi-stage level is employed to

cyclically select two interacting HLHs, namely S1HH

and S2HH. Where “Stagek” represents the k-th stage,

“SiHH” means that S1HH or S2HH is selected in Stagek .

Each HLH consists of a heuristic selection mechanism

and moving acceptance criteria. The heuristic selection

is used to choose one heuristic (LLHk/ from the set

of LLHs according to the Roulette Wheel Strategy

(RWS). The selected LLH is applied to the incumbent

solution (Sincumbent/. A new candidate solution(Scandidate/

is generated subsequently, “Sbest” represents the best

solution obtained at a certain stage. The acceptance

criteria are used to accept the candidate solution. The

pseudocode of proposed hyper-heuristics is shown in

Algorithm 1, where p is a random probability within

interval (0,1). The calculation of probability pr is shown

in Eq. (4).
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Fig. 1 Framework of the multi-stage hyper-heuristic.
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Algorithm 1 Pseudocode of hyper-heuristic

1: Sincumbent  init()

2: while notSatisfied (terminationCriteria) do

3: count count + 1;

4: if notSatisfied (restart condition) then

5: Single-point search;

6: else

7: Multi-point search;

8: end

9: Update pr ;

10: if p > pr then

11: hindex  select one heuristic by MAB;

12: Scandidate  apply heuristic(hindex, Sincumbent/;

13: Update the set of probability for hindex;

14: else

15: hr1  select the first heuristic by RWS;

16: Scandidate  apply heuristic (hr1, Sincumbent/;

17: if Scandidate  not best since the last re-init then

18: hr2  select the second heuristic by RWS;

19: Scandidate  apply heuristic (hr2; Scandidate/;

20: Update the set of probability for hr1 and hr2I

21: end

22: end

23: if accept (Scandidate/ then

24: Sincumbent  Scandidate;

25: end

26: if count == pl then

27: count 0;

28: end while

3.2 Proposed high-level strategy

The proposed hyper heuristic performs the search in

a stage-based method. During the search process, the

operation mechanism used in different stages is switched

iteratively. The initial solution is formed according to

the initialization method of diverse problem domains.

A memory mechanism that contains multiple initial

solutions is introduced to retain the diversity of the

solution. The MAB and relay hybridization technology

are introduced to single-point search[41, 42]. During the

single-point search, the switching of two searching

methods is determined by the probability pr , which is

calculated as follows:

pr D .npit

ı

pl/.ntotal�nrelayC1/=.nrelayC1/ (4)

where npit is the present number of iterations, pl is

the total number of iterations, ntotal is the number of

improved solutions obtained by the single-point search,

and nrelay is the number of improved solutions obtained

by the relay hybridization technology.

Two tactics are used to select appropriate LLHs in the

single-point search. The MAB is a sequential decision-

making problem, and the purpose of this strategy

is to maintain the balance between exploitation and

exploration. The exploitation, which is to ensure the best

return on past decisions, is used to select the LLH that

continuously improves on the incumbent solution. The

exploration, which is for obtaining a bigger payoff in the

future, is used to select the other LLH effectively. Relay

hybridization is a successful tactic used in the literature.

The pairwise heuristics are employed in the incumbent

solution to obtain a better solution. In other words, the

first LLH is applied in the incumbent solution to obtain

a poorer solution, and the second LLH is used in the

candidate solution to produce a better solution than the

incumbent solution. The MAB and relay hybridization

technique strategies are described below.

3.2.1 MAB

The MAB is an online learning mechanism. The

principle adopted by MAB is the upper confidence

bound. The number of LLHs is represented by Nop in

a certain problem domain. MAB selects an LLH that

maximizes the accumulated reward,

max
iD1;:::;NOP

D

0

B

B

B

@

qi.t/ C c

v

u

u

u

u

u

t

2 log

Nop
X

j D1

nj.t/

ni.t/

1

C

C

C

A

(5)

where c (c = 12) is a scaling factor, which maintains

the balance between the LLHs with a high probability

of reward and the LLHs that are infrequently applied.

ni.t/ is the number of times that the i-th LLH has been

applied up to time t . nj.t/ is the number of times that

a low-level heuristic has been called up to time t . The

qi.t/ is the average reward obtained by the i-th LLH at

time t , which is calculated in the following:

qi.tC1/ D
ni.t/ � qi.t/ C ri.t/

ni.t/

(6)

where ri.t/ is the value of the cumulative reward of the

i-th LLH at time t , which is calculated in the following:

ri.t/ D ..fin � fn/=fin/ � 100% (7)

where fin is the function value of the incumbent solution.

fn is the function value of the new solution generated by

applying the i-th LLH to the incumbent solution. The

number of times that each low-level heuristic ni calls

is initialized to 0, and the selection probability of each

low-level heuristic qi is initialized to 0. The pseudocode

of MAB is exhibited in Algorithm 2.

