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Introduction

For epithelial cells to function, they must polarize into apical 

and basolateral membranes. The basolateral membrane is 

de� ned by lateral cell–cell adhesion and basal interactions with 

the extracellular matrix. In mammalian epithelia, the tight junc-

tion acts as a landmark separating the apical from the basolat-

eral surface. Work over the last 20 yr has begun to elucidate the 

molecular mechanisms that contribute to the formation of api-

cobasal polarity in epithelial cells (Nelson, 2003). Important 

to this progress were studies in Drosophila melanogaster and 

Caenorhabditis elegans that elucidated key proteins that were 

necessary for cell polarization (Knust and Bossinger, 2002; 

Schneider and Bowerman, 2003). These included a scaffold 

protein called Stardust and an apical transmembrane protein 

called Crumbs. Crumbs is a protein that de� nes the apical mem-

brane, as overexpression leads to an expansion of the apical 

membrane in D. melanogaster epithelia (Wodarz et al., 1995). 

In mammals, there are three isoforms of Crumbs. Crumbs1 was 

� rst identi� ed as RP12, a gene mutated in a subset of patients 

with retinitis pigmentosa and Leber congenital amaurosis (den 

Hollander et al., 1999). Crumbs2 is found in the brain, eye, and 

kidney, but its function is unclear (van den Hurk et al., 2005).

We and others have extensively characterized Crumbs3 

(CRB3; Makarova et al., 2003; Roh et al., 2003; Lemmers et al., 

2004). The expression of CRB3 is much broader than the 

other mammalian Crumbs isoforms. CRB3 has been shown to 

be important for epithelial polarity and tight junction forma-

tion. Recently, we have also shown an important role for 

CRB3 in ciliogenesis by epithelial cells, and similar results 

have been obtained in zebra� sh (Fan et al., 2004; Omori and 

Malicki, 2006). Although CRB1 and CRB2 isoforms as well 

as D. melanogaster Crumbs have a large extracellular domain 

with EGF and Laminin repeats, CRB3 has only a small extra-

cellular domain. However, all Crumbs proteins have a highly 

conserved intracellular domain that ends with the sequence 

ERLI. This sequence binds to at least two scaffold proteins 

that are important for cell polarization, Stardust/PALS1 (pro-

tein associated with Lin-7) and Par6 (Bachmann et al., 2001; 

Hong et al., 2001; Roh et al., 2002; Lemmers et al., 2004). 

The binding of Crumbs to these scaffold proteins is crucial for 

it to act as an effector in polarity determination and tight junc-

tion formation (Klebes and Knust, 2000; Roh et al., 2003; 

Fogg et al., 2005). However, it has been clear since the identi-

� cation of mammalian CRB3 that there is an alternate splice 

form that ends with the C-terminal sequence, CLPI. In this 

paper, we describe an important role for this CRB3 isoform in 

ciliogenesis as well as cell division and report its interaction 

with importin β-1
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Results

CRB3-CLPI is a splice form 

of the polarity protein Crumbs3 

and localizes in primary cilia

A splice form of CRB3 (CRB3 isoform b) is generated by alter-

nate splicing within the fourth exon of the CRB3 gene, lead-

ing to a divergent 23-amino-acid sequence at its C terminus 

ending in the sequence CLPI (Fig. 1 a). Inspection of expressed 

sequence tags (ESTs) indicate that the CRB3-CLPI splice form 

can be found in human, mouse, rat, cow, and dog, but apparently 

not in D. melanogaster or zebra� sh. EST prevalence indicates a 

wide tissue expression for both CRB3-ERLI and CRB3-CLPI 

in rodent and human.

We generated and puri� ed polyclonal antibodies against 

the last 20 amino acids of CRB3-CLPI. Using immunoblotting, 

we detected expression of CRB3-CLPI in multiple cell lines 

(Fig. 1 b). As we had previously found with CRB3-ERLI 

(Makarova et al., 2003), multiple forms of CRB3-CLPI were seen 

on blotting, which is due, at least in part, to differential glyco-

sylation. Our previous work indicated that CRB3-ERLI is local-

ized to the apical surface, tight junction, and cilia in MDCK 

cells (Makarova et al., 2003; Fan et al., 2004). We were not able 

to detect speci� c localization of CRB3-CLPI in newly polarized 

MDCK cells that did not have cilia. However, once the cells 

fully differentiated, we could detect endogenous CRB3-CLPI in 

cilia (Fig. 1 c, top). To con� rm this result, we expressed a full-

length Myc–CRB3-CLPI construct in MDCK cells. In this con-

struct, the Myc tag was placed in the extracellular domain near 

the signal peptide. We detected this transfected Myc–CRB3-

CLPI using two methods. One used CRB3-CLPI antibody at a 

high dilution of 1:1,000 that could not detect endogenous CRB3-

CLPI (Fig. 1 c, middle); the other used anti-Myc 9E10 mono-

clonal antibody (Fig. 1 c, bottom). With both these reagents, we 

could detect cilia staining of the transfected CRB3-CLPI. We 

further veri� ed the speci� city of the CRB3-CLPI antibody by 

adding the CRB3-CLPI antigenic peptide to the immunostaining. 

