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COVID-19 is an infectious disease-causing flu-like respiratory problem with various symptoms such as cough or fever, which in
severe cases can cause pneumonia. )e aim of this paper is to develop a rapid and accurate medical diagnosis support system to
detect COVID-19 in chest X-ray images using a stacking approach combining transfer learning techniques and KNN algorithm
for selection of the best model. In deep learning, we have multiple approaches for building a classification system for analyzing
radiographic images. In this work, we used the transfer learning technique. )is approach makes it possible to store and use the
knowledge acquired from a pretrained convolutional neural network to solve a new problem. To ensure the robustness of the
proposed system for diagnosing patients with COVID-19 using X-ray images, we used a machine learning method called the
stacking approach to combine the performances of the many transfer learning-based models.)e generated model was trained on
a dataset containing four classes, namely, COVID-19, tuberculosis, viral pneumonia, and normal cases. )e dataset used was
collected from a six-source dataset of X-ray images. To evaluate the performance of the proposed system, we used different
common evaluation measures. Our proposed system achieves an extremely good accuracy of 99.23% exceeding many previous
related studies.

1. Introduction

)e SARS-CoV-2 has caused the borders of many countries
to be closed and millions of citizens to be confined to their
homes due to infection rates; there have been more than 147
million confirmed cases worldwide at this time (April 25,
2021). )is virus originated in China in December 2019. At
that time, China succeeded in containing the virus for almost
three months after the start of the crisis. As of March 2020,
Europe was the focus for the germination of the virus, where
it infected more than 445000 people [1,2]. Italy became the
country which recorded the highest death toll, followed by
Spain, which overtook the Asian countries in death toll. )is
number is continuously increasing. Clinical features of

infected COVID-19 cases include fever, respiratory symp-
toms, cough, dyspnea, and viral pneumonia [3]. )e
COVID-19 test is based on taking samples from the re-
spiratory tract [4]. A high number of tests may prove to be
the key tool to stop the virus spread in some countries.
However, it is important to find and develop alternative
methods to perform these tests quickly and efficiently.

Artificial Intelligence (AI) techniques have been widely
used in many applications such as handwriting recognition
[5], rumors or fake news detection in social media [6,7],
medical diagnosis support systems (MDSS) [8,9], prediction
of patients with heart disease [10–14], and MRI image
segmentation [15–21]. Particularly in the medical field, these
techniques have been proved invaluable in predicting
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positive cases of multiple diseases [14,22]. In the context of
the COVID-19 pandemic spread, AI techniques have gained
particular interest in terms of predicting positive cases based
on different medical data. In addition, many computer-aided
diagnosis (CAD) systems based on AI techniques for
COVID-19 prediction using principally chest X-ray as input
data have been proposed [23–27].

)e main contribution of our paper is to propose and
implement a novel architecture of an automatic detection
system as an alternative diagnostic option to prevent the
coronavirus spread [28]. )is study is based on the com-
bination of six different sources of X-ray image datasets.
From these datasets, we generate a new radiographic image
dataset containing four classes, namely, normal, COVID-19,
tuberculosis, and pneumonia. )e application of image
processing allows image standardization and improves
model learning.

Furthermore, we aim to improve the prediction accuracy
of COVID-19. )us, the proposed system combines five
transfer learning (TL) algorithms, namely, ResNet152V2,
ResNet101V2, MobileNetV2, VGG16, and VGG19. )ese
TL-based models automatically extract the radiographic
images’ features. )en, we implemented the stacking tech-
nique and the KNN algorithm to combine the performances
of the five generated classifiers models and make the final
prediction. Indeed, this method can help choose the best
model to detect patients infected with COVID-19. )e main
contribution of this paper consists of the development of an
accurate medical diagnosis support system to detect
COVID-19 in chest X-ray images using a stacking approach
combining transfer learning techniques and KNN algorithm
for the choice of the best model. To reach this objective, we
trained and tested the proposed system on a consistent
dataset of normal, viral pneumonia, tuberculosis, and
COVID-19 cases. )en, the best generated model was
compared with some models from the literature. Finally, the
obtained results in terms of commonmetrics were compared
to the state-of-the-art models.

)e rest of this paper is organized as follows: Section 2
presents some relevant related work. Section 3 describes
the materials and methods used, the dataset used, and TL
algorithms and methodology followed. Experimental re-
sults and discussion are given in Section 4. Finally, we
conclude our work in Section 5 with some future
perspectives.

2. Review of Some Related Works

In the last year, researchers have developed and published
many works with the goal of combating the SARS-CoV-2
global pandemic [29–32]. In the field of diagnosis, many
studies used Artificial Intelligence techniques to process
X-ray images and detect the effect in terms of percentage of
the virus in a patient’s lungs. Deep learning approaches are
the most frequently used in image classification to achieve
better results than those using traditional ML approaches
[33]. In this section, we limit our investigation to some
research using TL technique-based models to diagnose
COVID-19 [34].