3.2.2 Relay hybridization technique

The relay hybridization technique is employed as the

number of current iterations increases. Two heuristics
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Algorithm 2 Pseudocode of MAB

1: for i D 1 to N do

2: ni  0;

3: qi  0;

4: end

5: while notSatisfied (terminationCriteria) do

6: if LLHs are not applied then

7: LLH Select one LLH randomly;

8: Apply the LLH;

9: end

10: else

11: Select one LLH using Eq. (5);

12: Apply the LLH;

13: end

14: Update ni and niC1;

15: Update qi using Eq. (6);

16: end while

are successively applied in an iteration. The selection of

the second heuristic depends on the choice of the first

heuristic. The strategy of roulette selection is introduced

to select the first heuristic. The reward mechanism is

used to update the selection probabilities of all LLHs.

The initial selection probability of all heuristics is

initialized as 1/M . M is the number of the LLHs for

each problem domain. The roulette wheel strategy is

applied to select an appropriate heuristic, and it is

subsequently applied to the incumbent solution. The

punishment and reward mechanisms are used to update

the probabilities of LLHs. If the quality of the generated

solution is improved, the heuristic is rewarded to update

the probability of an LLH being selected in the heuristic

set with Eq. (8), while the M �1 heuristics are penalized

with Eq. (9),

proi D � � .1 � proi /C proi�1 (8)

proj D proj �1 � � � proj �1 (9)

where � is the penalty coefficient, and � D 0:5 here.

The second heuristic choice is based on the fact that

the first heuristic does not find a superior solution to the

incumbent solution. For each low-level heuristic, a list

of length 10 is retained. The subscript of the LLH that

has obtained the best solution is retained in the list. The

oldest element is replaced when a new superior solution

is found, or the elements of the list are full. The heuristic

index is allowed to appear multiple times in the list,

because this combination helps to promote the quality

of the incumbent solution again. Finally, if the LLH

matched with the above conditions is found in the list,

the second heuristic is selected randomly from the set of

the LLHs.

3.2.3 Acceptance mechanism

The improved solution generated by each iteration is

used to update the elements in the list (see Algorithm 3,

lines 3 and 4). The moving acceptance based on the list

is used to accept the worsening solution (see Algorithm

3, lines 12–23), where l is the maximum number (default

6) of each threshold value that accepts the worsening

solution, index is the subscript index of the elements in

the list, and f . � ) represents the objective function for

different problem domains. If the maximum number of

worsening solutions that the list can accept is exceeded,

the multi-point search method is used for the next phase

of the search. The pseudocode of the moving acceptance

mechanism is presented in Algorithm 3.

In this study, the multi-point search, which employs

a GA, is used to cooperatively explore the search

space with the single-point search. In the population,

the individual is coded using the index of a set of

LLHs for a particular problem domain. An individual

is considered a chromosome in the population. Each

individual is randomly initialized with a different length

of the chromosome. Two-parent individuals selected by

tournament rules and crossover operations are executed

on the parent individuals to complete the evolution of

the population. In the process of evolution, the LLHs for

each individual are applied to the incumbent solution in

Algorithm 3 Pseudocode of the moving acceptance

1: Input: l , index, count

2: if (f .Scandidate/ < f .Sincumbent// then

3: if f .Scandidate/ < runbest list(0)) then

4: runbest list.push(f .Scandidate//;

5: index 0;

6: Sincumbent  Scandidate;

7: l  0;

8: end

9: else if f .Scandidate/ D f .Sincumbent/ then

10: Sincumbent  ScandidateI

11: else

12: if f .Scandidate/ <runbest list.get(index/ then

13: Sincumbent  ScandidateI

14: count count + 1;

15: end

16: if count > l then

17: count 0;

18: index index + 1;

19: end

20: if index > bestlist size then

21: perform multi-point search;

22: index index � 1;

23: end

24: end
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turn, and the incumbent solution is updated whenever

the quality of the solution is improved.