This peptide blocked the anti–CRB3-CLPI staining of both 

endogenous and transfected proteins (Fig. S1 a, available at 

http://www.jcb.org/cgi/content/full/jcb.200609096/DC1).

CRB3-CLPI localizes to the spindle poles 

during cell division

Cilia have been the focus of recent studies because of the asso-

ciation of cilia-localized proteins with many human diseases, 

including polycystic kidney disease (Badano et al., 2005; 

Hildebrandt and Otto, 2005). It has been suggested that defects 

in spindle pole polarity contribute to the genesis of polycystic 

kidney disease (Germino, 2005; Fischer et al., 2006). Accordingly, 

we studied the localization of CRB3-CLPI during the cell cycle. 

As we previously stated, we could not detect the localization 

of endogenous CRB3-CLPI during interphase in MDCK cells. 

Figure 1. CRB3-CLPI is a splice form of the polarity protein 
Crumbs3 and localizes in primary cilia. (a) Sequence compar-
ison of the intracellular domains of human CRB3-CLPI and 
CRB3-ERLI. These two proteins have an identical extracellular 
domain, transmembrane domain, and 4.1 binding domain 
(italics). The last 23 amino acids of CRB3-CLPI are distinct 
from CRB3-ERLI (bold). (b) CRB3-CLPI blotting in different cell 
lines. Lysates from MDCK, HeLa, and COS-7 cells were sepa-
rated by Bis-Tris gel and followed by blotting with rabbit anti–
CRB3-CLPI and –CRB3-ERLI antibodies. Anti-actin blot serves 
as a loading control. (c) CRB3-CLPI localizes to cilia. (top) 
Staining with CRB3-CLPI (green) shows endogenous protein in 
the cilia: acetylated tubulin (cilia marker in red) in MDCK. 
(middle and bottom) Myc–CRB3-CLPI also shows cilia local-
ization in MDCK cells. Middle panel shows staining with di-
lute anti–CRB3-CLPI at 1:1,000 that does not detect endogenous 
CRB3-CLPI and mouse anti–acetylated tubulin (red). Bottom 
panel shows staining with mouse anti-Myc (red; arrows indi-
cate the cilia staining). Bars, 5 μm.
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However, at prophase, CRB3-CLPI was concentrated around 

the centrosomes (Fig. 2 a). As the cells progressed through 

metaphase and anaphase, there was a close colocalization of 

CRB3-CLPI and centrosomes. This continued through anaphase, 

but at telophase, CRB3-CLPI appeared diffuse throughout the 

cell and could not be clearly localized.

We also tested the localization of the Myc–CRB3-CLPI 

protein during the cell cycle staining both with the diluted 

1:1,000 CRB3-CLPI antibody or Myc antibody (Fig. 2, b and c). 

A sharp localization of the transfected CRB3-CLPI protein to 

a pericentrosomal location in metaphase could be detected 

using either antibody. In some of these cells, CRB3-CLPI was 

also detected at the cell cortex, but this was felt to be due to 

overexpression, as this was never seen when staining the endog-

enous protein. This result indicates that CRB3-CLPI marks a 

pericentrosomal membrane component, as the Myc tag is in the 

Figure 2. CRB3-CLPI localizes to the spindle poles during 
cell division. (a) Immunostaining of MDCK cells with anti–
CRB3-CLPI (green) and mouse anti–γ-tubulin (red) during the 
cell cycle. DAPI indicates nuclear staining (blue). (b) MDCK 
cells stably expressing Myc–CRB3-CLPI were immunostained 
using dilute rabbit anti–CRB3-CLPI (green; 1:1,000) and 
mouse anti–α-tubulin (red). Staining untransfected cells 
using CRB3-CLPI antibody at 1:1,000 concentration yields 
no staining (not depicted). (c) Same cells as in panel b 
stained with diluted CRB3-CLPI (green) and mouse anti-
Myc (red). Bars, 5 μm.
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extracellular domain and the CRB3-CLPI antibody epitope is 

in the intracellular domain. We obtained similar CRB3-CLPI 

staining results in Cos-7 cells (Fig. S1 b). Cos-7 cells express 

more endogenous CRB3-CLPI than MDCK cells, and during 

interphase, the CRB3-CLPI could also be detected in a peri-

centrosomal region, consistent with Golgi localization. During 

mitosis, the CRB3-CLPI in Cos-7 cells localized to a tight dot 

surrounding the centrosome, as was seen with MDCK cells. 

Interestingly, we also found that CRB3-CLPI localized to the 

midbody during cytokinesis (Fig. S1 b). The localization of 

the CRB3-CLPI was markedly different from that seen with 

CRB3-ERLI. At interphase in MDCK cells, CRB3-ERLI was 

seen apically and at tight junctions as previously described 

(Fig. S1 c). During metaphase, anaphase, and telophase, how-

ever, CRB3-ERLI was diffuse throughout the MDCK cells. 

There was no localization around the spindle poles, as was seen 

with CRB3-CLPI.