In [35], the ResNet50 network-based deep transfer
learning model achieved 93.01% accuracy for a binary
classification of cases with and without COVID-19. )is
model uses CT type images taken from two open-source
datasets.

Other research proposes a new architecture for the
detection of cases infected by COVID-19 called CovXNet
[36]. )is architecture is based on a deep CNN. )e authors
used 5,856 chest X-ray images composed of four classes:
COVID-19, normal, viral pneumonia, and bacterial pneu-
monia. )e CovXNet model achieved an accuracy of 89.6%
for 3 classes and 90.6% for 4 classes.

Another model called CoroNet presented in [37] pro-
poses a deep convolutional network, based on the Xception
architecture. )is model was trained on radiographic images
collected from two public databases. )is model reached a
classification accuracy of 99% for 2 classes, 95% for 3 classes,
and 89.6% for 4 classes.

A comparative study published in [38] presented a
system based on 10 transfer learning-based models, namely,
AlexNet, VGG16, VGG19, SqueezeNet, GoogLeNet,
MobileNetV2, ResNet18, ResNet50, ResNet101, and finally
Xception. )e models trained on a database containing two
classes: COVID-19 and viral pneumonia. )e authors
concluded that ResNet101 is the best model for the reliable
detection of COVID-19 with an accuracy of 99.51%.

)e proposed study in [39] uses various deep learning
architectures such as VGG16, DenseNet121, Xception,
NASNet, and EfficientNet, to develop a diagnosis support
system of COVID-19. )e dataset used contains three
classes, and the highest accuracy obtained was 93.48% by
EfficientNet.

In [40], the authors proposed a model based on AlexNet
architecture for feature extraction and classification of the
X-ray images. )ey used a strength Pareto evolutionary
algorithm-II (SPEA-II) to select the best hyperparameters
for this model. )e proposed model reached an accuracy of
99.13% with a multiclass database.

Another study published in [41] proposed a diagnostic
system based on the majority voting method according to
the results given by five classifiers: MobileNetV2,
ResNet50V2, ResNet50V1, DenseNet201, and ResNet11.
)is system is based on X-ray image dataset with the three
classes of COVID-19, viral pneumonia, and normal.)e best
accuracy obtained by this model was 99.31%.

In [42], the authors proposed an automated diagnostic
model of chest X-rays involving COVID-19. )e proposed
model uses the truncated DenseNet network based on TL,
partial layer freezing, and feature fusion named Fused-
DenseNet-Tiny. )e proposed model reached a maximal
accuracy of 97.99% with only 1.2 million parameters.

In [43], the authors proposed a deep learning model
based on pretrained models using majority voting. To build
this model, open-source chest X-ray images of normal,
pneumonia, and COVID-19 cases were used in this study.
)e proposed model achieved an accuracy of 99.26%.

Other research published in [44] offered three pretrained
models for building a diagnostic system: ResNet50V2,
VGG16, and Inception V3. For this study, the dataset used

2 Journal of Healthcare Engineering



was obtained from two publicly available data sources,
containing three classes: COVID-19, normal, and pneu-
monia X-ray images. )e best accuracy achieved by this
model was 95.49%.

In [45], )e VGG16 network based on transfer learning
model achieved an accuracy of 91.69% in a multi-
classification of COVID-19-infected, normal, and pneu-
monia cases. )e model proposed in this study is based on
X-ray images from a publicly available dataset.

In [46], three pretrained transfer learning models were
proposed: VGG16, Inception V3, and lastly EfficientNetB0.
COVID-19, normal, and viral pneumonia X-ray images were
the three classes in the dataset used in this study, which was
compiled from a variety of public sources. For VGG16,
Inception V3, and EfficientNetB0, the accuracy of the
proposed models was 87.84%, 91.32%, and 92.93%, re-
spectively. Table 1 summarizes these works by citing the
number of classes, the models used, and the best reached
values in terms of evaluation metrics.

3. Materials and Methods

3.1. Global Overview on the Proposed COVID-19 Diagnosis
System. In this paper, we proposed a diagnosis system based
on stacking technique using various TL models for detecting
patients infected with COVID-19. We selected five powerful
TL models available in the Keras library. )e dataset used
was based on six-source databases containing chest X-ray
images. From these datasets, we generated a new database
with four classes, normal, COVID-19, pneumonia, and
tuberculosis [47]. Furthermore, we split the dataset obtained
into three parts, training set, validation set, and testing set.
)en, we started by applying a series of preprocessing steps
to the dataset images. All the chest X-ray images were
normalized to the same dimension of 224× 224× 3.