4 Experimental Results and Analysis

The experimental section mainly compares the

performance of the CMS-HH algorithm with other

algorithms. The objectives are as follows: (1) To

evaluate the benefits of combining MAB with relay

hybridization. (2) To verify the consistency and

generality of the CMS-HH in six various domains. In

this paper, two sets of experiments are conducted for

each problem instance. (1) The first set of experiments

compares the performance of the CMS-HH without

relay hybridization technology (denoted as HH1), the

CMS-HH without the MAB strategy (denoted as HH2),

and the combination of the two strategies used in the

hyper-heuristic separately. (2) The performances of

the CMS-HH and five other top algorithms in the

CHeSC competition are compared in the second set of

experiments.

The CMS-HH is run 31 times independently using

various random seeds and initial solutions according to

CHeSC rules. When the termination condition of the

algorithm is reached, the runtime is over, which is 600

seconds. The standard software provided by the CHeSC

competition website is used to fairly compare among

diverse algorithms for various platforms. Furthermore,

the percentage deviation of the best value from the

comparison algorithms is calculated as follows:

�.%/ D .bestCMS-HH � best�/=best� � 100% (10)

where bestCMS-HH is the minimum value obtained by the

CMS-HH, and best* is the minimum value produced

by other comparison algorithms. The performance of

the CMS-HH is compared with HH1, HH2, and other

existing hyper-heuristics to validate the consistency,

generality, and effectiveness of CMS-HH algorithms.

The Formula One System is used to assess the

performance of the CMS-HH algorithm with other

compared algorithms. The same method is used by the

CHeSC organizers to rank diverse algorithms.

4.1 Parameters setting

Six instances selected from diverse problem domains

are tested to obverse the performance of the proposed

algorithm under the different parameter settings. The

proposed algorithm is run 10 times individually for

selected instances. Each LLH in HyFlex is related to

a parameter that affects its behavior to a certain extent.

The performance of the proposed algorithm is affected

by two numerical parameters: ˛ and ˇ.0 6 [˛; ˇ� 6

1/; representing the intensity of mutation and depth

of search, respectively, which control the behavior of

certain LLHs. Through a lot of simulation experiments,

two numerical parameters in the CMS-HH are suggested

as follows: ˛ D 0:4 and ˇ D 0:3.

4.2 Computational results of the CMS-HH

compared to HH1 and HH2

The comparison of the CMS-HH, HH1, and HH2 across

six domains is presented in the first set of experiments.

Five instances are contained in each domain for a total of

30 instances. The experimental results of the CMS-HH,

HH1, and HH2 for the 30 instances are summarized in

Table 8, where “Min” represents the minimum value

of objective function. “Avg” represents the average

values of 31 runs for each instance. “Std” represents the

standard deviation, and “Median” represents the median

of objective function over 31 trials for each instance. For

the minimum values of objective function, the CMS-HH

outperforms, matches, and underperforms HH1 on 21,

7, and 2 instances, respectively. CMS-HH outperforms

HH2 on 18 instances. In addition, the consistency of

CMS-HH is analyzed by the standard deviation and

the median. the standard deviation is calculated in the

following:

std D

v

u

u

t

1

N1

N1
X

iD1

.Xi � �/2 (11)

where N1 (N1 D 31/ is the run times, Xi is the objective

value of each run, and � is objective average value of

N1 runs.

The standard deviation of CMS-HH is superior to

those of HH1 and HH2 in most instances. The following

conclusions are obtained regarding the median: CMS-

HH outperforms, matches, and underperforms HH1 on

19, 5, and 6 instances, respectively. CMS-HH obtained

29 better results than HH2 and matched HH2 on 1

instance.

The various statistical conclusions considering the

performance of CMS-HH, HH1, and HH2 are obtained.

In addition to the above results, the Wilcoxon test is used

to verify the statistical performance differences between

the CMS-HH algorithm and two comparison algorithms

in Table 9. Expressly, two pairwise comparisons between

CMS-HH and the other algorithms are designed to

visualize the significance of the proposed MAB strategy

and relay hybridization technology. The Wilcoxon test

uses the sign test of paired observation data to deduce the

probability when the difference appears. RC represents
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Table 9 Statistical analysis of Wilcoxon’s rank-sum test.