CRB3-CLPI knockdown leads 

to multinuclei, spindle, cilia, and 

centrosome abnormalities

Our previous studies, as well as studies in zebra� sh, have dem-

onstrated that removal of Crumbs affects ciliogenesis (Fan et al., 

2004; Omori and Malicki, 2006). However, in our previous 

studies, we used short hairpin RNA (shRNA) constructs that 

could have eliminated both the CRB3-ERLI and CRB3-CLPI 

isoforms. Accordingly, we transfected MDCK cells with a 

pSilencer shRNA speci� cally directed toward CRB3-CLPI or 

CRB3-ERLI and selected stable cell lines. We were able to obtain 

a considerable knockdown of the CRB3-CLPI protein (Fig. 3 a). 

In CRB3-CLPI, no defects in tight junctions were detected, 

unlike what was seen with CRB3-ERLI–speci� c knockdowns 

(Fig. 3 b). However, we noted that many cells with CRB3-CLPI 

knockdown displayed a multinuclear phenotype that was not 

seen in the CRB3-ERLI knockdown (Fig. 3, c and d). This was 

seen in both clones 1 and 2 MDCK knockdown cell lines, 

which were generated using different shRNA constructs (see 

Materials and methods). Because the expression of CRB3-

ERLI was slightly increased (Fig. 3 a, middle) in cells with 

CRB3-CLPI knockdown, we needed to exclude the possibility 

that the multinuclear phenotype of CRB3-CLPI knockdown 

was a consequence of the increased level of CRB3-ERLI ex-

pression. We studied stable MDCK cell lines that overexpress 

CRB3-ERLI (Roh et al., 2003). However, the multinuclear 

phenotype was not detected in these cells, indicating that the 

overexpression of CRB3-ERLI did not contribute to this pheno-

type (Fig. S2, available at http://www.jcb.org/cgi/content/

full/jcb.200609096/DC1). This multinuclear phenotype was as-

sociated with markedly abnormal mitotic spindles (Fig. 4, a and b). 

The most common defect seen was multiple spindle poles 

(�80%), but misaligned and disorganized bipolar spindles 

were also seen.

CRB3-CLPI knockdown cells often contained supernu-

merary centrosomes (Fig. 4 c), and this likely contributed to 

these cells having multiple spindle poles. We found that the 

presence of supernumerary centrosomes coincided with multi-

nuclei in CRB3-CLPI knockdown cells (Fig. 4 c). Almost all 

the multinucleated cells had more than two centrioles (supernu-

merary centrosomes), whereas only 12% of mononuclear cells 

had more than two centrioles (Fig. 4 d). We found that once the 

CRB3-CLPI knockdown cells grew to con� uence, the multi-

nuclear cells with supernumerary centrosomes were markedly 

Figure 3. CRB3-CLPI knockdown leads to 
multinuclear cells. (a) Western blot analysis 
was used to determine the level of CRB3-CLPI 
in MDCK cells stably expressing shRNA against 
CRB3-CLPI (clones KD-1 from CRB3 shRNA 
targeting sequence 1 and KD-2, KD-3 from CRB3 
shRNA targeting sequence 2; see Materials 
and methods) and control shRNA (top). Blotting 
is also shown for CRB3-ERLI (middle) and an 
actin loading control (bottom). (b) CRB3-ERLI 
knockdown (KD) but not CRB3-CLPI knockdown 
induces tight junction defects in MDCK cells. 
CRB3-ERLI knockdown (bottom), CRB3-CLPI 
knockdown (middle), and control shRNA (top) 
stable cell lines were grown on filters to con-
fl uence. 6 h after calcium switch, cells were fi xed 
and stained with tight junction marker: mouse 
anti–ZO-1 (red) and rabbit anti–CRB3-ERLI 
(green). (c) CRB3-CLPI knockdown induces a 
multinuclear phenotype in MDCK cells. MDCK 
CRB3-CLPI knockdown stable cell line clone 1 
and clone 2 (shRNA targeting sequence 1 and 2, 
respectively) were stained with mouse anti–ZO-1 
(red) to indicate the cell boundaries; DAPI (blue) 
indicates nuclei. (d) Percentage of cells with 
multinuclei was calculated from CRB3-CLPI 
knockdown and control shRNA. 100 cells each 
from three CRB3-CLPI knockdown clones and 
control shRNA clones were evaluated. Results 
are the mean of three individual clones, 
shown as mean ± SD. Bars, 5 μm.
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reduced and mononuclear cells predominated. This was not 

due to loss of the CRB3-CLPI knockdown, as when these cells 

were diluted and replated, the multinuclear cells reappeared 

(Fig. S3, available at http://www.jcb.org/cgi/content/full/jcb

.200609096/DC1). We hypothesize that as cells reached con� u-

ence, the multinuclear cells disappeared, possibly as a result of 

apoptosis (Meraldi et al., 2002; Shi and King, 2005; Srsen and 

Merdes, 2006). The cell division defect appears to be stochas-

tic, as a certain fraction of the cells are mononuclear, divide 

properly, and predominate in the con� uent monolayer. We next 

examined the role of CRB3-CLPI in ciliogenesis. We allowed 

cells to grow on � lters for 7 d to achieve con� uence to the point 

where multinuclear cells were rare (Fig. S3). At this stage, we 

found that CRB3-CLPI knockdown MDCK cells had a defect 

in ciliogenesis (Fig. 4 e). The loss of cilia could be due, in part, 

to a polarity defect, as many knockdown cells failed to localize 

centrosomes and Golgi during polarization to a subapical local-

ization (Fig. 4 f).