)e training step involves two levels to generate the final
model. )e first training level is the Base-Models as the well-
known models in TL, namely, ResNet152V2, ResNet101V2,
MobileNetV2, VGG16, and VGG19. )ese models take as
input the training set with a default dimension of
224× 224× 3. Moreover, we define and detail in Section 3.4
the parameters of each proposed TL-based model. After
building the models, we used a validation set to avoid
overfitting or underfitting problems. )en, we used the
testing set to classify and predict classes. )e output pre-
diction obtained in the first training level would be used as
input at the metalevel. In the second level of the training
phase, we applied the stacking technique to combine the
predictions made by each classifier. )is technique used the
KNN algorithm [48–50], to make the final prediction by
contributing to the performance of Base-Models. Finally, we
saved the generated model and evaluated the proposed
model performance. Figure 1 describes the main stages of
building a COVID-19 diagnosis system architecture.

3.2. Stacking Technique. Stacking is one of the most fre-
quently used ensemble methods in ML. )e overall idea of
this technique is to build many models with completely

different algorithmic program types to achieve a final pre-
diction. )is method uses another algorithm to learn how to
combine predictions from various ML algorithms [51].
)erefore, the input for this final algorithm is the prediction
outputs of these various base algorithms. )e input of this
model is an ensemble which includes n classificationmodels.
Figure 2 shows the steps followed to apply the stacking
technique.

3.3. Dataset Description. As mentioned before, this work
relied on the exploration of six different sources of chest
X-ray image datasets. In Figure 3, we present some samples
from these datasets.

A diversity of datasets allowed us to increase the size of
the dataset used in this study. In addition, this will ensure an
improvement in terms of detection performance. Table 2
summarizes all the datasets explored in order to generate a
final dataset containing four classes: COVID-19, tubercu-
losis, viral pneumonia, and normal.

After preparing our dataset, we split it into three parts as
follows: 80% for training, 10% for validation, and 10% for
testing. )e images used in this study did not have fixed
dimensions as all came from various reliable sources. For
this, we proceeded to resize and normalize all X-ray images
to 1024×1024. Table 3 represents the distributions of the
dataset images by class.

3.4. Tuned Pretrained Models Based on TL Technique

3.4.1. Tuned ResNet152V2-Based Model. )e original ver-
sion of ResNetV2 convolutional neural network (CNN)
architecture contains two models, namely, ResNet152V2
and ResNet101V2. )ese models were developed by
Microsoft Research Asia (https://www.microsoft.com/en-
us/research/lab/microsoft-research-asia/) based on the
ResNetV1 (https://github.com/tensorflow/models/blob/
master/research/slim/nets/resnet_v1.py) model in 2016,
with different optimizers for each layer to improve the
accuracy. In this work, we used ResNet152V2 that reached
an accuracy of 94.2% based on the ImageNet dataset. Ac-
cordingly, we added some convolutional, flatten, and dense
layers after the original version. )e architecture details of
the proposed tuned version based on ResNet152V2 are
presented in Table 4.

)e architecture consisted of 70525188 total parameters,
with 70381444 trainable parameters and 143744 non-
trainable parameters.

3.4.2. Tuned ResNet101V2-Based Model. )e second model
from the ResNetV2 family is ResNet101V2.)is CNNmodel
was formed on the ImageNet dataset. In addition, it reached
an accuracy of 93.8%. Table 5 illustrates the architecture
details of this tuned model.

)e architecture consisted of 54820100 total parameters,
with 54722436 trainable parameters and 97664 nontrainable
parameters.
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Table 1: Summary of related work.

Works Number of classes Models used Accuracy Precision Sensitivity Specificity

[35]
COVID-19

ResNet50 93.01% 95.18% 91.45% 94.77%
Non-COVID-19

[36]

COVID-19

CovXNet

90.2% 90.8% 89.9% 89.1%
Normal

Viral pneumonia
Bact pneumonia
COVID-19

89.6% 88.5% 90.3% 87.6%Viral pneumonia
Bact pneumonia

[37]

COVID-19

CoroNet

89.6% 90% 89.92% 96.4%
Normal

Viral pneumonia
Bact pneumonia
COVID-19

95% 95% 96.9% 97.5%Normal
Bact pneumonia

[38]

COVID-19

AlexNet 78.92% N/A 89.21% 68.63%
VGG16 83.33% N/A 80.39% 86.27%
VGG19 85.29% N/A 92.16% 78.43%