CMH-HH
vs.

RC R� Z p-value
 D 0:05

p-value<?

 D 0:1

p-value<?

HH1 377 88 �2.972 2.96�10�3 Yes Yes

HH2 408 570 �3.610 3.06�10�3 Yes Yes

positive rank. R� represents negative rank. In the

Wilcoxon test, p-value is the probability of sample

observation results when the original hypothesis is

true, if p-value is less than the p-value obtained under

 , significant differences are present in the pairwise

algorithms. Z is the normalized value of Willcoxon

statistic. “Yes” means that CMS-HH algorithm is

superior to other comparison algorithms in 90% ( D

0:1/ and 95% ( D 0:05/ confidence intervals. Table 9

shows that all p-values are less than the p-value obtained

under  . Therefore, the CMS-HH is significantly better

than HH1 and HH2.

The Friedman-test is used to make a statistical

comparison between the CMS-HH and two compared

algorithms in Table 10. The Friedman-test is a

nonparametric statistical test for determining significant

differences in multiple (related) samples. The results

from the Friedman-test are shown in Fig. 2. From Fig. 2,

CD represents the critical difference, which is obtained

by the Friedman-test. The solid line in Fig. 2 represents

the mean rank value when CD equals 0.578 and  equals

Table 10 Friedman-test results of CMS-HH, HH1, and

HH2.

Algorithm Mean rank

CMS-HH 1.23

HH1 1.93

HH2 2.83

Fig. 2 Mean rank of the Friedman-test.

0.02. The dotted line in Fig. 2 represents the mean rank

value when CD equals 0.500 and  equals 0.1. The mean

rank of CMS-HH is the minimum. Furthermore, the

performance of CMS-HH is excellent compared with

other algorithms. In general, significant differences are

found among multiple algorithms, and the mean rank of

CMS-HH is smaller than those of other algorithms. In

general, the results validate the superiority of the

CMS-HH over HH1 and HH2 in terms of consistency,

generality, and efficiency. The performance of the CMS-

HH is reduced without the MAB strategy or the relay

hybridization strategy, according to the experimental

results.

4.3 Computational results of CMS-HH compared

to other hyper-heuristics

The results achieved by CMS-HH are listed in Table 11.

The minimum values of objective function, percentage

deviation, and instance ranking results of the comparison

algorithms are provided. “Rank” represents the ranking

of objective function value of CMS-HH algorithm for all

current comparison algorithms. For example, “1” means

that the objective function value of CMS algorithm is

the smallest in all comparison algorithms for current

instance. “D” means that there are other algorithms

getting the same minimum objective value as CMS-HH

algorithm for current instance. “2” means that CMS-HH

algorithm obtains the second smallest objective function

value in all comparison algorithms. The minimum values

of the experimental results are listed in bold. New

minimum values are produced by CMS-HH in 15 of

30 instances. CMS-HH matches the other algorithms

in minimum value in 10 instances and yields inferior

values in 5 instances. CMS-HH achieves superior results

on SAT, BP, and PFSP instances. Furthermore, three

superior objective values for TSP and VRP are obtained

by CMS-HH. The optimization of CMS-HH for PS

instances is inferior and only two good results are

obtained. In Table 12, the median of objective function,

percentage deviation, and instance ranking results of the

comparison algorithms are provided. The best median

results of the experimental results are listed in bold. New

minimum values are produced by CMS-HH in 17 of 30

instances. CMS-HH matches the other algorithms in

minimum value in 5 instances and yields inferior values

in 8 instances. For these 8 instances, CMS-HH obtains

the suboptimal median for 2 instances, the third median

for 4 instances, the fourth median for 1 instance, and

the fifth median for 1 instance. Although the CMS-
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Table 11 Performance comparison of CMS-HH and the top-five comparison algorithms based on the minimum objective values

over 31 trials in different instances from six diverse problem domains.