To determine if these phenotypes were speci� c for CRB3-

CLPI knockdown cells, we reexpressed Myc–CRB3-CLPI in 

these knockdown cells using a cDNA that was resistant to the 

shRNA. We were able to demonstrate that reexpression of the 

Myc–CRB3-CLPI but not vector alone could reverse the multi-

nuclear phenotype (Fig. 5, a and b). In addition, we noted that 

the abnormal localization of centrosomes in growth-arrested 

CRB3-CLPI knockdown cells could be reversed (Fig. 5 c). Re-

expression of CRB3-CLPI not only reversed the abnormal cen-

trosomal phenotype but also restored Golgi localization to the 

apical region of the MDCK cells. However, we were still not 

able to detect cilia in these rescued cells, perhaps because of the 

level of overexpression of Myc–CRB3-CLPI or as an effect of 

the Myc tag.

Figure 4. CRB3-CLPI knockdown leads to spindle, cilia, and centrosome abnormalities. (a) CRB3-CLPI knockdown (KD) results in abnormal mitotic spindles 
in MDCK cells. Mitotic cells were stained with anti–CRB3-CLPI (green) and anti–α tubulin (red). DAPI (blue) shows the nuclei. (b) Percentage of cells with ab-
normal spindles in three CRB3-CLPI knockdown and control shRNA clones. Results are the mean of three individual clones, shown as mean ± SD. n = 100. 
(c) CRB3-CLPI knockdown results in supernumerary centrosomes in MDCK cells. CRB3-CLPI knockdown (bottom) and control shRNA (top) cells were grown 
on chamber slides for 1 d and stained with anti-Giantin (red) and anti–γ-tubulin (green) to show the Golgi apparatus and centrosome. Arrows point to cells 
with supernumerary centrosomes. (d) Percentage of cells with CRB3-CLPI knockdown and supernumerary centrosomes in mononuclear and multinuclear 
cells. Results are the mean of three individual clones. n = 100. (e) CRB3-CLPI knockdown is associated with a cilia defect. CRB3-CLPI knockdown MDCK 
stable cells and control shRNA cells were grown on fi lters for 7 d. Staining was then performed with anti–acetylated tubulin (red) and rabbit anti-pericentrin 
(green). (f) Abnormal centrosome and Golgi orientation in CRB3-CLPI knockdown MDCK cells. CRB3-CLPI knockdown and control shRNA cells were grown 
on fi lters for 7 d and then stained with the Golgi marker anti-GM130 (red) and pericentrin (green). DAPI (blue) shows the nuclei. Bars, 5 μm.
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CRB3-CLPI interacts and colocalizes 

with importin 	-1

The CRB3-ERLI protein can interact with the polarity proteins 

PAR6 and PALS1 (Roh et al., 2002; Lemmers et al., 2004). 

However, we were not able to demonstrate such interactions with 

CRB3-CLPI (unpublished data). Accordingly, we performed 

large-scale anti-Myc immunoprecipitations from MDCK cells 

expressing Myc–CRB3-CLPI, Myc–CRB3-ERLI, or vector alone 

and looked for differences in interacting proteins. A speci� c 

band of �100 kD detected by Myc–CRB3-CLPI immuno-

precipitation was excised and sent for liquid chromatography/

mass spectrometry (MS; Fig. 6 a). Analysis yielded 19 matching 

peptides and 28% coverage for mouse importin β-1. MS/MS 

analysis yielded two peptides that matched mouse importin β-1, 

A A V E N L P T F L V E L S R  and WLAIDANAR.

Importin β-1 directly or via its interactions with im-

portin α isoforms and Ran GTPase facilitates trafficking of 

proteins to the nucleus (Macara, 2001; Bednenko et al., 2003). 

However, recent studies have also suggested an important 

role for these proteins in mitotic spindle generation and cen-

trosome maintenance (for review see Harel and Forbes, 2004); 

thus, it appeared that importin β-1 was a good candidate for a 

CRB3-CLPI binding partner. Indeed, we were able to show 

that importin β-1 colocalized with CRB3-CLPI during mito-

sis (Fig. 6 b). This was in agreement with previous reports on 

importin β-1 targeting spindle assembly factors during mitosis 

(Nachury et al., 2001; Wiese et al., 2001; Ciciarello et al., 2004). 

In addition, we were able to show that importin β-1 colocal-

ized to the cilia with CRB3-CLPI (Fig. 6 c). We next exam-

ined the coimmunoprecipitation of CRB3-CLPI with importin 

β-1. Myc–CRB3-CLPI, Myc–CRB3-ERLI, or MDCK wild-

type (wt) cells were transfected and immunoprecipitated with 

the Myc antibody. We found that endogenous importin β-1 

would coimmunoprecipitate with Myc–CRB3-CLPI but not 

with Myc–CRB3-ERLI or in control MDCK cells (Fig. 6 d). 

