
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 04/18 pp41–57
DOI: 10 .26599 /TST.2020 .9010040
Volume 27, Number 1, February 2022

C The author(s) 2022. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

A Novel Cross-Project Software Defect Prediction Algorithm
Based on Transfer Learning

Shiqi Tang, Song Huang�, Changyou Zheng�, Erhu Liu, Cheng Zong, and Yixian Ding

Abstract: Software Defect Prediction (SDP) technology is an effective tool for improving software system quality that

has attracted much attention in recent years. However, the prediction of cross-project data remains a challenge

for the traditional SDP method due to the different distributions of the training and testing datasets. Another major

difficulty is the class imbalance issue that must be addressed in Cross-Project Defect Prediction (CPDP). In this work,

we propose a transfer-leaning algorithm (TSboostDF) that considers both knowledge transfer and class imbalance

for CPDP. The experimental results demonstrate that the performance achieved by TSboostDF is better than those

of existing CPDP methods.

Key words: Software Defect Prediction (SDP); transfer learning; imbalance class; cross-project

1 Introduction

With the increasing scale, the structure of a software
system becomes increasingly complex. Software
defects occur for a number of reasons, such as a
misunderstanding of the software requirements, an
ineffective development process, or a lack of software
development experience. Generally, defective softwares
result in unanticipated economic losses to enterprises
and even human-related costs[1]. If software defects
can be found during the early stage of development, the
software quality can be improved and its related cost is
reduced. Thus, the rapid early detection of defects during
the software development process is a challenging and
important task for both software developers and testers.

Methods based on machine learning are feasible
approaches for predicting software defects[2–6]. A
common practice with these methods is to build

� Shiqi Tang, Song Huang, Changyou Zheng, Erhu Liu, and Cheng
Zong are with Command & Control Engineering College, Army
Engineering University of PLA, Nanjing 210000, China. E-mail:
tttpgs@163.com; hs0317@163.com; zheng chy@163.com;
waterworld625@126.com; zongcheng@ cnnp.com.cn.
�Yixian Ding is with Foreign Language College, Liaoning

Technical University, Fuxin 123000, China, E-mail:
13904187373@163.com.
�To whom correspondence should be addressed.

Manuscript received: 2020-08-28; accepted: 2020-09-18

a prediction model by mining the local data of
software repositories. To date, traditional machine-
learning algorithms, including decision trees, naive
Bayes, neural networks, logistic regression, and Support
Vector Machines (SVMs), have been successfully
implemented by many researchers for predicting
defects[7, 8]. K. O. Elish and M. O. Elish[9] compared
the performance of eight machine-learning algorithms
on the National Aeronautics Space Administration
(NASA) dataset, and the results showed that SVMs
performed better than the other reference algorithms.
Studies have reported improvements in the traditional
machine-learning methods by consideration of the
specific characteristics of Software Defect Prediction
(SDP). For example, Jing et al.[10] proposed a
dictionary-learning-based SDP algorithm known as Cost-
sensitive Discriminative Dictionary Learning (CDDL),
and demonstrated that better performance could be
achieved on the NASA dataset by CDDL than SVM.
Compressed C45 Models (CCM) algorithm proposed by
Wang et al.[11] and an ant colony optimization SVM
algorithm proposed by Jiang et al.[12] also achieved
better performance than traditional machine-learning
algorithms. Li et al.[13] and Lu et al.[14] labeled some
modules in software projects based on the concepts of
active learning and semi-supervised learning, to help
models predict defects in software.

42 Tsinghua Science and Technology, February 2022, 27(1): 41–57

Unlike traditional machine-learning cases, SDP
datasets typically suffer from class imbalance. Two
approaches have been proposed to overcome this
problem. One is the use of random oversampling and the
random undersampling/synthetic-minority oversampling
technique to preprocess data, which arranges label
distributions of the data[15, 16]. The other approach is
the application of cost-sensitive learning and ensemble
learning technologies to modify the training process,
which achieves high precision in the prediction of
minority class samples.

Most of the above researches have focused on within-
project defect prediction. However, sometimes, few
local training data are available in the target software
in which defects must be detected, because past local
defective modules are expensive to label or the module
development occurs in an unfamiliar domain[17]. To
solve this challenge, one viable solution is to utilize
data from other projects, known as source projects, to
train a model for use in detecting defects within the
target project. This is known as Cross-Project Defect
Prediction (CPDP). However, previous studies have
found that due to the different distributions of data
between the source and target projects, traditional defect
prediction methods have difficulty in achieving good
performance in CPDP. Transfer learning is a machine-
learning technology that has attracted a tremendous
amount of attention in recent years[18, 19], because it
utilizes source domain knowledge for model learning
in the target domain when the target domain has a
limited amount of labeled data. Recently, transfer-
learning-based methods were proposed for CPDP. For
example, Nam et al.[20] proposed the TCA+ algorithm,
Ma et al.[17] proposed the transfer naive Bayes algorithm,
and Chen et al.[21] proposed a double transfer boosting
algorithm. However, the challenge of class imbalance
in CPDP data remains. In this paper, we propose a
CPDP method, TSboostDF, that combines weight-based
sampling and transfer learning. Compared with other
SDP methods, TSboostDF achieves better performance
on CPDP datasets.

2 Background

2.1 Software defect prediction

In the software development process, software
defects are inevitably introduced by inexperienced
developers or developers who misunderstand the
software requirements, which lead to high repair costs.
The cost of detecting and repairing defects increases

significantly once the software is released, so early
detection is required before releasing software to the
open market. However, a thorough examination and
detection of the defects in all modules involve large
amounts of manpower and resources. Thus, project
managers must identify program modules that may
contain defects in advance and assign sufficient testing
resources to them.

SDP technology based on machine-learning and
historical development data is considered to be a feasible
solution to this challenge and is typically applied to
predict the defect proneness of the program modules
in software projects. Jing et al.[10] proposed CDDL
algorithm, based on the supervised dictionary-learning
technique for mining defect distribution information
in historical data, and reported that it exhibited
better performance than traditional machine-learning
algorithms. The CCM algorithm proposed by Wang
et al.[11] was based on C4.5 and Spearman’s rank
correlation coefficient for predicting software defects.
As noted above, Jiang et al.[12] reported good SDP using
a combination of SVM and ant colony optimization.
In addition, many researchers have applied the latest
research advances in machine-learning to SDP, such
as semi-supervised learning and active learning. For
example, Lu et al.[14] constructed a defect prediction
model based on active learning. They not only used data
from previous software version, but also used a small
number of labeled data from the current software version
to train the model. Li et al.[13] proposed the CoForest and
ACoForest algorithms. CoForest is a sampling method
based on semi-supervised learning. Using random
forest classification, this method finds optimal sampling
examples by random sampling. ACoForest extends the
performance of CoForest via active learning. Studies
have reported that these two methods perform better
than other traditional machine-learning methods.

2.2 Class imbalances in software defect prediction

Class imbalance is a normal occurrence in SDP. Chen
et al.[1] reported that class imbalance can be attributed
to the distributions of defects in software modules,
which is roughly consistent with the Pareto principles
(80% of defects are concentrated in 20% of the
program modules). Therefore, the number of non-
defect-prone moduli (i.e., majority class) is larger
than that of the defect-prone moduli (i.e., minority
class), which leads to low prediction accuracy for
defect-prone modules. This not only reduces the quality

Shiqi Tang et al.: A Novel Cross-Project Software Defect Prediction Algorithm Based on Transfer Learning 43

of the software (if the classifier predicts a defect-
prone module as a non-defect-prone module, it will
generate defects in the final-release software), but also
increases the cost of software development (if a classifier
predicts a non-defect-prone module as a defect-prone
module, significant amounts of time and manpower
will be spent on testing this module, which wastes
test resources). There are two feasible approaches for
solving the above challenges. One is the application
of class-distribution-based methods, such as random
oversampling, random undersampling, and synthetic-
minority oversampling techniques in the adjustment of
the label distribution. For example, Menzies et al.[16]

used a random sampling method to preprocess data and
found that removing some samples from the training
data does not significantly reduce the performance of
the defect prediction model. Pelayo and Dick[15] also
showed that data preprocessing by synthetic-minority
oversampling effectively improves the performance
of the model. The second approach is based on
modification of the learning algorithm, in which better
prediction accuracy is achieved in the minority class
by modifying the algorithm training process. Typical
methods include cost-sensitive learning and ensemble
learning. Zheng[22] proposed a cost-sensitive algorithm
based on neural networks to overcome the impact
of class imbalance. Wang and Yao[23] compared the
performances of several machine-learning algorithms
to find a suitable method for SDP. The experimental
results revealed that the ensemble learning algorithm,
AdaBoost.NC, exhibites better performance than other
algorithms.