SqueezeNet 82.84% N/A 78.43% 87.52%
GoogLeNet 85.29% N/A 81.37% 90.20%

Viral pneumonia

MobileNetV2 92.16% N/A 97.06% 87.25%
ResNet18 91.61 N/A 95.10% 88.23%
ResNet50 94.12% N/A 90.20% 100%
ResNet101 99.51% N/A 100% 99.02%
Xception 99.02% N/A 98.04% 100%

[39]

Normal
VGG16 79.01% N/A N/A N/A

DenseNet121 89.96% N/A N/A N/A

COVID-19
Xception 88.03% N/A N/A N/A
NASNet 85.03% N/A N/A N/A

Other EfficientNet 93.48% N/A N/A N/A

[40]

COVID-19

AlexNet 99.13% N/A 99.47% 99.15%
Healthy

Pneumonia
Tuberculosis

[41]
COVID-19

Majority voting method 99.31% 100% 100% N/ANormal
Viral pneumonia

[42]
COVID-19

DenseNet 97.99% 98.38% 98.15% N/ANormal
Pneumonia

[43]
COVID-19

Majority voting method 99.26% 97.87% 100% 98.89%Normal
Pneumonia

[44]
COVID-19 ResNet50V2 95.49% 96.85% 99.19% 98.27%
Normal VGG16 92.70% 97.50% 94.35% 98.69%

Pneumonia Inception V3 92.97% 97.60% 98.39% 98.67%

[45]
COVID-19

VGG16 91.69% 92.33% 95.92% 100%Normal
Pneumonia

[46]
COVID-19 VGG16 87.84% 82.00% 82.33% 91.20%
Normal Inception V3 91.32% 87.54% 89.00% 94.00%

Viral pneumonia EfficientNetB0 92.93% 88.30% 90.00% 95.00%
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3.4.3. Tuned MobileNetV2-Based Model. )e MobileNetV2
model is a CNN containing 53 layers with a depth of 88.
Developed in 2018 and trained on a million images from the
ImageNet database [52], it reached an accuracy of 90.1% for
this dataset. Table 6 represents the model complexity of our
proposed tuned architecture.

)e architecture consisted of 13665092 total parameters,
with 13930680 trainable parameters and 34112 nontrainable
parameters.

3.4.4. Tuned VGG16-Based Model. VGG16 is a CNN model
proposed by a team of researchers from the University of
Oxford. Trained on ImageNet database, the model achieves
90.1% accuracy. Table 7 illustrates the complexity details of
the proposed tuned model.

)e architecture consisted of 17469508 total parameters,
with 17460508 trainable parameters and 0 nontrainable
parameters.

3.4.5. Tuned VGG19-Based Model. VGG19 is a CNN model
that was created in 2015. )is model is trained on a million
images from the ImageNet database with a depth of 26. It
reached an accuracy of 90% with this dataset. In Table 8, we
present the proposed tuned architecture based on VGG19
model.

)e architecture consisted of 22779204 total parameters,
with 22779204 trainable parameters and 0 nontrainable
parameters.

4. Results and Discussion

Before presenting our results and findings, we first present in
the following section some common performance evaluation
techniques that are usually used to evaluate ML models at
training and testing stages. We start by drawing the con-
fusion matrix and calculating some evaluation metrics. )is
section presents the metrics and the experimental results
obtained by studied models. )e confusion matrix allows
evaluation of the obtained classification.

4.1. ConfusionMatrix and Performance EvaluationMeasures.
In classification problems, a confusion matrix is a table with
two dimensions: reference and predicted. )is table is used
to classify the prediction obtained by classifiers. Moreover,
the confusion matrix has identical sets of classes in each row
of its dimension. )is can allow verifying the confusion
between the different classes by calculating four elements,
namely, True Positive (TP), False Positive (FP), True Neg-
ative (TN), and False Negative (FN) [53]. )e confusion
elements for each class ClassX are given by the following
equations:

(a) (b) (c) (d)

Figure 3: X-ray image samples of the 4 classes: (a) COVID-19 sample; (b) tuberculosis sample; (c) viral pneumonia sample; (d) normal
sample.

Table 2: Dataset sources used to generate a combined dataset containing four classes.