Domain Instance CMS-HH
Top five comparison algorithms

� (%) Rank
AdapHH VNS-TW ML PHUNTER EPH

SAT

SAT1 0 1 1 1 1 4 �100 1

SAT2 1 3 1 3 5 5 0 =

SAT3 1 1 1 1 2 2 0 =

SAT4 1 1 1 4 4 5 0 =

SAT5 7 9 7 7 7 7 0 =

BP

BP1 1.06 1.31 2.98 3.23 3.97 4.30 �19.000 1

BP2 0.27 0.28 0.36 0.67 0.34 0.34 �3.571 1

BP3 0.04 0.04 1.36 1.24 1.78 0.80 0 =

BP4 10.83 10.83 10.87 10.84 10.88 10.83 0 =

BP5 0.03 0.31 2.38 1.78 3.18 1.36 �90.322 1

PFSP

PFSP1 6205 6214 6230 6226 6221 6232 �0.149 1

PFSP2 26 692 26757 26 765 26 744 26 786 26 738 �0.172 1

PFSP3 6303 6303 6303 6304 6303 6309 0 =

PFSP4 11311 11318 11333 11338 11336 11328 �0.062 1

PFSP5 26 479 26 541 26 535 26 559 26 600 26 569 �0.211 1

PS

PS1 13 17 13 11 13 16 18.18 2

PS2 9259 9435 9347 9436 9624 9747 �0.966 1

PS3 3134 3142 3124 3138 3142 3142 0.320 2

PS4 1425 1448 1370 1384 1350 1469 5.556 4

PS5 280 295 290 300 290 310 �3.448 1

TSP

TSP1 48 194.9 48 194.9 48 194.9 48 194.9 48 194.9 48 194.9 0 =

TSP2 2.05���107 2.07�107 2.08�107 2.08�107 2.08�107 2.09�107 �0.966 1

TSP3 6796.0 6797.5 6796.0 6805.3 6796.0 6799.2 0 =

TSP4 65 704.0 66 277.1 66 830.2 66 428.2 66 641.4 65 958.6 �0.386 1

TSP5 52 272.0 52 383.8 52 896.5 52 626.7 52 172.0 52 053.4 0.420 2

VRP

VRP1 57 876.0 58 052.1 68 340.4 67 622.1 61 139.3 63 932.2 �0.303 1

VRP2 12 298.9 13 304.9 13 298.1 13 298.4 12 263.0 13 284.0 0.293 2

VRP3 142 488.6 145 481.5 144 012.6 142 517.0 143 663.9 143 510.8 �0.020 1

VRP4 20 650.8 20 652.3 20 651.1 20 651.1 20 650.8 20 650.8 0 1

VRP5 144 558.1 146 154.0 146 513.6 146 200.8 146 472.9 145 976.5 �0.972 1

HH algorithm does not obtain the minimum value of

objective function and minimum median for all instances,

the percentage deviation of those instances is relatively

small. Therefore, the CMS-HH outperforms the top five

comparison algorithms. To validate the performance of

the proposed algorithms, other related algorithms (GEP-

HH, MSHH, MCTS-HH) are chosen to compare with

CMS-HH. The average values and standard deviations of

CMS-HH and the comparison algorithms are shown in

Table 13. The optimal values of all algorithms are shown

in boldface. The average values and standard deviations

are derived from the results of 31 independent runs. For

the best results, the CMS-HH algorithm produced 9 new

minimum values and 8 results that match the minimum

values of the other three algorithms. For the median of

objective function, the CMS-HH algorithm obtained 15

new minimum values and only 4 instances that match

the other three algorithms. The CMS-HH algorithm is

inferior to GEP-HH in VRP instances and MSHH in

SAT instances. In general, CMS-HH outperforms the

three other algorithms.

The Average Relative Percentage Deviation (ARPD)

is considered to evaluate the quality of the best results

obtained by CMS-HH and is defined as

ARPD D .1=R/

R
X

1

..Ci � C�/=C�/ � 100% (12)

where Ci is the result of the i -th algorithm for the current

instance, R is the number of independent runs, and

C� is the best result of the current instances. For a

clear comparison of the experimental results of the top-

five hyper-heuristics, a visualization of the experimental
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Table 12 Performance comparison of CMS-HH and five comparison algorithms based on the median objective values over 31

trials in different instances from six diverse problem domains.