2.3 Cross-project defect prediction based on
transfer learning

To date, most researches have focused on within-project
defect prediction, whereby a defect prediction model is
constructed based on part of the data in the project (local
training data) with other data being used to evaluate the
model performance. However, local training data can
rarely be used in practice for a number of reasons, such
as the expense associated with labeling local defective
modules or developing fresh module domains for a
project. To solve this problem, the CPDP method uses
a source-project data training model to detect defects
in the target project. Zimmermann et al.[24] constructed
622 cross-project task combinations from 12 projects to
evaluate CPDP model performance. Interestingly,

the experimental results showed that traditional defect
prediction methods have difficulty achieving good CPDP
performance, because they assumed that the training and
test data have similar distributions, whereas data from
different projects have different distributions. Transfer
learning, which has attracted increasing attention in
recent years[18, 19], utilizes source domain information to
promote model learning when the target domain contains
limited labeled data. Transfer learning has achieved good
performances in many domains, including document
classification[25], machine translation[26], visual brain
computer[27], and data stream classification[28]. Ma
et al.[17] considered CPDP belonging in the transfer-
learning domain. In recent years, several methods
based on transfer learning have been proposed for
CPDP. Turhan et al.[29] reported a selection method
based on nearest-neighbor sample and used this method
to select source-project data that are similar to the
target project data for classifier training. Nam et al.[20]

proposed a method called TCA+, which applies transfer
component analysis[30] to explore the latent feature
space among different project data. When the potential
space is determined, the source and target domains
are mapped to the space, which effectively eliminates
the impact of differences in the data distributions of
various projects. Ma et al.[17] assigned different weights
to data from each source project based on their degree
of similarity with data from the target project, and
proposed a weighted naive Bayes model, known as TNB.
In a previous study, Chen et al.[21] reported a double-
transfer boosting algorithm, which has two stages—data
gravitation and transfer boosting. Data gravitation is
used to reconstruct the distribution of features in the
source project based on the target project data, and
transfer boosting is applied to remove negative instances
in the source project. Li et al.[31] used the multi-source
transfer learning algorithm for predicting cross-project
software defects by transferring data information from
multiple source projects to the target project. However,
the class imbalance in the training data is neglected in
these transfer-learning algorithms, which can affect their
performances.

To solve the above problems, we propose a new
CPDP algorithm, TSboostDF. We constructed 42 CPDP
tasks based on the Promise dataset, and then compared
the performances of TSboostDF with other SDP
methods on a CPDP dataset. The experimental results
demonstrated that TSboostDF achieved outstanding
prediction performance.

44 Tsinghua Science and Technology, February 2022, 27(1): 41–57

3 Approach

In this section, TSboostDF is described in detail. The
construction of TSboostDF has three stages—initialization,
training, and prediction. In the initialization stage, we
assign two weights, a sample weight and a similar weight
for each dataset in the source project. In the training
stage, we use the boosting method to train several base
classifiers. Before each base classifier is established,
the training and test sets are reconstructed based on the
sample weights, then these datasets are used to build
the basic classifiers and calculate their weights. In the
prediction stage, these classifiers are used by TSboostDF
to predict defects.

3.1 Problem description

In this paper, We define the source project and the target
project as DS D f.XS

i , yS
i /ji D 1; 2; : : : ; Sng and

DT D fXT
k jk D 1; 2; : : : ;Tng, respectively, where XS

i

and XT
k 2 Rm�1, Sn is the number of samples in the

source-project and Tn is the number of samples in the
target project. Note that (1) XS

i and XT
k

represent the
feature vector of i-th sample and the k-th sample in DS

and DT, respectively. They are m-dimensional vectors,
which each dimension is a measure of an analysis of
the source code of a module (similar to Chidamber &
Kemerer (CK) metrics), and (2) yS

i is the label, which
represents the defect proneness of sample. yS

i 2 f�1, 1g,
where yS

i D �1 and yS
i D1 represent non-defect-prone

and defect-prone modules, respectively.

3.2 Initialization stage

In the initialization stage, each sample in the source
project is assigned two weights—a similarity weight
Sw and a sample weight W. Sw is used to evaluate the
similarity of the samples in the source and target projects,
and W is used to measure the sampling probability.

Similarity weight. To measure the similarity of the
samples in the source and target projects, we use a
method similar to that reported by Ma et al.[17]. XT

k
(k2

f1; 2; : : : ;Tng) and XS
i (i 2 f1; 2; : : : ; Sng/ are defined

as follows:
XT

k D .a
T
k1; a

T
k2; : : : ; a

T
kj ; : : : ; a

T
km/;

XS
i D .a

S
i1; a

S
i2; : : : ; a

S
ij ; : : : ; a

S
im/:

Then we compute the maximum value and minimum
value of the j-th attribute on DT,

maxj D maxfaT
1j; a

T
2j; : : : ; a

T
Tn, jg (1)

minj D minfaT
1j; a

T
2j; : : : ; a

T
Tn, jg (2)

Si is the similarity value of the i-th sample in DS and
DT . Si is defined as

Si D

mX
jD1

h.aS
ij/

m
(3)

where h.aS
ij) is expressed as

h.aS
ij/ D

(
1; minj 6 aS

kj 6 maxjI

0; else:

The similarity weight of the i-th sample in DS , namely
Swi, can be calculated as follows:

Swi D
Si

Smax
(4)

where Smax D max fS1; S2; : : : ; SSng. According to
Eq. (4), a higher Swi corresponds to a higher similarity
value of the i-th sample.

Sample weight. The sample weight represents the
probability of the sample being taken by the sampling
method for building new train dataset in the training
stage. A sample with a higher sample weight means a
higher probability. In the initialization stage, we assign
the same weight to each sample in the source project.
The value is given as

Wi D
1

Sn
(5)

where W i is the i-th sample weight in DS . This weight is
updated continuously during the training stage based on
the basic classifier performance on the test dataset. The
update strategy is described in the next section.

3.3 Training stage

In the training stage, we use a strategy similar
to boosting, in which we train a series of basic
classifiers by iteration and add them to a classifier pool
(ClassficationPool). At each iteration, we build a basic
classifier using the following steps: First, from DS , we
select a number of samples with high similar weights to
create a test dataset in the current iteration. Second, we
select a number of DS samples based on their sample
weights to build the training dataset, and then use this
training dataset to build a basic classifier. Third, we test
the new basic classifier using the test dataset, and update
the sample weight based on its performance. Given a
satisfactory performance by the classifier, we calculate
a distribution similarity distance between the training
dataset and the target project, and then add the basic
classifier to the ClassficationPool.

Building test dataset. Due to the impossibility of
obtaining a real label for a sample from DT , the true

Shiqi Tang et al.: A Novel Cross-Project Software Defect Prediction Algorithm Based on Transfer Learning 45

distribution of data in DT cannot be determined, which
will lead to the inaccurate exclusion of data with different
distribution characteristics. It is difficult to determine
the performance on DT if all data in DS are directly used
to test the trained base classifier. In each iteration, we
build the test dataset using the following steps. First, we
assume that samples with higher similar weights have
high similarity with the characteristic distribution of data
in DT . On this basis, we define Similarity threshold.
Samples whose similarity weights are greater than the
Similarity threshold in the training dataset are referred
to as similarity samples. We select some samples from
these similar samples at a given extraction ratio (namely
the Sampling percentage). In this way, we can build a
number of test datasets that are more similar to DT and
we expect the base classifiers to perform well on these
test datasets. Thus, we can integrate these classifiers to
obtain better results on DT .

Building a training dataset. Due to the class
imbalance problem in the datasets, the base classifier
will be biased toward the majority class. Thus, it is
difficult to build a basic classifier that can achieve a
good performance on DT . To overcome this challenge,
we present Bernoulli Sampling based on Weight (BSW),
whereby the data in each class of the dataset are sampled
in each iteration to ensure class balance in the training
set.

BSW involves two sampling processes, each of which
is composed of a number of Bernoulli distribution tests.
The probability of a sample being extracted in each test is
determined by the sample weight. In the implementation
process, we use the cumulative method[32] for sampling
shown in Algorithm 1.

In the first sampling process, we use the cumulative

Algorithm 1 Cumulative
Input: Sample weight arry[]
Output: Index of the sampled data

1: P[]=new double[sample weight arry.length];
2: Copy arry[] to P[];
3: for index from 1 to P.length do
4: P[index]+=P[index–1];
5: end for
6: u=random double in [0,1]�P[last element];
7: index=0;
8: for index from 0 to P.length do
9: if P[index] >u then

10: break;
11: end if
12: end for
13: return index

method to extract Psize samples in the minority class
of the dataset. To reduce the impact of the unbalanced
class, the Psize value should not be less than the number
of minority samples. In the second sampling, we extract
Sn-Psize samples in DS . After the training sets are
constructed, we use them to train the basic classifier.

Weight update strategy. After constructing the basic
classifier, we calculate the classification error of the
base classifier on the test datasets and obtain the update
parameter ˛ according to the error rate �. Then the
weights can be updated using the following strategy:
if ˛ > 0, the basic classifier is effective for predicting
the defects in DT . Thus, a sample in DS that has been
correctly classified by the classifier can facilitate defect
prediction in DT , leading to an improvement in the
sample weights. Samples that are misclassified by the
classifier cannot facilitate the prediction of defects in DT ,
so we reduce the weights of these samples. If ˛ < 0, the
basic classifier plays only a slight role in the predicting
defects in DT . Therefore, the samples in DS that are
correctly classified by the classifier will not be helpful
in the prediction of defects in DT , so the weights of
these samples are reduced. The samples misclassified
by the classifier may facilitate defect prediction in DT ,
leading to improvement in the weight of these samples.
Algorithm 2 shows the details of the weight update
strategy.

Assignment of classifier weight. Next, we measure
the similarity of each new trained dataset with that of
the target project dataset. Similar to Ref. [31], we first
define a feature vector P of the distribution as follows:

P D .p1; : : : ; pj; : : : ; pm/;

where pj = (maxj , minj , meanj , stdj), and meanj

and stdj represent the mean and variance of all the
j-dimensional feature values in the dataset, respectively.
We define disi as the degree of similarity between the
i-th training dataset (built in the i-th iteration) and DT .
disi can be defined as follows:

disi D
1

log.ED.Pi;PT/C 1/
(6)

where Pi is a feature vector of the distribution of the i-th
train dataset, PT is a feature vector of the distribution
of DT , and ED() is the Euclidean distance. After all the
classifiers have been constructed, the weight ˇi for the
i-th basic classifier is expressed as follows:

ˇi D
disi

LoopNumX
iD1

disi

(7)

46 Tsinghua Science and Technology, February 2022, 27(1): 41–57

Algorithm 2 UpdateWeight
Input: Classifier; ˛; DS ; Similarity threshold

1: for (XSi , ySi) in DS do
2: � D Wi;
3: ypredict D h(XS

i
); //h. / is the prediction function of the

classifier
4: if Swi > Similarity threshold then
5:

� D

8<: � � e˛�Swi ; ypredict D ySi I

� � e�˛�Swi ; otherwiseI

6: else
7: if ˛ > 0 then
8:

� D

8<: � � e˛�Swi ; ypredict D ySi I

� � e�˛; otherwiseI

9: else
10:

� D

8<: � � e˛; ypredict D ySi I

� � e�˛�Swi ; otherwiseI

11: end if
12: end if
13: W i=�;
14: end for
15: Z D

PSn
iD1Wi ;

16: for (XS
i
; yS
i
/ in DS do

17: Wi D Wi=Z

18: end for

where LoopNum represents the number of basic
classifiers.