Dataset source
COVID-
19

Normal
Viral

pneumonia
Tuberculosis

COVID-19 Radiography Database (https://www.kaggle.com/tawsifurrahman/
covid19-radiography-database/data?select�COVID-19+Radiography+Database)

1200 1341 1345 —

COVID-19 Detection X-Ray Dataset (https://www.kaggle.com/darshan1504/covid19-
detection-xray-dataset)

60 880 412 —

COVID-19 Patients Lungs X-Ray Images (https://www.kaggle.com/nabeelsajid917/
covid-19-x-ray-10000-images?select�dataset)

70 28 — —

COVID-19 X-Rays (https://www.kaggle.com/andrewmvd/convid19-x-rays?
select�X+rays)

70 — — —

Pneumonia Virus vs Pneumonia Bacteria (https://www.kaggle.com/
muhammadmasdar/pneumonia-virus-vs-pneumonia-bacteria)

— — 1493 —

Tuberculosis (TB) Chest X-Ray Database (https://www.kaggle.com/tawsifurrahman/
tuberculosis-tb-chest-xray-dataset)

— — — 3500

Generated dataset 1400 2249 3250 3500
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TPClassX � Ci,i,

FNClassX �∑
4

l�1

Ci,l − TPClassX,

FPClassX �∑
4

l�1

Cl,i − TPClassX,

TNClassX �∑
4

l�1

∑
4

k�1

Cl,k − FPClassX + FNClassX + TPClassX( ),

(1)
where Ci,i is the number of samples correctly classified for a
given class, Ci,l is the number of negative samples that are
confused with another class, Cl,i is the number of positive
samples that are confused with another class, and Cl,k is the
sum of all samples.

We calculated five scoring metrics used in this study: the
accuracy, precision, sensitivity, specificity, and negative
predictive value (NPV). )ese metrics are given by the
following equations:

accuracy �
TP + TN

TP + TN + FP + FN
,

precision �
TP

TP + FP
,

sensitivity �
TP

TP + FN
,

specificity �
TN

TN + FP
,

NPV �
TN

TN + FN
.

(2)

4.2. Experimental Results. In this section, we present the
main experimental results obtained from this study. Firstly,
we show the training results by plotting the accuracy and loss
curves for all models used. )en, we draw the confusion
matrix for each model.

4.2.1. Training of CNNModel Results. In this study, we used
the TensorFlow 2.1 library (https://www.tensorflow.org/)
to import the original pretrained models and implement
the proposed tuned models based on TL technique. We
used the library’s default Python API. Models were in-
stantiated using the default implementation of Keras
(https://github.com/fchollet/keras). Regarding the

combination of model performances, we implemented the
stacking method in Python language. We used the Scikit-
Learn Library (https://scikit-learn.org/stable/) for KNN
models. All the experiments were executed in Python
language, and we used Jupyter library for easy evaluation
of the results. Furthermore, we used the online Google
Colab platform to train the proposed TL-based models.
Note that Google Colab is a cloud service based on Jupyter
Notebook for training and researching the algorithms of
ML and DL.)is platform used Tesla K80 GPU with 12 GB
of GDDR5 VRAM, Intel Xeon Processor with 2 cores @
2.20 GHz and 13 GB RAM. For all the algorithms used, we
performed the training using the Adam optimizer and the
cross-entropy loss function. )e input image sizes for all
arrays are 224-by-224 pixels. Table 9 presents the
hyperparameters used to tune the Base-Models used in
this study.

We trained all Base-Models, ResNet152V2,
ResNet101V2, MobileNetV2, VGG16, and VGG19, across
25 epochs with the same configuration to ensure comparable
results. In Figure 4, we present the plots of accuracy and loss
function of the five studied classifiers. )e plots are drawn
for the training and the validation sets of our chest X-ray
datasets containing four classes.

Generally, these curves represent epochs on the x-axis
and improvement on the y-axis. )e training curve gives an
idea about the successful model training. It is computed
from the training set. In fact, 25 epochs were sufficient for all
the models to converge. )e validation curve provides an
idea as to whether the model is underfitting, overfitting, or
just right for some ranges of hyperparameter values.
However, more epochs were needed to reach the conver-
gence stage, especially for VGG19 and VGG16. Moreover,
the overfitting degree was weak in all models. Indeed, the
convergence of the accuracy on the training set is close to its
convergence on the validation set. From these curves, we
concluded that all the models reached an accuracy of 98%
during the validation phase. However, the VGG19 model
achieves an accuracy value equal to 99.13%. From the loss
curves, we noticed that the average loss value for all these
models equals 0.1%.

4.2.2. Testing of the Proposed CNN Model Results. )e
studied models’ performances were tested and evaluated
using a completely independent data subset already pre-
pared. Before finding the scoring metrics for each perfor-
mance model, we proceeded with drawing the confusion
matrix. Figure 5 represents the confusion matrix of the five
trained models.

Table 3: Description of the dataset partitions used in this study.

Class Training (80%) Validation (10%) Testing (10%) Total (100%)

COVID-19 1120 140 140 1400
Tuberculosis 2800 350 350 3500
Viral pneumonia 2600 325 325 3250
Normal 1799 225 225 2249
Total 8319 1040 1040 10399
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Table 4: )e proposed tuned version based on ResNet152V2 model architecture.