Domain Instance CMS-HH
Top five comparison algorithms

� (%) Rank
AdapHH VNS-TW ML PHUNTER EPH

SAT

SAT1 4 3 3 5 5 7 33.30 3

SAT2 6 5 3 10 11 11 100.00 3

SAT3 2 2 2 3 4 6 0 =

SAT4 4 3 3 9 9 15 33.34 3

SAT5 7 8 10 8 8 13 �12.50 1

BP

BP1 1.35 1.61 3.70 4.21 4.79 5.04 �16.15 1

BP2 0.35 0.36 0.72 0.75 0.36 0.36 �2.78 1

BP3 0.35 0.36 1.67 1.46 2.01 1.13 �2.78 1

BP4 10.83 10.83 10.88 10.85 10.91 10.87 0 =

BP5 0.32 0.35 2.78 2.18 3.95 2.24 �8.57 1

PFSP

PFSP1 6244 6240 6251 6245 6253 6250 0.064 2

PFSP2 26 776 26 814 26 803 26 800 26 858 26 816 �0.090 1

PFSP3 6323 6326 6328 6323 6350 6347 0 =

PFSP4 11 359 11 359 11 376 11 384 11 388 11 397 0 =

PFSP5 26 568 26 643 26 602 26 610 26 677 26 640 �0.128 1

PS

PS1 22 24 19 18 25 22 22.22 3

PS2 9415 9667 9628 9812 10 136 10 074 �2.21 1

PS3 3165 3289 3223 3228 3255 3232 �1.80 1

PS4 1709 1765 1590 1605 1595 1615 7.48 5

PS5 295 325 320 315 320 345 �6.35 1

TSP

TSP1 48 194.9 48 194.9 48 194.9 48 194.9 48 194.9 48 194.9 0 =

TSP2 2.06���107 2.08�107 2.10�107 2.11�107 2.12�107 2.11�107 �0.962 1

TSP3 6808.8 6810.5 6819.1 6820.6 6813.6 6811.9 �0.025 1

TSP4 66 320.5 66 879.8 67 378.0 66 894.0 67 136.8 66 756.2 �0.653 1

TSP5 52 658.8 53 099.8 554 028.6 54 368.4 52 934.4 52 925.3 �0.504 1

VRP

VRP1 59 961.8 60 900.6 76 147.1 80 671.3 64 717.8 74 715.8 �1.542 1

VRP2 13 319.2 13 347.6 13 367.9 13 329.8 12 290.0 13 335.6 8.374 2

VRP3 145 274.0 148 516.8 148 206.2 145 333.5 146 944.4 162 188.5 �0.041 1

VRP4 20 653.5 20 656.6 21 642.9 20 654.1 20 650.8 20 650.8 0.013 4

VRP5 146 136.4 148 689.2 149 132.4 148 975.1 148 659.0 155 224.7 �1.697 1

results is provided in Fig. 3. The horizontal axis is the

instances from different domains. The vertical axis is

the ARPD values for various contrast algorithms. For

the state-of-the-art algorithms, the ARPD values of

best results and best median results from three problem

domains are presented in Fig. 4, which shows a direct

expression for measuring the effectiveness of the CMS-

HH algorithm.

In this study, the Formula One Ranking System is used

to determine the score of CMS-HH and the compared

algorithms[29]. The ranking scores obtained by the CMS-

HH and the other top-five comparison algorithms are

shown in Table 14. The CMS-HH algorithms obtain

the first rank compared with the top-five comparison

algorithms.

The experimental results show that the CMS-HH

algorithm is superior to other top-five comparison

algorithms in six different complex optimization

problems. Moreover, the proposed CMS-HH algorithm

obtains new minimum values for 15 out of 30 instances

and matches the other top-five comparison algorithms for

9 instances. For all instances from six different domains,

the percentage deviation of CMS-HH is similar to those

of the other comparison algorithms. The new results are

due to the following two factors:

(1) The search space formed by LLHs is effectively

explored by CMS-HH algorithms. Online learning,

which is based on the multi-armed bandit, can select

an appropriate heuristic according to the state of the

current solution. The pairwise heuristic formed by

relay hybridization helps to promote the quality of the

solutions. By searching in a particular region of the
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(a) ARPD values of the best results (b) ARPD values of the best median results

Fig. 3 ARPD values of experimental results of CMS-HH and top-five hyper-heuristics.

(a) ARPD values of the best results for BP (b) ARPD values of the best median results for PFSP

(c) ARPD values of the best results for VRP (d) ARPD values of the best median results for BP

(e) ARPD values of the best median results for PFSP (f) ARPD values of the best median results for VRP

Fig. 4 ARPD values of experimental results of CMS-HH and state-of-the-art algorithms.
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Table 14 Ranking of CMS-HH with five comparison

algorithms.