3.4 Prediction stage

After constructing the basic classifiers, the final classifier
is constructed by integrating the basic classifiers in the
ClassficationPool according to their weights, which is
expressed as follows:

yfinal D sign

 LoopNumX
iD1

ˇihi .XT
k /

!
(8)

where hi . / is the prediction function of the i-th basic
classifier, yfinal is the prediction result of ensemble
classifier, yfinal 2 f�1; 1g.

3.5 Pseudo-code description

Algorithm 3 shows the pseudo-code of the TSboostDF
algorithm. Lines 1–7 comprise the initialization stage.
In Line 3, we calculate the dimensions of each attribute
value of the target project based on the method proposed
in Section 3.2. In Lines 4–7, we initialize the sample
weights and similar weights for each of the data in the

Algorithm 3 TSboostDF
Input: DS=(XS , yS); DT =XT ; Similarity threshold; Sampling
percentage; LoopNum; Psize

1: /*Initialization stage*/
2: ClassficationPool=[]; //Create a classfication pool for store

classifier
3: TargetInformation=CaluteTargetInformation(DT);
4: for each di in DS do
5: W i =1/Sn;
6: Swi=CalcualtionSimilarWeight(di, TargetInformation);
7: end for
8: /*Training stage*/
9: i=0;

10: while i<LoopNum do
11: TestData = CreateTestData (DS , Similarity threshold,

Sampling percentage);
12: ˛=–1;
13: while ˛ <0 do
14: TrainData=BSW(DS , Psize); //Built train dataset
15: Classifier=Train(TrainData);
16: �=CalculationError(Classifier, TestData); //Calculate the

error rate
17:

˛ D 0:5 � log
�
1 � �

�

�
I

18: UpdateWeight(Classifier, ˛, DS , Similarity threshold);
19: end while
20: disi=Dis(DT , TrainData);
21: Set disi to Classifier;
22: Add Classifier to ClassficationPool;
23: i++;
24: end while
25: AssignmentWeight(ClassficationPool);
26: /*Prediction stage*/
27:

yfinal D sign

 LoopNumX
iD1

ˇihi .XTk /

!
:

DS using Eqs. (4) and (5). Lines 8–25 comprise the
training stage. In Line 11, we build the test dataset
using the method described in Section 3.3. In Line 14,
DS samples are extracted based on their sample weights
determined by the BSW method. Then, we can build the
training datasets and basic classifiers. In Lines 16 and
17, we calculate the error rate � and the error coefficient
˛ of the basic classifier in the test datasets (note that the
weight of a sample is not considered when calculating
this error rate). Then, the weight is updated by the
UpdateWeight algorithm. If ˛ > 0, the difference in the
distributions of the training dataset and DT is calculated
using Eq. (6) in Line 18. If ˛ 6 0, we rebuild the training
dataset and the basic classifier. Finally, to predict the

Shiqi Tang et al.: A Novel Cross-Project Software Defect Prediction Algorithm Based on Transfer Learning 47

test samples, all the classifiers are integrated with their
weights in Line 27. The weights of basic classifiers are
calculated using Eq. (7).

4 Experiment

In this section, we describe three experiments we
conducted to verify the performance of TSboostDF. (1)
In the first experiment, on different CPDP datasets, we
compared the performance of TSboostDF with those
of other methods. (2) To overcome class imbalance, in
the second experiment we compared the performance
of TSboostDF with those of other methods with
respect to class imbalance. In addition we performed
a statistical analysis of the results of experiments
1 and 2. (3) In this experiment, we compared the
performances of TSboostDF with those of other
methods for different Psize values and evaluated their
effect on the performance of the classifiers.

4.1 Datasets

We used seven projects (including arc, xalan, and
tomcat etc.) in the open dataset Promise[33] to build our
CPDP experimental datasets. For each experiment, two
projects were selected, one of which served as the target
project and the other was the source project. In total,
we constructed 42 CPDP experimental datasets. Each
sample from the datasets represented the test results for
a program module in the project. In our experiment,
each sample had 20 attributes and 1 label. Each feature
represented a measure of the CK metrics analysis of the
source code of the module, and the label represented
the defect proneness of the module. Details of those
attributes are shown in Table 1[34]. In Table 1, the BUG is
a label, and when its value is greater than 0, it represents

a defect-prone module, otherwise represents a non-
defect-prone module. These datasets can be downloaded
from the website (http://openscience.us/repo/defect/).
Table 2 provides details of the datasets. The first, second,
third, and fourth columns in Table 2 correspond to the
project name, the number of modules in the project, the
number of defect-prone modules, and a description of
the project, respectively. As shown in Table 2, there are
far fewer defect-prone modules than non-defect-prone
modules in most projects. Specifically, only 16, 27, and
77 defect-prone modules are present in sysnapse1.0, arc,
and tomcat, respectively.

4.2 Performance measures

For this paper, the performance of each algorithm was
determined based on its values of F1-measure, G-mean,
Matthews Correlation Coefficient (MCC), and Balance,
which were calculated from the Recall and Precision
values defined in the obfuscation matrix in Table 3,
where TP means True Positive, FP means False Positive,
FN means False Negative, and TN means True Negative.

Recall. It is a measure of completeness, describing
probabilities of true defective modules in comparison

Table 2 Details of experiment dataset.

Project
Number of
modules

Number of
defect-prone modules

Description

ant1.7 745 166 Open-source
arc 234 27 Academic

jedit3.2 272 90 Open-source
sysnapse1.0 157 16 Open-source

tomcat 858 77 Open-source
xalan2.4 723 110 Open-source
xerces1.2 440 71 Open-source

Table 1 Descriptions of sofware metrics.
Attribute Description Attribute Description

WMC Weighted methods per class MFA Measure of function abstraction

DIT Depth of inheritance tree CAM Cohesion among methods of class

NOC Number of children IC Inheritance coupling

RFC Response for a class AMC Average method complexity

LCOM Lack of cohesion in methods CA Afferent couplings

LOCM3 Normalized version of LCOM CE Efferent couplings

NPM Number of public methods MAX CC Maximum values of methods in the same class

LOC Lines of code
AVG CC

Mean values of methods in the same class of

DAM Data access metric methods in a given class

MOA Measure of aggregation CBM Coupling between methods

BUG
Number of bugs detected in the number of CBO Coupling between object classes

program module

48 Tsinghua Science and Technology, February 2022, 27(1): 41–57

Table 3 Obfuscation matrix.

Predicted
Actual

Defect Non-defect
Defect TP FP

Non-defect FN TN

with the total number of defective modules,

Recall D
TP

TPC FN
:

Precision. This is a measure of exactness, which
defines the probabilities of the presence of modules that
are truly defective from the number of modules predicted
to be defective,

Precision D
TP

TPC FP
:

Probability of the False alarm (PF). It shows the
proportion of all the modules without defects predicted
to be defective,

PF D
FP

FPC TN
:

F1-measure. It is the harmonic average of recall and
precision. An algorithm with a higher F1-measure value
implies a better performance,

F1-measure D
2 � Recall � Precision

RecallC Precision
:

G-mean[23]. G-mean is the geometric mean of the
recall values of the defective and non-defective classes,

G-mean D
p

Recall � .1 � PF/ :

Balance[23]. Balance is introduced by calculating the
Euclidean distance from the real (Recall, PF) point to (1,
0), since the point (Recall = 1, PF = 0) is the ideal point
where all defects are detected without missing,

Balance D 1 �

p
.0 � PF/2 � .1 � Recall/2

p
2

:

MCC[35]. MCC takes into account the values of
TP, FP, FN, and TN more comprehensively and can
be utilized when the class is imbalanced[36]. MCC
values range between [–1, 1], where 1 denotes a perfect
prediction and –1 indicates complete disagreement
between the actual and predicted values. The higher
the values, the better the performances of the classifiers.

MCCD
TP � TNC FN � FPp

.TPCFN/.TPCFP/.FNCTN/.FPCTN/
:

The experiments were repeated at least 10 times to
obtain average value.

4.3 Statistical analysis

To analyze the experimental results and demonstrate
the superiority of TSboostDF, we used the Wilcoxon

rank-sum test, Cliff’s delta, and box plots, which are
routinely used in SDP studies[17, 35, 37, 38].

The Wilcoxon rank-sum test is a non-parametric
statistical test method for determining whether the
differences between two independent sample sets
are statistically significant (which happens when the
probability value (p-value) is less than the determined
level of significance). In this study, we used the
Wilcoxon rank-sum test at the 1% significance level. We
utilized the measure of win/tie/lose in the Wilcoxon rank-
sum test, where win/lose indicates the number of datasets
for which the average value of TSboostDF’s performance
metrics is higher/lower than the corresponding baselines
at the 1% significance level. A tie indicates the number
of datasets for which the p-value is higher than the
significance level.

Cliff’s delta is a measure of the non-parametric effect
size for quantifying the difference between two groups
of samples, the value of which ranges from –1 to 1. The
smaller the absolute value of the Cliff’s delta measure,
the more similar the values in two groups[39, 40]. Table 4
shows the mapping results of the Cliff’s delta and effect
size levels.