Layer type Output shape Parameters

resnet152v2 (model) 7× 7× 2048 58331648
conv2d_1 (Conv2D) 7× 7×1024 2098176
mp_1 (MaxPooling2D) 3× 3×1024 0
flatten (flatten) 9216 0
dense_1 (dense) 1024 9438208
dense_2 (dense) 512 524800
dense_3 (dense) 256 131328
dense_4 (dense) 4 1028

Table 5: )e proposed tuned version based on ResNet101V2 model architecture.

Layer type Output shape Parameters

resnet101v2 (model) 7× 7× 2048 42626560
conv2d_1 (Conv2D) 7× 7×1024 2098176
mp_1(MaxPooling2D) 3× 3×1024 0
flatten (flatten) 9216 0
dense_1 (dense) 1024 9438208
dense_2 (dense) 512 524800
dense_3 (dense) 256 131328
dense_4 (dense) 4 1028

Table 6: )e proposed tuned MobileNetV2-based model architecture.

Layer type Output shape Parameters

mobilenetv2 (model) 7× 7×1280 2257984
conv2d_1 (Conv2D) 7× 7×1024 1311744
mp_1(MaxPooling2D) 3× 3×1024 0
flatten (flatten) 9216 0
dense_1 (dense) 1024 9438208
dense_2 (dense) 512 524800
dense_3 (dense) 256 131328
dense_4 (dense) 4 1028

Table 7: )e proposed tuned VGG16-based model architecture.

Layer type Output shape Parameters

vgg16 (model) 7× 7× 512 14714688
conv2d_1 (Conv2D) 7× 7× 512 262656
mp_1 (MaxPooling2D) 3× 3× 512 0
flatten (flatten) 4608 0
dense_1 (dense) 512 2359808
dense_2 (dense) 256 131328
dense_3 (dense) 4 1028

Table 8: Complexity of the proposed tuned VGG19-based model architecture.

Layer type Output shape Parameters

vgg19 (model) 7× 7× 512 20024384
conv2d_1 (Conv2D) 7× 7× 512 262656
mp_1 (MaxPooling2D) 3× 3× 512 0
flatten (flatten) 4608 0
dense_1 (dense) 512 2359808
dense_2 (dense) 256 131328
dense_3 (dense) 4 1028
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Table 9: )e best hyperparameters used for the TL models in the training phase.

Network Learning rate Batch size Optimizer Loss function Epochs

All Base-Models used in this study 1.000000e-04 16 Adam Categorical cross entropy 25
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Figure 4: Continued.
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Figure 4: Accuracy and loss curves obtained by training and validation Base-Models: (a) ResNet152V2-based model; (b) ResNet101V2-
based model; (c) MobileNetV2-based model; (d) VGG16-based model; (e) VGG19-based model.
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Figure 5: Continued.
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From these tables, we noticed that themajority of models
give a good classification. However, there is some confusion
by some models about the classes of COVID-19 and tu-
berculosis. However, we can see that the majority of models
achieve perfect performance for the four classes. Based on
these performances, we moved to the second training level
by combining the models’ classification. In Figure 6, we
represent the confusion matrix of the generated model
classification using stacking technique. )is matrix gives a
performance visualization of the generated model. From this
classification, we noticed that the TP is higher compared to
the FP and FN for all classes. Moreover, we can observe that
the FP and FN of three classes, tuberculosis, viral pneu-
monia, and normal, are larger compared to the COVID-19
class.)is model classified correctly 140 cases as COVID-19,
and just 4 cases were classified as COVID-19 although they
belong to the tuberculosis class. To understand these ex-
perimental results, we employed the confusion matrix re-
sults to calculate the evaluation metrics for each model.

To explore these results, we can use a ROC curve to plot
the sensitivity versus specificity (or False Positive Rate vs
True Positive Rate) of a diagnostic test. Generally, this type of
curve helps us to compare several models, according to the
value of the AUC variable. )is value measures the entire

area between two dimensions located under the ROC curve.
In this paper, we draw the ROC curve for each model used in
this study. Figure 7 illustrates a plot of the False Positive Rate
(FPR) versus True Positive Rate (TPR) for the different
classes for the experimented model and proposed model.

From these ROC curves, we can see that all the studied
models reached an AUC value of 0.98. It becomes clear that
the model based on stacking technique is the best model to
classify the X-ray images used in this study. Moreover, we
noticed that all the classes achieve a rate of area in the range
of 0.99-1. )e generated model produced a very high per-
formance compared to the other models. In fact, the pro-
posed model reached an AUC value of 1.00 for COVID-19
class, which has an important clinical advantage.

)is means the labeling of COVID-19 cases with other
classes is almost zero, which reduces the risk of not detecting
COVID-19 cases from their chest X-rays. To clarify these
results, Table 10 shows the performance evaluation metrics
of the experimented models; the best results are in bold.