No. Algorithm Score

1 CMS-HH 175.73

2 AdapHH 163.25

3 VNS-TW 114.25

4 ML 109.43

5 PHUNTER 81.10

6 EPH 75.25

solution space, the inferior LLHs are excluded and only

superior LLHs are applied.

(2) The different sequences of LLHs are generated by

CMS-HH during the search process. By generating a

different sequence of heuristics for each instance, the

changes that occurred during the research can be handled

by the CMS-HH algorithms. Furthermore, different areas

are explored by the CMS-HH algorithm, which helps it

to avoid falling to a local optimum.

5 Conclusion and Future Work

The proposed hyper-heuristic is a general-purpose search

method. The control layer and the low-level heuristic

are separated by a domain barrier. The operations based

on a certain problem domain must be encapsulated in a

low-level heuristic. These methods of control layer are

applied to the other problems without any modification,

which promotes the reusability of the algorithm. The

MAB and relay hybridization technology are well

combined to decide the selection of the LLHs, which

helps to explore the search space for diverse instances

from different problem domains. A list-based adaptive

threshold move acceptance method is introduced to

accept the inferior solution, which helps to avoid the

algorithm falling into a local optimum. The multi-

point search embedded in a single search effectively

promotes the search ability of the algorithm. The

proposed framework is demonstrated to generate highly

competitive results. The six problem domains are well

generalized by the CMS-HH algorithm compared with

other top-five hyper-heuristics. The proposed algorithm

is promising from the experimental results.

Despite the excellent performance, several issues still

need to be considered in future work. (1) Single-point

search and multi-point search are switched flexibly to

search the solution space independently; (2) To avoid the

search stopping for a long time, the various acceptance

mechanisms are introduced for the search to enter

another area; and (3) CMS-HH can be applied to address

the practical problems. For instance, the distributed flow-

shop scheduling problem considers minimizing blocking

time and total energy consumption as the optimization

objectives.
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[5] R. Olivares, F. Muñoz, and F. Riquelme, A multi-objective

linear threshold influence spread model solved by swarm

intelligence-based methods, Knowl.-Based Syst., vol. 212,

p. 106623, 2021.

[6] J. P. Huang, Q. K. Pan, and L. Gao, An effective iterated

greedy method for the distributed permutation flowshop

scheduling problem with sequence-dependent setup times,

Swarm Evol. Comput., vol. 59, p. 100742, 2020.

[7] H. Park, D. Son, B. Koo, and B. Jeong, Waiting strategy for

the vehicle routing problem with simultaneous pickup and

delivery using genetic algorithm, Expert Syst. Appl., vol.

165, p. 113959, 2021.

[8] G. D’Angelo and F. Palmieri, GGA: A modified genetic

algorithm with gradient-based local search for solving

constrained optimization problems, Inf. Sci. (Ny)., vol. 547,

pp. 136–162, 2021.

[9] Y. Hu, Y. Zhang, and D. W. Gong, Multiobjective particle

swarm optimization for feature selection with fuzzy cost,

IEEE Trans. Cybern., vol. 51, no. 2, pp. 874–888, 2021.

[10] S. C. Gao, Y. R. Wang, J. J. Cheng, Y. Inazumi, and Z.

Tang, Ant colony optimization with clustering for solving

the dynamic location routing problem, Appl. Math. Comput.,

vol. 285, pp. 149–173, 2016.



Fuqing Zhao et al.: A Novel Cooperative Multi-Stage Hyper-Heuristic for Combination Optimization Problems 107

[11] F. Q. Zhao, L. X. Zhang, Y. Zhang, W. M. Ma, C. Zhang,

and H. B. Song, A hybrid discrete water wave optimization

algorithm for the no-idle flowshop scheduling problem with

total tardiness criterion, Expert Syst. Appl., vol. 146, p.