Tables 5–8 present the results of the effect size
obtained by Cliff’s delta, where � indicates that
the proposed method signifificantly outperforms the
corresponding baseline with large effect sizes.

The box plot is a statistical chart used to display
the distribution of a dataset, in which there are five
numerical aspects: minimum, lower quartile, median,
upper quartile, and maximum.

4.4 Experimental settings

To consider the performance of the TSboostDF
algorithm, we compared its performances with those of
the traditional machine-learning algorithm Naive Bayes
(NB), the ensemble learning algorithms adaBoost[40]

and adaBoost.NC[23, 41], the transfer-learning algorithm
NN[29], and TNB[17]. In these CPDP experimental
datasets, all the algorithms were implemented using
the well-known machine-learning framework Weka[42].

Table 4 Mapping results of cliff’s delta and effect size.
Cliff’s delta (ı) Effect size level
jıj < 0.1470 Negligible

0.1470 6 jıj < 0.3300 Small
0.3300 6 jıj < 0.4740 Medium

jıj>0.4740 Large

Shiqi Tang et al.: A Novel Cross-Project Software Defect Prediction Algorithm Based on Transfer Learning 49

Table 5 F1-measure of TSboostDF and other algorithms.
Source)Target NB TSboostDF TNB adaBoost adaBoost.NC NN

xerces1.2)arc 0.407 41 0.324 29 0.229 17(*) 0.407 41 0.361 57 0.435 85
tomcat)arc 0.216 22(*) 0.367 31 0.329 11(*) 0.125 00(*) 0.214 24(*) 0.273 15(*)
xalan2.4)arc 0.243 90(*) 0.360 26 0.317 07(*) 0.300 00(*) 0.264 53(*) 0.337 11(*)
sysnapse1.0)arc 0.372 88 0.286 87 0.333 33 0.266 67(*) 0.325 02 0.389 45
ant1.7)arc 0.400 00 0.315 68 0.346 67 0.400 00 0.381 88 0.358 39
jedit3.2)arc 0.311 11(*) 0.321 07 0.357 89 0.311 11(*) 0.285 56 0.402 02
arc)xerces1.2 0.210 53 0.219 15 0.194 29(*) 0.210 53 0.194 46(*) 0.202 64
tomcat)xerces1.2 0.220 34(*) 0.237 11 0.246 75 0.087 91(*) 0.223 99 0.238 33
xalan2.4)xerces1.2 0.226 09 0.210 94 0.232 88 0.163 27(*) 0.235 33 0.244 90
sysnapse1.0)xerces1.2 0.180 33(*) 0.215 57 0.218 39 0.123 71(*) 0.170 07(*) 0.181 56(*)
ant1.7)xerces1.2 0.240 60 0.215 63 0.265 73 0.240 60 0.240 73 0.238 09
jedit3.2)xerces1.2 0.206 35(*) 0.224 62 0.230 30 0.206 35(*) 0.218 27 0.225 86
arc)tomcat 0.358 11 0.362 87 0.324 93(*) 0.358 11 0.294 31(*) 0.341 99
xerces1.2)tomcat 0.372 55 0.345 25 0.240 57(*) 0.372 55 0.347 45 0.350 96
xalan2.4)tomcat 0.341 97(*) 0.372 08 0.324 93(*) 0.320 99(*) 0.357 64 0.34074(*)
sysnapse1.0)tomcat 0.312 76(*) 0.329 57 0.333 33 0.241 07(*) 0.288 99 0.323 64
ant1.7)tomcat 0.395 16 0.353 78 0.343 75(*) 0.395 16 0.382 93 0.391 09
jedit3.2)tomcat 0.389 47 0.378 01 0.317 28(*) 0.389 47 0.286 71 0.394 33
arc)xalan2.4 0.410 26 0.411 08 0.397 73 0.410 26 0.367 14 0.386 03(*)
xerces1.2)xalan2.4 0.346 50(*) 0.388 06 0.323 94(*) 0.346 50(*) 0.350 88(*) 0.352 47(*)
tomcat)xalan2.4 0.365 76(*) 0.391 12 0.419 75 0.257 67(*) 0.369 69(*) 0.340 37(*)
sysnapse1.0)xalan2.4 0.367 15(*) 0.403 68 0.418 60 0.209 88(*) 0.300 52(*) 0.345 70(*)
ant1.7)xalan2.4 0.364 82(*) 0.420 45 0.384 62(*) 0.364 82(*) 0.382 09(*) 0.384 89(*)
jedit3.2)xalan2.4 0.333 33(*) 0.399 89 0.396 91 0.333 33(*) 0.321 34(*) 0.366 21(*)
arc)sysnapse1.0 0.417 91(*) 0.490 50 0.315 79(*) 0.417 91(*) 0.339 68(*) 0.408 62(*)
xerces1.2)sysnapse1.0 0.300 00 0.290 24 0.244 90(*) 0.300 00 0.274 52 0.373 79
tomcat)sysnapse1.0 0.206 90(*) 0.402 83 0.329 11(*) 0.095 24(*) 0.256 41(*) 0.466 06
xalan2.4)sysnapse1.0 0.466 67 0.407 04 0.352 94(*) 0.482 76 0.451 39 0.456 64
ant1.7)sysnapse1.0 0.489 80 0.372 45 0.400 00 0.489 80 0.450 84 0.411 53
jedit3.2)sysnapse1.0 0.266 67(*) 0.417 19 0.307 69(*) 0.266 67(*) 0.286 53(*) 0.433 12
arc)ant1.7 0.486 67(*) 0.536 60 0.511 06(*) 0.486 67(*) 0.460 23 0.466 69(*)
xerces1.2)ant1.7 0.468 09(*) 0.539 29 0.476 19(*) 0.468 09(*) 0.481 04(*) 0.453 31(*)
tomcat)ant1.7 0.378 60(*) 0.562 32 0.572 13 0.135 42(*) 0.410 17(*) 0.406 28(*)
xalan2.4)ant1.7 0.408 33(*) 0.534 89 0.509 71(*) 0.382 61(*) 0.449 07(*) 0.409 19(*)
sysnapse1.0)ant1.7 0.351 93(*) 0.521 72 0.537 63 0.189 05(*) 0.370 35(*) 0.346 73(*)
jedit3.2)ant1.7 0.475 00(*) 0.551 28 0.536 59(*) 0.475 00(*) 0.461 06(*) 0.506 50(*)
arc)jedit3.2 0.361 29(*) 0.412 19 0.568 05 0.361 29(*) 0.373 37 0.354 20
xerces1.2)jedit3.2 0.406 02(*) 0.578 43 0.566 52(*) 0.406 02(*) 0.462 19(*) 0.435 83(*)
tomcat)jedit3.2 0.393 94(*) 0.592 96 0.566 04(*) 0.166 67(*) 0.429 72(*) 0.473 08(*)
xalan2.4)jedit3.2 0.336 00(*) 0.475 69 0.551 72 0.302 52(*) 0.406 51(*) 0.331 88(*)
sysnapse1.0)jedit3.2 0.308 94(*) 0.477 91 0.553 46 0.130 84(*) 0.302 46(*) 0.335 81(*)
ant1.7)jedit3.2 0.584 42(*) 0.639 77 0.573 25(*) 0.584 42(*) 0.595 33(*) 0.524 18(*)
Average 0.350 02 0.396 61 0.380 97 0.309 13 0.343 48 0.367 60

Details regarding these algorithms are provided below.
adaBoost. adaBoost is an ensemble learning

algorithm consisting of basic classifiers with weights.
The number of iterations is 20, and the basic classifier
is NB.

adaBoost.NC. adaBoost.NC is an extension to
adaBoost that considers the class imbalance in datasets.

The number of iterations is 20 and the basic classifier is
NB, as reported in Ref. [23]. As a prerequisite, random
oversampling was first applied to the minority class to
ensure that the classes were of the same size.

TNB. This is a transfer-learning algorithm based
on sample weights. In this paper, we used Weka’s
unsupervised discretization method to discretize the data

50 Tsinghua Science and Technology, February 2022, 27(1): 41–57

Table 6 MCC obtained by TSboostDF and other algorithms.
Source)Target NB TSboostDF TNB adaBoost adaBoost.NC NN