From Table 10, we report that most models have a loss
value equal to 5.06% except two models: the VGG16 and
generated model achieved a loss value equal to 3.69% and
3.09%, respectively. Moreover, the generated model ob-
tained the largest values for all performance metrics
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Figure 5:)e confusionmatrix representing the Base-Models’ classification: (a) ResNet152V2-basedmodel; (b) ResNet101V2-basedmodel;
(c) MobileNetV2-based model; (d) VGG16-based model; (e) VGG19-based model.
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Figure 6: )e confusion matrix representing the generated model by the stacking technique.
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Figure 7: Continued.
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computed. )is model records the lowest loss value equal to
3.09%. On the other hand, we noticed that the four classifiers
ResNet152V2, ResNet101V2, MobileNetV2, and VGG16
reached an accuracy of 98%. However, the VGG19 and the
generated model achieved an accuracy of 99.13% and
99.23%, respectively. For the NPV metric, the Base-Models
and the proposed model improve a high value of 99.5%.

4.2.3. Runtime Results. )e runtime is an important pa-
rameter improving the efficiency and the reliability of the
system. We compared the required time during the training
process of the experimented models. From Table 11, we
observe the approximate change in time at the training phase
from one model to another. )is is mainly due to the total
number of parameters for each model. Moreover, when the

number of model parameters is high, the time required for
the training phase became longer, whether the runtime or
the time necessary for each epoch.

4.3.Discussion. In this paper, we proposed a novel diagnosis
system of COVID-19 based on the stacking technique and
TL algorithms. )is system aims to find the best diagnostic
algorithm for patients infected with COVID-19. )e gen-
erated model was based on the five TL networks:
ResNet152V2, ResNet101V2, MobileNetV2, VGG16, and
VGG19. )ese algorithms were trained and validated on the
generated X-ray image dataset from a six-source database.
)is dataset includes four classes: COVID-19, tuberculosis,
viral pneumonia, and normal. At the metamodel level, we
used a KNN algorithm to generate a final predictive model.

0.0

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

False Positive Rate

T
ru

e 
P

o
si

ti
v

e 
R

at
e

COVID 19 (area = 0.98)

Tuberc (area = 0.99)

Viral Pn (area = 0.99)

NORMAL (area = 1.00)

(e)

0.0

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

False Positive Rate

T
ru

e 
P

o
si

ti
v

e 
R

at
e

COVID 19 (area = 1.00)

Tuberc (area = 0.99)

Viral Pn (area = 1.00)

NORMAL (area = 0.99)

(f )

Figure 7: ROC curves results for 5 tuned CNN models: (a) ResNet152V2-based model; (b) ResNet101V2-based model; (c) MobileNetV2-
basedmodel; (d) VGG19-basedmodel; (e) VGG16-basedmodel. (f ))e resulting proposed CNNmodel obtained by the stacking technique.

Table 10: Models’ performance evaluation based on scoring metrics: loss, accuracy, precision, sensitivity, specificity, and NPV.

Model Accuracy (%) Loss (%) Precision (%) Sensitivity (%) Specificity (%) NPV (%)

ResNet152V2 98.55 5.06 98.56 98.22 99.5 99.52
ResNet101V2 98.55 5.99 98.32 98.44 99.52 99.51
MobileNetV2 98.36 5.18 98.4 97.99 99.45 99.46
VGG16 98.75 3.69 98.59 98.6 99.59 99.57
VGG19 99.13 5.51 99.27 98.66 99.69 99.73
Generated model by stacking technique 99.23 3.09 98.96 99.34 99.75 99.72

Table 11: Description of Base-Models’ runtime and time by epoch.

Models Accuracy (%) Runtime Time/epoch (s) Total parameters (millions)

ResNet152V2 98.55 50min 33 s 120 70
ResNet101V2 98.55 35min 21 s 85 54
MobileNetV2 98.36 19min 50 s 47 13
VGG16 98.75 24min 27 s 59 17
VGG19 99.13 28min 55 s 69 22
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Table 12: Results for the staking technique-based model compared with some previous works.