This result was con� rmed by coexpressing Flag–importin β-1 

Figure 5. Exogenous Myc–CRB3-CLPI is able to rescue the 
multinuclear and centrosome defect caused by CRB3-CLPI 
knockdown (KD). (a) pcDNA 3.1 Myc–CRB3-CLPI and vec-
tor alone transfected MDCK CRB3-CLPI knockdown stable 
cell lines were stained with diluted rabbit anti–CRB3-CLPI 
(1:1,000; green) and mouse anti–ZO-1 (red) antibodies. 
DAPI indicates nuclei. (b) Percentage of cells with multinuclei 
from control shRNA, CRB3-CLPI shRNA, CRB3-CLPI shRNA+ 
vector rescue, and CRB3CLPI shRNA+ Myc–CRB3-CLPI res-
cue. Results are the mean of three individual clones, shown as 
mean ± SD. n = 100. (c) Exogenous Myc–CRB3-CLPI can 
rescue the centrosome and Golgi polarization defects induced 
by CRB3-CLPI knockdown. MDCK CRB3-CLPI knockdown 
cells stably expressing exogenous Myc–CRB3-CLPI or vector 
alone were grown on fi lters for 7 d. Immunostaining was then 
performed with anti-GM130 (red) and pericentrin (green). 
DAPI (blue) shows the nuclei. A-1 and A-2 are enlargements 
of GM130 and pericentrin staining from vector alone and ex-
ogenous Myc–CRB3-CLPI rescue. Arrows indicate centrosomes. 
Bars, 5 μm.
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Figure 6. CRB3-CLPI interacts and colocalizes with importin 	-1. (a) Myc–CRB3-CLPI coimmunoprecipitates a 97-kD protein. Large-scale anti-Myc immuno-
precipitation from MDCK cell lines stably expressing Myc–CRB3-CLPI, Myc–CRB3-ERLI, or vector alone were visualized by silver staining. Arrow points to a 97-kD 
protein (importin β-1) that interacts with Myc–CRB3-CLPI but not with Myc–CRB3-ERLI or vector alone. (b) Importin β-1 colocalizes with CRB3-CLPI during mitosis. 
MDCK wt cells were stained with rabbit anti–CRB3-CLPI (green) and mouse anti–importin β-1 (red) antibodies. DAPI indicates nuclear staining. (c) Importin β-1 
colocalizes with CRB3-CLPI in cilia. MDCK wt cells were grown on fi lters for 7 d to allow cilia growth. Cells were then stained as in panel a. (d) Myc–CRB3-
CLPI coimmunoprecipitates with endogenous importin β-1 but not Myc–CRB3-ERLI in MDCK cells. Myc–CRB3-CLPI or Myc–CRB3-ERLI MDCK stable cell lines 
or untransfected MDCK wt cells were lysed with Triton X-100 lysis buffer and immunoprecipitated with anti-Myc antibody (Myc-IP) and subsequently immuno-
blotted for importin β-1, CRB3-CLPI, and CRB3-ERLI. Mouse IgG serves as an immunoprecipitation control. (e) Myc–CRB3-CLPI precipitates Flag–importin β-1. 
COS-7 cells were transiently transfected with Myc–CRB3-CLPI (Myc-CLPI), Flag–importin β-1 (Flag-IMP β-1), or both. Lysates from these cells were then subjected 
to anti-Myc immunoprecipitation and immunoblotted with anti-Myc or anti-Flag. (f) Flag–importin β-1 precipitates Myc–CRB3-CLPI but not Myc–CRB3-ERLI. Cos-7 
cells were transiently transfected with Myc–CRB3-CLPI or Myc–CRB3-ERLI with or without Flag–importin β-1. Lysates were then subjected to immunoprecipitation 
with mouse IgG or anti-Flag antibody and blotted with anti-Flag and anti–CRB3-CLPI or anti–CRB3-ERLI. (g) Enhanced CRB3-CLPI–importin β-1 interactions in 
synchronized cells. HeLa cells were transfected with combinations of Myc–CRB3-CLPI and Flag–importin β-1 and synchronized using nocodazole as described 
in Materials and methods. 30 min after removing nocodazole, cells were lysed, immunoprecipitated, and blotted as previously described. More than 90% of 
cells entered mitosis after release of the mitotic block. (h) RanQ69L, but not RanT24N, disrupts CRB3-CLPI interactions with importin β-1. RanQ69L or RanT24N 
(6 μg) were cotransfected with 2 μg Myc–CRB3-CLPI into Cos-7 cells, and 24 h later, cells were lysed and anti-Myc immunoprecipitation was performed. 
Immunoprecipitates and lysates were then separated by Bis-Tris gel and blotted with anti–importin β-1, anti-Myc, and anti-Ran. Arrow indicates the antibody’s 
light chain (IgG LC). Lysate lanes represent 10% input of total lysate used for immunoprecipitation in each experiment in this fi gure. Bars, 5 μm.
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and Myc–CRB3-CLPI in Cos-7 cells. We were able to immuno-

precipitate Flag–importin β-1 with anti-Myc antibodies only in 

cells expressing both tagged proteins (Fig. 6 e). Similarly, Flag 

immunoprecipitation brought down Myc–CRB3-CLPI but not 

Myc–CRB3-ERLI (Fig. 6 f). Similarly, full-length importin β-1 

GST fusion protein was also able to precipitate Myc–CRB3-

CLPI from lysates (Fig. S4, available at http://www.jcb.org/cgi/

content/full/jcb.200609096/DC1). The ability of the importin 

β-1 GST fusion protein to bind importin α is used as a control 

in Fig. S4. We noted that the colocalization of Myc–CRB3 CLPI 

and importin β-1 was strongest during cell division and found 

that Myc–CRB3-CLPI more strongly interacted with importin 

β-1 shortly after release of a mitotic block (Fig. 6 g).