xerces1.2)arc 0.330 11 0.219 36 0.089 13(*) 0.330 11 0.266 32 0.362 66
tomcat)arc 0.188 23(*) 0.273 78 0.225 22(*) 0.131 64(*) 0.152 02(*) 0.190 47(*)
xalan2.4)arc 0.190 89(*) 0.263 93 0.209 90(*) 0.262 78 0.199 38(*) 0.259 64
sysnapse1.0)arc 0.284 50 0.169 98 0.230 53 0.196 93 0.228 40 0.306 41
ant1.7)arc 0.320 19 0.208 16 0.247 17 0.320 19 0.295 01 0.265 69
jedit3.2)arc 0.247 13 0.215 34 0.269 68 0.247 13 0.178 61 0.323 07
arc)xerces1.2 0.046 70 0.058 64 0.003 17(*) 0.046 70 0.011 09(*) 0.042 44
tomcat)xerces1.2 0.108 33 0.079 06 0.088 54 0.022 92(*) 0.097 83 0.117 82
xalan2.4)xerces1.2 0.121 50 0.024 02 0.080 47 0.093 79 0.102 37 0.130 12
sysnapse1.0)xerces1.2 0.053 47 0.046 15 0.034 72(*) 0.047 28 0.039 44 0.056 17
ant1.7)xerces1.2 0.106 46 0.017 67 0.123 28 0.106 46 0.093 32 0.099 30
jedit3.2)xerces1.2 0.077 06 0.040 44 0.057 76 0.077 06 0.011 82 0.085 90
arc)tomcat 0.311 88 0.315 78 0.285 89(*) 0.311 88 0.235 31(*) 0.286 44
xerces1.2)tomcat 0.305 48 0.306 81 0.165 01(*) 0.305 48 0.284 02 0.280 73
xalan2.4)tomcat 0.269 40(*) 0.329 58 0.285 89(*) 0.250 77(*) 0.294 95 0.268 11(*)
sysnapse1.0)tomcat 0.238 49(*) 0.281 68 0.286 70 0.149 43(*) 0.217 68 0.252 85(*)
ant1.7)tomcat 0.343 54 0.319 73 0.300 41(*) 0.343 54 0.337 04 0.340 88
jedit3.2)tomcat 0.323 88(*) 0.338 64 0.272 64(*) 0.323 88(*) 0.221 95(*) 0.331 78
arc)xalan2.4 0.287 53 0.292 16 0.270 78(*) 0.287 53 0.246 34 0.259 85(*)
xerces1.2)xalan2.4 0.198 46(*) 0.265 06 0.162 44(*) 0.198 46(*) 0.203 31(*) 0.206 45(*)
tomcat)xalan2.4 0.235 72(*) 0.260 40 0.298 99 0.191 14(*) 0.234 52(*) 0.209 39(*)
sysnapse1.0)xalan2.4 0.262 61 0.283 90 0.296 45 0.135 47(*) 0.200 57(*) 0.244 36
ant1.7)xalan2.4 0.225 12(*) 0.312 55 0.251 19(*) 0.225 12(*) 0.248 75(*) 0.252 04(*)
jedit3)xalan2.4 0.177 57(*) 0.281 00 0.274 72 0.177 57(*) 0.161 22(*) 0.225 76(*)
arc)sysnapse1.0 0.395 73(*) 0.465 99 0.231 10(*) 0.395 73(*) 0.295 83(*) 0.379 42(*)
xerces1.2)sysnapse1.0 0.207 94(*) 0.237 57 0.153 56(*) 0.207 94(*) 0.168 24 0.334 08
tomcat)sysnapse1.0 0.127 98(*) 0.355 21 0.282 62(*) 0.058 81(*) 0.174 79(*) 0.420 96
xalan2.4)sysnapse1.0 0.411 72 0.349 88 0.299 74(*) 0.433 57 0.388 93 0.399 28
ant1.7)sysnapse1.0 0.446 30 0.333 25 0.342 32 0.446 30 0.409 71 0.376 15
jedit3.2)sysnapse1.0 0.190 10(*) 0.370 71 0.244 70(*) 0.190 10(*) 0.201 79(*) 0.380 70
arc)ant1.7 0.362 32(*) 0.419 40 0.346 83(*) 0.362 32 (*) 0.323 04 0.343 32(*)
xerces1.2)ant1.7 0.357 21(*) 0.385 80 0.289 44(*) 0.357 21(*) 0.329 81(*) 0.337 99(*)
tomcat)ant1.7 0.305 61(*) 0.427 35 0.432 46 0.126 66(*) 0.315 00(*) 0.320 83(*)
xalan2.4)ant1.7 0.350 61(*) 0.396 13 0.344 22(*) 0.342 32(*) 0.370 26 0.352 14(*)
sysnapse1.0)ant1.7 0.293 95(*) 0.383 41 0.390 15 0.170 75(*) 0.282 77(*) 0.283 15(*)
jedit3.2)ant1.7 0.332 05(*) 0.404 65 0.381 60(*) 0.332 05(*) 0.276 50(*) 0.362 66(*)
arc)jedit3.2 0.118 96(*) 0.239 64 0.376 25 0.118 96(*) 0.153 77 0.123 58(*)
xerces1.2)jedit3.2 0.273 54(*) 0.360 97 0.292 36(*) 0.273 54(*) 0.276 23(*) 0.300 30(*)
tomcat)jedit3.2 0.261 71(*) 0.416 89 0.398 10 0.095 68(*) 0.280 00(*) 0.340 81(*)
xalan2.4)jedit3.2 0.219 79(*) 0.286 83 0.341 72 0.212 77(*) 0.259 05 0.204 51(*)
sysnapse1.0)jedit3.2 0.193 38(*) 0.307 24 0.380 14 0.044 38(*) 0.183 61(*) 0.221 86(*)
ant1.7)jedit3.2 0.438 83(*) 0.467 51 0.414 02(*) 0.438 83(*) 0.430 54(*) 0.364 40(*)
Average 0.251 00 0.281 24 0.256 00 0.223 60 0.230 50 0.267 73

for TNB.
NN. This is a transfer-learning algorithm based on

K-nearest neighbors. In our experiment, the number of
K-nearest neighbors is 10, and NB is used as the basic
classifier.

TSboostDF. The number of iterations of this
algorithm is 20, and the basic classifier is NB with a

Similarity threshold value of 0.75, Sampling percentage
of 0.8, and Psize of 0:5 � Sn.

4.5 Experiment on different CPDP datasets

In this experiment, we calculated F1-measure and
MCC by each of the above methods to determine
their overall performance in CPDP. The experimental

Shiqi Tang et al.: A Novel Cross-Project Software Defect Prediction Algorithm Based on Transfer Learning 51

Table 7 G-mean obtained by TSboostDF and other algorithms.
Source)Target NB TSboostDF TNB adaBoost adaBoost.NC NN

xerces1.2)arc 0.613 12 0.611 82 0.541 53(*) 0.613 12 0.618 87 0.635 87
tomcat)arc 0.379 28(*) 0.622 70 0.625 11 0.270 19(*) 0.396 55(*) 0.478 83(*)
xalan2.4)arc 0.420 87(*) 0.637 63 0.619 51(*) 0.463 37(*) 0.464 14(*) 0.539 96(*)
sysnapse1.0)arc 0.605 04 0.594 67 0.626 97 0.457 54(*) 0.577 01 0.608 92
ant1.7)arc 0.611 51(*) 0.620 13 0.632 51 0.611 51(*) 0.616 40 0.601 12(*)
jedit3.2)arc 0.495 46(*) 0.614 75 0.688 84 0.495 46(*) 0.554 89(*) 0.611 83
arc)xerces1.2 0.430 88 0.437 97 0.427 77 0.430 88 0.423 29 0.418 84(*)
tomcat)xerces1.2 0.407 71(*) 0.458 58 0.470 31 0.232 15(*) 0.419 91(*) 0.432 11(*)
xalan2.4)xerces1.2 0.409 53(*) 0.447 06 0.449 22 0.326 92(*) 0.436 30 0.435 29(*)
sysnapse1.0)xerces1.2 0.371 67(*) 0.441 03 0.454 63 0.282 71(*) 0.363 98(*) 0.371 00(*)
ant1.7)xerces1.2 0.444 14(*) 0.459 86 0.478 72 0.444 14(*) 0.454 58 0.444 83(*)
jedit3.2)xerces1.2 0.402 81(*) 0.462 54 0.461 75 0.402 81(*) 0.438 32 0.431 98(*)
arc)tomcat 0.736 21 0.731 91 0.734 26 0.736 21 0.670 84 0.707 73
xerces1.2)tomcat 0.661 26(*) 0.744 62 0.641 34(*) 0.661 26(*) 0.686 93(*) 0.631 97(*)
xalan2.4)tomcat 0.618 89(*) 0.748 42 0.734 26(*) 0.558 71(*) 0.669 93(*) 0.612 71(*)
sysnapse1.0)tomcat 0.642 36(*) 0.721 83 0.726 63 0.544 77 (*) 0.611 34(*) 0.655 66(*)
ant1.7)tomcat 0.732 77(*) 0.755 52 0.736 44(*) 0.732 77(*) 0.744 21(*) 0.735 90(*)
jedit3.2)tomcat 0.658 60(*) 0.756 55 0.722 78(*) 0.658 60(*) 0.643 12(*) 0.683 89(*)
arc)xalan2.4 0.648 25 0.645 83 0.676 62 0.648 25 0.611 45 0.619 75
xerces1.2)xalan2.4 0.617 45(*) 0.680 13 0.611 98(*) 0.617 45(*) 0.634 48(*) 0.624 84(*)
tomcat)xalan2.4 0.597 97(*) 0.665 27 0.686 26 0.425 37(*) 0.620 69(*) 0.566 97(*)
sysnapse1.0)xalan2.4 0.558 75(*) 0.632 43 0.673 15 0.381 73(*) 0.496 23(*) 0.533 64(*)
ant1.7)xalan2.4 0.626 09(*) 0.711 13 0.647 38(*) 0.626 09(*) 0.653 77(*) 0.643 24(*)
jedit3.2)xalan2.4 0.614 93(*) 0.690 23 0.685 91 0.614 93(*) 0.574 39(*) 0.647 91(*)
arc)sysnapse1.0 0.803 36 0.832 15 0.659 42(*) 0.803 36 0.712 04(*) 0.789 91(*)
xerces1.2)sysnapse1.0 0.571 95(*) 0.678 62 0.614 54(*) 0.571 95(*) 0.595 65(*) 0.758 75
tomcat)sysnapse1.0 0.417 38(*) 0.762 43 0.724 14(*) 0.246 43(*) 0.480 47(*) 0.788 14
xalan2.4)sysnapse1.0 0.644 81(*) 0.745 21 0.732 96(*) 0.647 21(*) 0.686 80(*) 0.751 15
ant1.7)sysnapse1.0 0.798 94 0.759 42 0.742 28(*) 0.798 94 0.788 78 0.784 48
jedit3.2)sysnapse1.0 0.481 94(*) 0.769 02 0.695 73(*) 0.481 94(*) 0.576 64(*) 0.762 34
arc)ant1.7 0.627 24(*) 0.670 47 0.691 57 0.627 24(*) 0.616 04 0.608 68(*)
xerces1.2)ant1.7 0.602 71(*) 0.721 74 0.671 62(*) 0.602 71(*) 0.641 87(*) 0.592 36(*)
tomcat)ant1.7 0.512 12(*) 0.713 97 0.742 59 0.276 69(*) 0.546 48(*) 0.539 42(*)
xalan2.4)ant1.7 0.531 45(*) 0.686 74 0.691 73 0.505 87(*) 0.577 28(*) 0.531 95(*)
sysnapse1.0)ant1.7 0.485 69(*) 0.673 90 0.701 52 0.333 61(*) 0.512 35(*) 0.482 66(*)
jedit3.2)ant1.7 0.629 41(*) 0.721 00 0.722 81 0.629 41(*) 0.624 42(*) 0.661 48
arc)jedit3.2 0.497 86 0.533 40 0.665 20 0.497 86 0.500 44 0.490 77
xerces1.2)jedit3.2 0.523 09(*) 0.677 13 0.650 44(*) 0.523 09(*) 0.575 70(*) 0.547 45(*)
tomcat)jedit3.2 0.513 31(*) 0.683 50 0.658 84(*) 0.308 31(*) 0.544 53(*) 0.576 69(*)
xalan2.4)jedit3.2 0.464 10(*) 0.587 72 0.654 09 0.433 49(*) 0.522 23(*) 0.461 87(*)
sysnapse1.0)jedit3.2 0.441 44(*) 0.586 88 0.649 41 0.271 12(*) 0.432 11(*) 0.463 27(*)
ant1.7)jedit3.2 0.669 18(*) 0.723 62 0.662 99(*) 0.669 18(*) 0.682 99(*) 0.622 66(*)
Average 0.56004 0.652 85 0.644 90 0.511 08 0.571 39 0.592 59