113166, 2020.
[12] F. Q. Zhao, X. He, and L. Wang, A two-stage

cooperative evolutionary algorithm with problem-

specific knowledge for energy-efficient scheduling of

no-wait flow-shop problem, IEEE Trans. Cybern., doi:

10.1109/TCYB.2020.3025662.
[13] F. Q. Zhao, L. X. Zhao, L. Wang, and H. B. Song, An

ensemble discrete differential evolution for the distributed

blocking flowshop scheduling with minimizing makespan

criterion, Expert Syst. Appl., vol. 160, p. 113678, 2020.
[14] Z. S. Shao, D. C. Pi, and W. S. Shao, A novel discrete

water wave optimization algorithm for blocking flow-shop

scheduling problem with sequence-dependent setup times,

Swarm Evol. Comput., vol. 40, pp. 53–75, 2018.
[15] Z. S. Shao, D. C. Pi, and W. S. Shao, Hybrid enhanced

discrete fruit fly optimization algorithm for scheduling

blocking flow-shop in distributed environment, Expert Syst.

Appl., vol. 145, p. 113147, 2020.
[16] Z. S. Shao, D. C. Pi, and W. S. Shao, A multi-objective

discrete invasive weed optimization for multi-objective

blocking flow-shop scheduling problem, Expert Syst. Appl.,

vol. 113, pp. 77–99, 2018.
[17] Y. W. Zhong, L. J. Wang, M. Lin, and H. Zhang, Discrete

pigeon-inspired optimization algorithm with Metropolis

acceptance criterion for large-scale traveling salesman

problem, Swarm Evol. Comput., vol. 48, pp. 134–144, 2019.
[18] G. Y. Zhu, C. Ding, and W. B. Zhang, Optimal foraging

algorithm that incorporates fuzzy relative entropy for

solving many-objective permutation flow shop scheduling

problems, IEEE Trans. Fuzzy Syst., vol. 28, no. 11, pp.

2738–2746, 2020.
[19] J. M. Chen, B. Dan, and J. Shi, A variable neighborhood

search approach for the multi-compartment vehicle routing

problem with time windows considering carbon emission,

J. Clean. Prod., vol. 277, p. 123932, 2020.
[20] J. Q. Li, Y:Q. Han, P. Y. Duan, Y. Y. Han, B. Niu, C. D. Li,

Z. X. Zheng, and Y. P. Liu, Meta-heuristic algorithm for

solving vehicle routing problems with time windows and

synchronized visit constraints in prefabricated systems, J.

Clean. Prod., vol. 250, p. 119464, 2020.
[21] G. Mweshi and N. Pillay, An improved grammatical

evolution approach for generating perturbative heuristics

to solve combinatorial optimization problems, Expert Syst.

Appl., vol. 165, p. 113853, 2021.
[22] J. Lin, Z. J. Wang, and X. Li, A backtracking search hyper-

heuristic for the distributed assembly flow-shop scheduling

problem, Swarm Evol. Comput., vol. 36, pp. 124–135, 2017.
[23] S. Y. Zhang, Z. L. Ren, C. X. Li, and J. F. Xuan, A

perturbation adaptive pursuit strategy based hyper-heuristic

for multi-objective optimization problems, Swarm Evol.

Comput., vol. 54, p. 100647, 2020.
[24] L. Ahmed, C. Mumford, and A. Kheiri, Solving urban

transit route design problem using selection hyper-

heuristics, Eur. J. Oper. Res., vol. 274, no. 2, pp. 545–559,

2019.

[25] E. Kieffer, G. Danoy, M. R. Brust, P. Bouvry, and A. Nagih,

Tackling large-scale and combinatorial bi-level problems

with a genetic programming hyper-heuristic, IEEE Trans.

Evol. Comput., vol. 24, no. 1, pp. 44–56, 2020.

[26] A. Aslan, I. Bakir, and I. F. A. Vis, A dynamic thompson

sampling hyper-heuristic framework for learning activity

planning in personalized learning, Eur. J. Oper. Res., vol.

286, no. 2, pp. 673–688, 2020.

[27] S. N. Chaurasia and J. H. Kim, An evolutionary algorithm

based hyper-heuristic framework for the set packing

problem, Inf. Sci. (Ny)., vol. 505, pp. 1–31, 2019.

[28] N. R. Sabar and G. Kendall, Population based Monte Carlo

tree search hyper-heuristic for combinatorial optimization

problems, Inf. Sci. (Ny)., vol. 314, pp. 225–239, 2015.

[29] N. R. Sabar, M. Ayob, G. Kendall, and R. Qu, Automatic

design of a hyper-heuristic framework with gene expression

programming for combinatorial optimization problems,

IEEE Trans. Evol. Comput., vol. 19, no. 3, pp. 309–325,

2015.
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