Importin β-1 often interacts with cargo via importin α, 

and this interaction is regulated by the Ran small GTPase. How-

ever, we were not able to detect importin α in the CRB3-CLPI 

immunoprecipitates (unpublished data). This may not be sur-

prising, as it has been demonstrated that importin β-1 can bind 

cargo proteins in the absence of importin α (Chook and Blobel, 

2001; Blower et al., 2005). However, we were able to demon-

strate that Ran regulates the interaction of importin β-1 with 

CRB3-CLPI (Fig. 6 h). Transfection of GTP-Ran (Q69L) but 

not GDP-Ran (T24N) blocked the interaction of CRB3-CLPI 

with importin β-1.

To further assess the functional importance of the inter-

action, we generated a dominant-negative importin β-1 missing the 

N terminus and transfected it into MDCK cells. This dominant-

negative form of importin β-1 is missing the Ran GTPase bind-

ing motif but is still able to interact with Myc–CRB3-CLPI (Fig. 

7 a) and target to spindle poles (Fig. S5 a, available at http://www

.jcb.org/cgi/content/full/jcb.200609096/DC1). We were able to 

show that overexpression of this dominant-negative importin β-1 

closely phenocopied CRB3-CLPI shRNA with multinuclear cells 

(Fig. 7, b and c), and abnormal spindle poles (Fig. 7, d and e) with 

supernumerary centrosomes (Fig. 7 d). In addition, we also saw 

the loss of cilia in these cells (Fig. 7 f).

Importin 	-1 knockdown induces abnormal 

mitotic spindles and blocks CRB3-CLPI 

targeting to spindle poles during mitosis

Finally, we looked at targeting of importin β-1 in cells missing 

CRB3-CLPI. Although many of these cells showed abnormal spin-

dles with multiple centrosomes, importin β-1 was seen concen-

trated around the spindle poles, suggesting that the CRB3-CLPI 

Figure 7. Stable overexpression of an impor-
tin 	-1 mutant induces multinuclei, abnormal 
spindle phenotypes and cilia defects. (a) Im-
portin β-1 N-deletion (importin β-1 N-del) does 
not affect the interaction between CRB3-CLPI 
and importin β-1. Cos-7 cells were transiently 
transfected with Myc–CRB3-CLPI and Flag–
 importin β-1 wt or N-del, a dominant-negative 
form of importin β-1 missing the fi rst 360 amino 
acids. Lysates were then subjected to immuno-
precipitation with mouse IgG or anti-Myc anti-
body and blotted with anti-Flag or anti-Myc 
antibodies. Lysate lanes represent 10% of the 
lysate used for immunoprecipitation. (b) Multi-
nuclei in cells expressing Flag–importin β-1 
N-del. MDCK cells expressing Flag–importin 
β-1 N-del were stained with anti-Flag (red) and 
anti–ZO-1 or Par3 (green) to demarcate the 
cell boundary. DAPI stains the nucleus. (c) The 
percentage of cells with multinuclei was calcu-
lated from Flag–importin β-1 N-del and control 
cells. 100 cells from each clone of Flag–importin 
β-1 N-del versus control cells were evaluated. 
Results are the mean of three individual clones, 
shown as mean ± SD. (d) Multiple spindle poles 
are present in cells expressing Flag–importin β-1 
N-del. Flag–importin β-1 N-del MDCK cells 
were stained with anti–γ-tubulin (red) and 
DAPI (blue) to show the centrosome and nuclei. 
(e) The percentage of cells with abnormal 
spindles was determined from Flag–importin 
β-1 N-del and control cells. 100 cells from each 
clone of Flag–importin β-1 N-del and control 
cells were evaluated. Results are the mean of 
three individual clones, shown as mean ± SD. 
There was a signifi cant difference in wt versus 
dominant-negative expressing clones (P < 0.05; 
unpaired t test). (f) Overexpression of Flag–
importin β-1 N-del induces cilia defects. Flag–
importin β-1 N-del stable MDCK cells (right) 
and control cells (left) were grown on fi lters for 
7 d and stained with anti–acetylated tubulin 
(red) and DAPI (blue). Bars, 5 μm.
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was not essential for this targeting of importin β-1 (Fig. 8 a). 