results are shown in Tables 5 and 6, in which each
CPDP experimental dataset is described by the format
(source project) target project). We can see that
TSboostDF obtained the highest F1-measure value
on 16 datasets and the highest MCC value on 20
datasets in 42 CPDP experimental datasets. Generally, it
exhibited significant superiority over other algorithms on

xerces1.2)xalan2.4, tomcat)arc, xerces1.2)ant1.7,
and ant1.7)jedit3.2 datasets. Moreover, the average
F1-measure and MCC values of TSboostDF are higher
than those of other algorithms. The average F1-
measure and MCC values of the traditional machine-
learning algorithms, such as NB or adaBoost, are
lower than that of the transfer-learning algorithm.

52 Tsinghua Science and Technology, February 2022, 27(1): 41–57

Table 8 Balance obtained by TSboostDF and other algorithms.
Source)Target NB TSboostDF TNB adaBoost adaBoost.NC NN

xerces1.2)arc 0.577 42(*) 0.594 69 0.536 49(*) 0.577 42(*) 0.594 47 0.598 37
tomcat)arc 0.397 30(*) 0.596 89 0.609 90 0.345 19(*) 0.409 62(*) 0.465 79(*)
xalan2.4)arc 0.423 02(*) 0.617 18 0.606 28(*) 0.449 51(*) 0.460 23(*) 0.512 71(*)
sysnapse1.0)arc 0.574 88 0.584 09 0.611 05 0.448 50 (*) 0.557 00 0.576 10
ant1.7)arc 0.576 97(*) 0.607 53 0.614 35 0.576 97(*) 0.586 60(*) 0.573 41(*)
jedit3.2)arc 0.474 87(*) 0.599 30 0.685 46 0.474 87(*) 0.540 86(*) 0.577 01(*)
arc)xerces1.2 0.438 26 0.443 18 0.436 95 0.438 26 0.434 55 0.429 72(*)
tomcat)xerces1.2 0.418 70(*) 0.458 54 0.467 80 0.332 03(*) 0.427 65(*) 0.435 47(*)
xalan2.4)xerces1.2 0.419 32(*) 0.451 83 0.450 84 0.371 51(*) 0.439 57(*) 0.437 08(*)
sysnapse1.0)xerces1.2 0.397 55(*) 0.446 26 0.457 68 0.351 52(*) 0.396 33(*) 0.398 58(*)
ant1.7)xerces1.2 0.445 19(*) 0.462 63 0.472 25 0.445 19(*) 0.454 61 0.446 20(*)
jedit3.2)xerces1.2 0.416 78(*) 0.464 03 0.462 55 0.416 78(*) 0.445 79 0.437 28(*)
arc)tomcat 0.733 24 0.724 70 0.733 84 0.733 24 0.668 23 0.700 26
xerces1.2)tomcat 0.632 90(*) 0.744 26 0.641 07(*) 0.632 90(*) 0.672 35(*) 0.603 77(*)
xalan2.4)tomcat 0.589 01(*) 0.745 76 0.733 84(*) 0.528 62(*) 0.645 56(*) 0.582 29(*)
sysnapse1.0)tomcat 0.623 57(*) 0.720 00 0.725 87 0.528 16(*) 0.599 98(*) 0.637 85(*)
ant1.7)tomcat 0.720 15(*) 0.755 42 0.735 82(*) 0.720 15(*) 0.738 11(*) 0.725 33(*)
jedit3.2)tomcat 0.626 28(*) 0.754 66 0.722 76(*) 0.626 28(*) 0.625 92(*) 0.656 96(*)
arc)xalan2.4 0.631 58 0.628 14 0.675 22 0.631 58 0.606 71 0.601 37
xerces1.2)xalan2.4 0.611 42(*) 0.678 39 0.611 87(*) 0.611 42(*) 0.633 16(*) 0.619 50(*)
tomcat)xalan2.4 0.578 91(*) 0.661 95 0.681 79 0.426 70(*) 0.607 82(*) 0.548 31(*)
sysnapse1.0)xalan2.4 0.532 19(*) 0.613 35 0.663 72 0.400 81(*) 0.491 41(*) 0.513 54(*)
ant1.7)xalan2.4 0.616 66(*) 0.709 18 0.639 26(*) 0.616 66(*) 0.648 84(*) 0.633 37(*)
jedit3.2)xalan2.4 0.612 95(*) 0.689 11 0.685 74 0.612 95(*) 0.566 31(*) 0.646 38(*)
arc)sysnapse1.0 0.794 47(*) 0.829 12 0.651 49(*) 0.794 47(*) 0.697 29(*) 0.783 47(*)
xerces1.2)sysnapse1.0 0.548 93(*) 0.660 31 0.606 96(*) 0.548 93(*) 0.585 06(*) 0.754 89
tomcat?sysnapse1.0 0.42329(*) 0.762 04 0.716 36(*) 0.336 78(*) 0.474 88(*) 0.784 31
xalan2.4)sysnapse1.0 0.600 71(*) 0.740 48 0.732 62(*) 0.601 12(*) 0.652 35(*) 0.737 06
ant1.7)sysnapse1.0 0.794 23 0.755 67 0.738 19(*) 0.794 23 0.785 68 0.783 19
jedit3.2)sysnapse1.0 0.467 30(*) 0.767 54 0.693 20(*) 0.467 30(*) 0.556 20(*) 0.757 11
arc)ant1.7 0.596 91(*) 0.641 46 0.687 36 0.596 91(*) 0.605 84 0.578 46(*)
xerces1.2)ant1.7 0.569 68(*) 0.720 44 0.671 29(*) 0.569 68(*) 0.621 94(*) 0.561 15(*)
tomcat)ant1.7 0.487 44(*) 0.699 04 0.740 68 0.348 08(*) 0.517 75(*) 0.510 67(*)
xalan2.4)ant1.7 0.500 68(*) 0.667 43 0.688 28 0.479 75(*) 0.543 83(*) 0.501 12(*)
sysnapse1.0)ant1.7 0.466 59(*) 0.653 42 0.690 49 0.373 52(*) 0.498 72(*) 0.466 38(*)
jedit3.2)ant1.7 0.604 97(*) 0.715 68 0.722 77 0.604 97(*) 0.607 79(*) 0.640 35(*)
arc)jedit3.2 0.492 11 0.516 44 0.648 72 0.492 11 0.510 99 0.486 09
xerces1.2)jedit3.2 0.501 14(*) 0.670 76 0.646 37(*) 0.501 14(*) 0.556 38(*) 0.521 82(*)
tomcat)jedit3.2 0.493 34(*) 0.664 81 0.634 36(*) 0.362 64(*) 0.521 94(*) 0.546 42(*)
xalan2.4)jedit3.2 0.455 16(*) 0.566 81 0.641 60 0.432 70(*) 0.504 30(*) 0.454 54(*)
sysnapse1.0)jedit3.2 0.439 53(*) 0.563 08 0.625 77 0.346 73(*) 0.442 38(*) 0.455 94(*)
ant1.7)jedit3.2 0.638 82(*) 0.711 51 0.636 26(*) 0.638 82(*) 0.660 79(*) 0.594 75(*)
Average 0.54630 0.644 22 0.638 93 0.513 98 0.561 81 0.577 96

Although the traditional machine-learning algorithm
has difficulty obtaining good performance due to the
different distributions of the datasets in different projects,
information from the source project can be used by the
transfer-learning algorithm to enhance model training,
which can reduce the influence of the different dataset
distributions of different projects. Therefore, the transfer-

learning algorithm is more suitable for CPDP. On the
other hand, although the average F1-measure and MCC
values of adaBoost.NC are higher than those of adaBoost,
the impact of the distribution differences in CPDP
datasets is not considered, which leads to difficulties
in achieving better performance. In addition, because the
imbalance problem in datasets is not considered by TNB

Shiqi Tang et al.: A Novel Cross-Project Software Defect Prediction Algorithm Based on Transfer Learning 53

and NN algorithms, the performances of these algorithms
are inferior to that of the TSboostDF algorithm.