Works Methods used Accuracy Precision Sensitivity Specificity

[35] ResNet50 93.01% 95.18% 91.45% 94.77%

[36] CovXNet
89.6% 88.5% 90.3% 87.6%
90.2% 90.8% 89.9% 89.1%

[37] CoroNet
95% 95% 96.9% 97.5%
89.6% 90% 89.92% 96.4%

[38]

AlexNet 78.92% N/A 89.21% 68.63%
VGG16 83.33% N/A 80.39% 86.27%
VGG19 85.29% N/A 92.16% 78.43%

SqueezeNet 82.84% N/A 78.43% 87.52%
GoogLeNet 85.29% N/A 81.37% 90.20%
MobileNetV2 92.16% N/A 97.06% 87.25%
ResNet18 91.61% N/A 95.10% 88.23%
ResNet50 94.12% N/A 90.20% 100%
ResNet101 99.51% N/A 100% 99.02%
Xception 99.02% N/A 98.04% 100%

[39]

VGG16 79.01% N/A N/A N/A
DenseNet121 89.96% N/A N/A N/A
Xception 88.03% N/A N/A N/A
NASNet 85.03% N/A N/A N/A

EfficientNet 93.48% N/A N/A N/A
[40] AlexNet 99.13% N/A 99.47% 99.15%

[41]
Majority voting

method
99.31% 100% 100% N/A

[42] DenseNet 97.99% 98.38% 98.15% N/A

[43]
Majority voting

method
99.26% 97.87% 100% 98.89%

[44]
ResNet50V2 95.49% 96.85% 99.19% 98.27%
VGG16 92.70% 97.50% 94.35% 98.69%

Inception V3 92.97% 97.60% 98.39% 98.67%
[45] VGG16 91.69% 92.33% 95.92% 100%

[46]
VGG16 87.84% 82.00% 82.33% 91.20%

Inception V3 91.32% 87.54% 89.00% 94.00%
EfficientNetB0 92.93% 88.30% 90.00% 95.00%

Proposed
model

Stacking technique
99.23% [95%CI:

98.3–100]
98.96% [95%CI:

98–100]
99.34% [95%CI:

98.4–100]
99.75% [95%CI:

98.5–100]

)e bold values mean the performance evaluation metrics obtained with our proposed model based on stacking technique. )e values between [ ] lead to the
confidence interval (CI) that is the standard used to quantify the uncertainty of estimating the obtained performance evaluation metrics.
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In fact, the KNN algorithm learns how to combine the basic
models’ predictions and provide the final prediction of
patients infected with COVID-19. From the experimental
results, we noticed that all the studied models achieve a high
accuracy between 98% and 99%. Furthermore, the loss value
for most models does not exceed 5%. )e graphic presented
in Figure 8 summarizes all experimental results presented in
this paper.

)is graph shows the variation between loss and three
scoring metrics: accuracy, precision, and sensitivity. Indeed,
when the loss value increases, the values of the three metrics
decrease. All models used in this work including the gen-
erated model achieved a high value in specificity and NPV
metrics. Generally, the proposed diagnostic system showed a
high performance compared to other previous works. Ta-
ble 12 illustrates a comparison between our proposed system
and the other works presented in this paper.

)e PCR test is considered by many to be the gold
standard for diagnosing COVID-19. Calculating the con-
cordance rate between our method and the PCR test allows
us to better judge the potential of our system for prevalent
and widespread adoption in the real state of the COVID-19
pandemic. In particular, our system is able to distinguish
between four classes: COVID-19, tuberculosis, viral pneu-
monia, and normal.

5. Conclusion and Perspectives

)emain contribution of this paper is to propose an efficient
pandemic disease diagnostic system. We targeted the
COVID-19 diagnostic task from chest X-ray images. )e
proposed system is based on five basic transfer learning
models. Furthermore, the goal was to improve the detection
precision of COVID-19 by proposing a new diagnostic tool
that combines the performance of TL algorithms to extract
the images’ features. )is allows more stable predictions to
be made and improves the learning model. We started by
preparing the dataset to be used. We selected the best tested
deep learning models from the current state-of-the-art
image classification algorithms. We developed their archi-
tecture to add our designed head model. We trained all
selected classifiers on the processed dataset. We found very
encouraging results when testing the test set. All classifiers
have an accuracy of about 99%.

To go beyond improving accuracy, we selected the best
performing classifiers on the test set. To reinforce our results,
we performed the experiments on two different sets (the test
set and the validation set). We have found that the best
approach to take for COVID-19 diagnosis is the stacking
method based on the results given by the studied classifiers:
ResNet152V2, ResNet101V2, MobileNetV2, VGG16, and
VGG19.)e stacking method gave us an average accuracy of
0.9923 with 100% accuracy regarding the COVID-19 class
when testing on the test and validation set.

)is study places more emphasis on the usefulness of the
stacking method in dealing with sensitive and important
tasks, such as diagnosing COVID-19.

In future work, we need to invest more in voting ap-
proaches by studying their performance on larger datasets.

Moreover, we will implement the three ensemble ML
methods, using bagging, boosting, and stacking technique.
We need to dig deeper into the use of a multilevel stacking
technique, to make our system more robust and accurate for
diagnosing pandemic or cancerous diseases.
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