Next, we examined the effects of importin β-1 knockdown on 

CRB3-CLPI targeting. We were unable to obtain clonal cells 

with sustained knockdown of importin β-1, presumably because 

of toxicity induced by loss of this protein. However, we were 

able to transiently express double-stranded shRNA and study 

knockdown cells within 48 h of transfection (Fig. 8 b). As might 

be expected, cells lacking importin β-1 demonstrated abnormal 

mitotic spindles (for review see Harel and Forbes, 2004), and 

these spindles consistently lacked CRB3-CLPI staining (Fig. 

8, c and d). This indicates that importin β-1 played an important 

role in targeting CRB3-CLPI but not vice versa.

Discussion

Studies to date have begun to reveal the role of the Crumbs 

proteins in multiple developmental systems from D. melano-

gaster to zebra� sh. Crumbs proteins have a conserved ERLI 

motif at their C terminus that binds to PALS1 and Par6 and is 

crucial for their function (Klebes and Knust, 2000; Lemmers 

et al., 2004; Fogg et al., 2005). However, there is an alternate 

splice form of mammalian CRB3 that adds 23 unique amino 

acids to the C terminus. The CRB3-CLPI isoform concentrates 

in a membrane compartment that localizes around the centro-

some. Loss of CRB3-CLPI leads to defects in spindle assem-

bly, cilia formation, and cell division. CRB3-CLPI interacts in 

a Ran-regulated fashion with importin β-1, and this interaction 

appears important for CRB3-CLPI targeting to the pericentro-

somal region.

The defect that leads to the multinuclear phenotype most 

likely represents a cytokinesis defect, and indeed we found 

CRB3-CLPI localized to the midbody in Cos-7 cells. Studies 

have pointed to an evolutionarily conserved role for the cen-

trosome in cytokinesis (for review see Baluska et al., 2006). 

For example, work from Gromley et al. (2003, 2005) de-

scribed an essential process in which the centrosomal protein 

Centriolin anchors the exocyst and SNARE complexes and 

guides vesicle transport to the midbody in the � nal stages of 

cytokinesis. Others have shown an important role for the 

centrosomal Bardet-Biedl syndrome proteins in cytokinesis 

(Kim et al., 2005).

In addition to a cytokinesis defect, it is also possible that 

correct localization of this CRB3-CLPI–containing membrane 

is necessary for mammalian cells to complete cell division, as 

is seen with members of the Golgi matrix (Sutterlin et al., 

2002). Inheritance of Golgi membranes is perhaps the best-

studied example of membrane organelle inheritance and is 

due to vesiculation and dispersion of the membrane (Shorter 

and Warren, 2002). It has been argued that this diffuse dis-

tribution in the cytoplasm of mitotic cells ensures equal in-

heritance; however, recent studies indicate that mitotic Golgi 

fragments also align with astral microtubules at the spindle 

poles in certain cell types (Shorter and Warren, 2002). Indeed, 

members of the Golgi matrix can regulate cell cycle progres-

sion, perhaps ensuring proper Golgi inheritance before cell 

division can be completed (Sutterlin et al., 2002, 2005). How-

ever, the localization of GM130, a membrane Golgi marker, 

and CRB3-CLPI was not identical during cell division, indi-

cating that CRB3-CLPI marks a different compartment (Fig. 

S5 b). Early endosomes are another membrane compartment 

that exists in a pericentrosomal distribution early during cell 

division and contributes to cytokinesis (Dunster et al., 2002), 

but we saw no colocalization between early endosome markers 

and CRB3-CLPI (Fig. S5 b).

In addition to a role in cytokinesis, the CRB3-CLPI–

containing pericentrosomal membrane appears to contribute to the 

formation of the cilia. It has long been known that a pericentro-

somal ciliary vesicle covers the centrosome during early cilio-

genesis (Sorokin, 1968), and other cilia membrane components 

localize near the centrosome during cell division (Rundle et al., 

2004). We hypothesize that CRB3-CLPI also exists in this 

early cilia membrane. Loss of cilia was seen with two different 

shRNAs directed against CRB3-CLPI; however, we could not 

rescue the cilia defect with shRNA-resistant CRB3-CLPI despite 

Figure 8. Importin 	-1 knockdown induces 
abnormal spindles and blocks targeting of 
CRB3-CLPI to the spindle poles during mitosis. 
(a) CRB3-CLPI knockdown (KD) does not affect 
the importin β-1 spindle pole localization during 
metaphase. MDCK CRB3-CLPI knockdown cells 
were grown on chamber slides for 1 d. After fi xing, 
cells were stained with mouse anti–importin β-1 
(red) and rat anti–α-tubulin (green). (b) Western 
blot of importin β-1 in MDCK cells transiently 
transfected with shRNA against importin β-1 
(KD-1 and -2) and control shRNA (top). Endog-
enous CRB3-CLPI (middle) was not affected, and 
anti-actin blot (bottom) serves as a loading con-
trol. (c) MDCK importin β-1 knockdown (bottom) 
and control shRNA (top) cells were stained with 
mouse anti–importin β-1 (red) and rabbit anti–
CRB3-CLPI (green) antibodies. (d) Importin β-1 
knockdown in mitotic MDCK cells stained with 
CRB3-CLPI (green) and mouse anti–α-tubulin (red). 
DAPI indicates the nuclei. Bars, 5 μm.
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rescuing the cell division defect. It should be noted that we have 

not been able to rescue the cilia defect seen in CRB3-ERLI 

knockdowns either, but the cilia defect with the CRB knock-

down has been seen both in mammalian cells and zebra� sh (Fan 

et al., 2004; Omori and Malicki, 2006). Our rescue studies lead 

to the overexpression of CRB3, and it is well known that over-

expression of Crumbs proteins can affect cellular phenotypes 

(Izaddoost et al., 2002; Pellikka et al., 2002; Roh et al., 2003). 