4.6 Experiments for overcoming class imbalance

In this section, we calculate G-mean and balance
of each algorithm on all datasets, which we use to
compare their performances on datasets with class
imbalance problems[23]. The experimental results, as
shown in Tables 7 and 8, reveal that TSboostDF
obtained the highest G-mean value in 16 datasets and the
highest balance value in 18 datasets of the 42 CPDP
experimental datasets, and the average G-mean and
balance of TSboostDF are also higher than those of the
other algorithms. The G-mean and balance values of
adaBoost.NC are higher than those of adaBoost, which
means that it can overcome the impact of class imbalance
more effectively than adaBoost. However, because of
the difference in the data distributions of the source
and target projects, the G-mean and balance values of
adaBoost.NC are lower than those of TNB and NN.
TSboostDF considers not only the difference in the data
distributions of the source and target projects, but also
the impact of class imbalance on the dataset. Therefore,
the values of G-mean and balance of TSboostDF are
not only higher than those of the traditional machine-
learning algorithms, but also higher than those of TNB
and NN. This means that TSboostDF is more effective in
overcoming the impact of the class imbalance problem.

4.7 Statistical analysis

Tables 5–9 show the results of the Cliff’s delta effect size
test and the Wilcoxon rank-sum test, in which we can see
that compared with other methods, TSboostDF obtained
a higher win than lose value in four performance metrics
(although TSboostDF obtained the same win and lose
values for the balance indicator, as compared with
TNB) and effect size levels are large in these win
datasets. Based on the above results, the performance
of TSboostDF is considered to be better than those of

Table 9 Results win/tie/lose of Wilcoxon rank-sum test.
Method F1-measure MCC G-mean Balance

TSboostDF
vs. NB 28/3/11 25/5/12 34/7/1 36/5/1

TSboostDF
vs. TNB 23/7/12 24/8/10 18/11/13 18/6/18

TSboostDF
vs. adaBoost 30/3/9 26/6/10 35/6/1 37/4/1

TSboostDF vs.
adaBoost.NC 23/13/6 21/15/6 30/11/1 32/9/1

TSboostDF
vs. NN 22/9/11 21/7/14 30/7/5 32/7/3

other methods, and this result is statistically significant.
In addition, from Table 10 and Figs. 1–4, we can see
that the performance of TSboostDF is better than those
of the other methods, and that its median values for the
four performance metrics are higher than those of the
other algorithms.

4.8 Experiment with different Psize values

This experiment was designed to evaluate the effect of
Psize on the performance of the classifiers. We tested
the performance of TSboostDF on different Psize values,
including Opsize, 0.35Sn, 0.4Sn, 0.45Sn, and 0.5Sn,
where Opsize is the number of the minority samples in
the source project. The same experimental datasets were
used in this experiment as those used in Section 4.5.
The experimental results, as shown in Table 11 and

Table 10 Median values of each performance metric.
Method F1-measure MCC G-mean Balance

NB 0.363 05 0.262 150 0.584 961 0.559 305
TSboostDF 0.389 59 0.299 490 0.677 870 0.663 380

TNB 0.345 21 0.278 667 0.664 096 0.650 108 9
adaBoost 0.316 04 0.210 350 0.514 481 0.496 625

adaBoost.NC 0.349 16 0.234 916 0.577 140 0.561 654
NN 0.370 00 0.281 936 0.608 802 0.576 554

0.1

0.2

0.3

0.4

0.5

0.6

NB TSboostDF TNB adaBoost adaBoost.NC NN

Algorithm

F
1−

m
ea

su
re

Fig. 1 Box plot of F1-measure of each algorithm.

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

NB TSboostDF TNB adaBoost adaBoost.NC NN

Algorithm

M
C

C

Fig. 2 Box plot of MCC of each algorithm.

54 Tsinghua Science and Technology, February 2022, 27(1): 41–57

0.3

0.4

0.5

0.6

0.7

0.8

NB TSboostDF TNB adaBoost adaBoost.NC NN

Algorithm

G
−

m
ea

n

Fig. 3 Box plot of the G-mean of each algorithm.

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

NB TSboostDF TNB adaBoost adaBoost.NC NN

Algorithm

B
al

an
ce

Fig. 4 Box plot of the balance of each algorithm.

Table 11 Performance of TSboostDF for different Psize
values.

Psize F1-measure MCC G-mean Balance

Opsize 0.396 43 0.285 68 0.642 57 0.632 21
0.35Sn 0.397 31 0.283 58 0.648 39 0.638 81
0.4Sn 0.397 61 0.283 52 0.650 96 0.641 73

0.45Sn 0.397 40 0.282 16 0.651 95 0.643 01
0.5Sn 0.396 61 0.281 24 0.652 85 0.644 22

Best baseline 0.380 97 0.267 73 0.644 90 0.638 93

Figs. 5–8, reveal that G-mean and balance of TSboostDF
increase with the increase in Psize, which shows that our
sampling strategy is effective in overcoming the impact
of class imbalance. However, when Psize is too large,
F1-measure and MCC will be affected. As shown in
Table 11, when Psize is in the range of 0.4Sn to 0.5Sn,
all the performance measures of TSboostDF are higher
than the best baselines, so the results are more reasonable
when the Psize value is in the range of 0.4Sn to 0.5Sn.

5 Threats to Validity

5.1 Internal validity

It is similar to Refs. [35] and [39], the threats to
the internal validity of our study mainly relate to the

Opsize 0.35Sn 0.4Sn 0.45Sn 0.5Sn
0.642

0.644

0.646

0.648

0.650

0.652

0.654

0.656

Psize

G
−

m
ea

n

TSboostDF
Baseline

Fig. 5 G-mean of TSboostDF for different Psize values.

Opsize 0.35Sn 0.4Sn 0.45Sn 0.5Sn
0.632

0.634

0.636

0.638

0.640

0.642

0.644

0.646

0.648

Psize

B
al

an
ce

TSboostDF
Baseline

Fig. 6 Balance of TSboostDF for different Psize values.

Opsize 0.35Sn 0.4Sn 0.45Sn 0.5Sn

0.382

0.384

0.386

0.388

0.390

0.392

0.394

0.396

0.398

0.400

Psize

F
1−

m
ea

su
re

0.380

TSboostDF
Baseline

Fig. 7 F1-measure of TSboostDF for different Psize values.

Opsize 0.35Sn 0.4Sn 0.45Sn 0.5Sn
0.265

0.270

0.275

0.280

0.285

0.290

Psize

M
C

C

TSboostDF
Baseline

Fig. 8 MCC of TSboostDF for different Psize values.

Shiqi Tang et al.: A Novel Cross-Project Software Defect Prediction Algorithm Based on Transfer Learning 55

publicly available, we carefully implemented other
baselines with reference to their original studies.
Although we checked our source codes carefully, errors
may remain that we failed to notice.

5.2 External validity
External validity indicates the degree to generalize the
research results to other situations[39]. In this study, we
compared it with five SDP methods on seven public
projects and use four well-known performance External
validity indicates the degree to generalize the research
results to other situations[39]. In this study, we compared
it with five SDP methods on seven public projects and
used four well-known performance measures (i.e., F1-
measure, G-mean, balance, and MCC) to evaluate the
performance. However, we still cannot claim that the
findings will be completely suitable for other defect
datasets. More defect datasets and the baseline methods
should be applied to reduce this threat. In addition, we
evaluated the prediction performance in terms of four
well-known performance measures (i.e., F1-measure,
G-mean, balance, and MCC) to ensure experimental
generality.

5.3 Statistical validity

In the statistical experiment, we use Wilcoxon rank-sum
test, Cliff’s delta, and box plots to verify the statistical
validity of the experimental results, and these methods
do not rest on any assumption concerning the underlying
distributions. Therefore, our experimental results are
statistically significant.

6 Conclusion and Future Work

In this paper, we proposed the transfer-learning
algorithm TSboostDF, which can be used to resolve
the CPDP problem. TSboostDF integrates the BLS
sampling method, which is based on the weight of the
sample, with the transfer-learning method to overcome
the shortcomings of the traditional algorithms used in
CPDP. The proposed algorithm demonstrated better
performance than other CPDP algorithms based on
transfer-learning. The effects of multi-source transfer-
learning on CPDP warrant future investigation by the
integration of information from multiple source projects
for knowledge transfer. This strategy will help classifiers
to achieve better performance on CPDP problems.

Acknowledgment

This work was partially supported by the Army Weapons and
Equipment Internal Research (No. LJ20191C080690).

References

[1] X. Chen, Q. Gu, W. S. Liu, S. L. Liu, and C. Ni, Survey of
static software defect prediction, (in Chinese), Journal of
Software, vol. 27, no. 1, pp. 1–25, 2016.

[2] Q. Wang, S. J. Wu, and M. S. Li, Software defect prediction,
(in Chinese), Journal of Software, vol. 19, no. 7, pp. 1565–
1580, 2008.

[3] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, A
systematic literature review on fault prediction performance
in software engineering, IEEE Transactions on Software
Engineering, vol. 38, no. 6, pp. 1276–1304, 2012.

[4] K. Punitha and S. Chitra, Software defect prediction using
software metrics—A survey, in Proc. of International
Conference on Information Communication & Embedded
Systems, Chennai, India, 2013, pp. 555–558.

[5] R. Malhotra, An empirical framework for defect prediction
using machine learning techniques with Android software,
Applied Soft Computing, vol. 49, pp. 1034–1050, 2016.

[6] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nisslon,
and W. Meding, The adoption of machine learning
techniques for software defect prediction: An initial
industrial validation, in Proc. on Knowledge-Based Software
Engineering, Cham, Greece, 2014, pp. 270–285.

[7] M. Shepperd, D. Bowes, and T. Hall, Researcher bias: The
use of machine learning in software defect prediction, IEEE
Transactions on Software Engineering, vol. 42, no. 40, pp.
603–616, 2014.

[8] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch,
Benchmarking classification models for software defect
prediction: A proposed framework and novel findings, IEEE
Transactions on Software Engineering, vol. 34, no. 4, pp.
649–660, 2008.

[9] K. O. Elish and M. O. Elish, Predicting defect-prone
software modules using support vector machines, Journal
of Systems & Software, vol. 81, no. 5, pp. 649–660, 2008.

[10] X. Y. Jing, S. Ying, Z. W. Zhang, S. S. Wu, and J.
Liu, Dictionary learning-based software defect prediction,
in Proceedings of the 36th International Conference on
Software Engineering, Hyderabad, India, 2014, pp. 414–
423.

[11] J. Wang, B. Shen, and Y. Chen, Compressed C4.5 models for
software defect prediction, in Proceedings of International
Conference on Quality Software, Nanjing, China, pp. 13–16,
2012.

[12] H. Y. Jiang, M. Zong, and X. Y. Liu, Research of software
defect prediction model based on ACO-SVM, (in Chinese),
Chinese Journal of Computers, vol. 34, no. 6, pp. 1148–
1154, 2011.

[13] M. Li, H. Zhang, R. Wu, and Z. H. Zhou, Sample-based
software defect prediction with active and semi-supervised
learning, Automated Software Engineering, vol. 19, no. 2,
pp. 201–230, 2012.

[14] H. Lu, E. Kocaguneli, and B. Cukic, Defect prediction
between software versions with active learning and
dimensionality reduction, in Proceedings of International
Symposium on Software Reliability Engineering, Naples,
Italy, 2014, pp. 270–285.

56 Tsinghua Science and Technology, February 2022, 27(1): 41–57

[15] L. Pelayo and S. Dick, Applying novel resampling
strategies to software defect prediction, in Proceedings of
Annual Meeting of the North American Fuzzy Information
Processing Society, San Diego, CA, USA, 2007, pp. 69–72.

[16] T. Menzies, T. Burak, B. Ayse, G. Gregory, C. Bojan, and Y.
Jiang, Implications of ceiling effects in defect predictors, in
Proc. of International Workshop on Predictor MODELS in
Software Engineering, Leipzig, Germany, pp. 47–54, 2008.

[17] Y. Ma, G. C. Luo, X. Zeng, and A. G. Chen, Transfer
learning for cross-company software defect prediction,
Information and Software Technology, vol. 54, no. 3, pp.
248–256, 2012

[18] S. J. Pan and Q. Yang, A survey on transfer learning, IEEE
Transactions on Knowledge and Data Engineering, vol. 22,
no. 10, pp. 1345–1359, 2010.

[19] F. Z. Zhuang, P. Luo, Q. He, and Z. Z. Shi, Survey on
transfer learning research, (in Chinese), Journal of Software,
vol. 26, no. 1, pp. 26–39, 2015.

[20] J. Nam, S. J. Pan, and S. Kim, Transfer defect learning, in
Proc. of 2013 35th International Conference on Software
Engineering (ICSE), San Francisco, CA, USA, 2013, pp.
382–391.

[21] L. Chen, B. Fang, Z. W. Shang, and Y. Y. Tang, Negative
samples reduction in cross-company software defects
prediction, Information and Software Technology, vol. 62,
no. 1, pp. 67–77, 2015

[22] J. Zheng, Cost-sensitive boosting neural networks
for software defect prediction, Expert Systems with
Applications, vol. 37, no. 6, pp. 4537–4543, 2010.

[23] S. Wang and X. Yao, Using class imbalance learning
for software defect prediction, IEEE Transactions on
Reliability, vol. 62, no. 2, pp. 434–443, 2013.

[24] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B.
Murphy, Cross-project defect prediction: A large scale
experiment on data vs. domain vs. process, in Proc. of
the Joint Meeting of the European Software Engineering
Conference and the ACM Sigsoft Symposium on the
Foundations of Software Engineering, Amsterdam, the
Netherlands, 2009, pp. 91–100.

[25] W. Dai, G. R. Xue, Q. Yang, and Y. Yu, Co-clustering-
based classification for out-of-domain documents, in Proc.
of ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Jose, CA USA, pp. 210–
219, 2007.

[26] M. Muhammad,Y. Liu, M. Sun, and H. Luan, Enriching the
transfer learning with pre-trained lexicon embedding for
low-resource neural machine translation, Tsinghua Science
& Technology, doi: 10.26599/TST.2020.9010029.

[27] J. Lin, L. Liang, X. Han, C. Yang, X. Chen, and X.
Gao, Cross-target transfer algorithm based on the volterra
model of SSVEP-BCI, Tsinghua Science & Technology, doi:
10.26599/TST.2020.9010015.

[28] Q. Wu, H. Wu, X. Zhou, M. Tan, Y. Xu, Y. Yan, and T.
Hao, Online transfer learning with multiple homogeneous
or heterogeneous sources, IEEE Transactions on
Knowledgeand Data Engineering, vol. 29, no. 7, pp.
1494–1507, 2017.

[29] B. Turhan, T. Menzies, A. Bener, and J. Distefano, On the
relative value of cross-company and within-company data
for defect prediction, Empirical Software Engineering, vol.
14, no. 5, pp. 540–578, 2009.

[30] I. H. Witten and E. Frank, Data mining: Practical machine
learning tools and techniques, Acm Sigmod Record, vol. 31,
no. 1, pp. 76–77, 2005.

[31] Y. Li, Z. Q. Huang, Y. Wang, and B. W. Fang, New approach
of cross-project defect prediction based on multi-source
data, (in Chinese), Journal of Jilin University, vol. 46, no.
6, pp. 2034–2041, 2015.

[32] C. Ma, LDA roaming guide, http://yuedu.baidu.com/ebook/
d0b441a8ccbff121dd36839a.html, 2012

[33] G. Boetticher, T. Menzies, and T. Ostrand, The promise
repository of empirical software engineering data,
https://github.com/opensciences/opensciences.github.io,
2007.

[34] H. J. Ji and S. Huang, A new framework consisted of data
preprocessing and classifier modelling for software defect
prediction, Computational Intelligence and Neuroscience,
vol. 2018, no. 1, pp. 1–13, 2018.

[35] H. Tong, B. Liu, and S. H. Wang, Transfer-learning oriented
class imbalance learning for cross-project defect prediction,
https://arxiv.org/abs/1901.08429, 2019.

[36] M. Shepperd, D. Bowes, and T. Hall, Researcher bias: The
use of machine learning in software defect prediction, IEEE
Transactions on Software Engineering, vol. 40, no. 6, pp.
603–616, 2014.

[37] G. Macbeth, E. Razumiejczyk, and R. D. Ledesma, Cliff’s
delta calculator: A non-parametric effect size program for
two groups of observations, Universitas Psychologica, vol.
10, no. 2, pp 545–555, 2011.

[38] Y. N. Wu, S. Huang, H. J. Ji, C. Y. Zheng, and C. Z. Bai, A
novel Bayes defect predictor based on information diffusion
function, Knowledge-Based Systems, vol. 144, no. 1, pp.
1–8, 2018.

[39] H. Tong, B. Liu, and S. H. Wang, Kernel spectral
embedding transfer ensemble for heterogeneous defect
prediction, IEEE Transactions on Software Engineering,
doi: 10.1109/TSE.2019.2939303.

[40] Y. Freund and R. E. Schapire, A decision-theoretic
generalization of on-line learning and an application to
boosting, Journal of Computer and System Sciences, vol.
55, no. 1, pp. 23–37, 1997.

[41] S. Wang, H. Chen, and X. Yao, Negative correlation learning
for classification ensembles, in Proc. of International Joint
Conference on Neural Networks, Barcelona, Spain, 2010,
pp. 1–8.

[42] I. H. Witten and E. Frank, Data mining: Practical machine
learning tools and techniques, Acm Sigmod Record, vol. 31,
no. 1, pp. 76–77, 2005.

Shiqi Tang et al.: A Novel Cross-Project Software Defect Prediction Algorithm Based on Transfer Learning 57

Shiqi Tang received the MS degree
in software engineering from Guilin
University of Electronic Technology in
2017. He is currently a PhD candidate in
software engineering at Army Engineering
University of PLA. His research interests
include fault localization, defect detection,
and machine learning.

Song Huang received the PhD degree from
PLA University of Science and Technology
in 2002. He is a member of CCF and
ACM. He is currently a professor at
Software Testing and Evaluation Center,
Army Engineering University of PLA. He
is a member of the advisory boards of
Journal of Systems and Software, IEEE

Transactions on Reliability, etc. He has contributed more than
100 journal articles to professional journals. His current research
interests include software testing, quality assurance, data mining,
and empirical software engineering.

Changyou Zheng received the PhD
degree in millitary information from PLA
University of Science and Technology
in 2013. He is currently a teacher at
Army Enginerring University of PLA. His
research interests include software testing
and blockchains.

Erhu Liu received the BEng and MEng
degrees from Southeast University in
2008 and 2013, respectively. He is a
PhD candidate in software engineering at
Army Engineering University of PLA. His
research interests include AI testing and
metamorphic testing.

Cheng Zong received the BEng degree in
electric engineering and the MEng degree
in control engineering from Southeast
University, Nanjing, China in 2008 and
2014, respectively. He is currently a PhD
candidate in software engineering at the
Army Engineering University of PLA. His
research interests include data mining,

industrial control, and failure analysis.

Yixian Ding received the BEng degree
in mechanical manufacturing engineering
from Liaoning Technical University in
1990. He is currently working at Liaoning
Technical University. His main research
interest is application of project heat
treatment in new materials.