A membrane defect is not the only possible mechanism for the 

lack of cilia in the CRB3-CLPI knockdown cells. We have also 

seen striking defects in centrosomal and Golgi targeting within 

the CRB3-CLPI knockdown cells; the exact mechanism of these 

defects is unclear, as we did not detect interactions of this CRB3 

isoform with other polarity proteins, such as PALS1 or Par6. 

Thus, the exact role of CRB3-CLPI in cilia formation will re-

quire additional studies.

Another major � nding in our studies is an interaction be-

tween CRB3-CLPI and importin β-1. In nuclear translocation, 

importin β binds cargo directly or indirectly through importin α. 

Upon entering the nucleus, the cargo is released when importin β 

binds to the Ran GTPase (Macara, 2001; Nachury et al., 2001; 

Wiese et al., 2001; Bednenko et al., 2003). CRB3-CLPI may 

directly bind to importin β-1, as importin α did not immuno-

precipitate with CRB3-CLPI. We � nd that GST–importin β-1 

can precipitate CRB3-CLPI from cell lysates (Fig. S4); how-

ever, we have not been able to demonstrate that a GST–CRB3-

CLPI intracellular domain can precipitate importin β-1 under 

similar conditions. Thus, it is not yet clear whether the inter-

action is direct or additional proteins are involved. It is interesting 

to note that we detected increased binding of CRB3-CLPI to 

importin β-1 after release of mitotic arrest, suggesting that a 

posttranslational modi� cation such as phosphorylation might 

be involved.

We also observed that the interaction of CRB3-CLPI with 

importin β-1 was regulated by Ran GTP. As has been found 

with other importin β-1 interactions, Ran GTP weakened the 

interaction between importin β-1 and this cargo. Ran–importin β 

complexes play a fundamental role during mitosis, including 

targeting spindle assembly factors (Nachury et al., 2001; Wiese 

et al., 2001; Ciciarello et al., 2004; Kalab et al., 2006; Sillje 

et al., 2006; Silverman-Gavrila and Wilde, 2006). Ran is also 

concentrated at centrosomes and is thought to regulate centro-

some cohesion, as overexpression of RanBP1 leads to abnormal 

centriole splitting (Di Fiore et al., 2003). The Ran network also 

regulates centrosome duplication and spindle assembly (Di Fiore 

et al., 2004; Wang et al., 2005; Silverman-Gavrila and Wilde, 

2006). These defects in centrosome duplication and cohesion 

can lead to the multiple spindle poles seen in cells with per-

turbed Ran signaling. Consistent with these results are the � nd-

ings that importin β-1 overexpression also leads to abnormal 

spindles, possibly because of defects in centriole cohesion 

(Di Fiore et al., 2004). Multiple spindle poles and supernumer-

ary centrioles were also seen with loss of CRB3-CLPI from 

cells by shRNA, an effect that was rescued by the reexpression 

of CRB3-CLPI. These results suggest that CRB3-CLPI can be 

delivered to spindle poles by importin β-1 during mitosis, and 

this delivery may be important for centrosome maintenance, in 

addition to concentrating speci� c membrane components near 

the centrosome. Although it is intriguing to implicate complex 

mechanisms of centrosome maintenance as the cause of the su-

pernumerary centrosomes, it is also likely that many of the cells 

had supernumerary centrosomes as a result of cytokinesis de-

fects. Indeed, there was a strong correlation between multiple 

nuclei and supernumerary centrosomes in our studies, suggest-

ing that cytokinesis defects could have played a large role in the 

centrosome abnormalities. In fact, we saw multiple centrosomes 

in almost all multinuclear cells. However, there were �12% of 

cells that had a single nucleus and supernumerary centrosomes, 

suggesting that CRB3-CLPI knockdown might have a direct 

effect on centrosomes in addition to the cytokinesis defect.

We also detected importin β-1 with CRB3-CLPI in the 

cilia by immunostaining. Indeed, proteomic studies have identi-

� ed importin family members in the centrosome and cilia 

(Andersen et al., 2003; Pazour et al., 2005). The � nding of a 

connection between nuclear proteins, cilia, and centrosomes de-

scribed in this paper is not unique (Khanna et al., 2005). It was 

especially interesting to see the loss of cilia in cells expressing 

dominant-negative importin. Recently, a hypothesis was gener-

ated suggesting that there may be similarities between the nu-

clear pore complex proteins and intra� agellar transport proteins 

(Jekely and Arendt, 2006). Importins that interact with the nu-

clear pore complex might also have similar types of interactions 

with the intra� agellar transport complex delivering cilia pro-

teins such as CRB3-CLPI.

The � nding of importin proteins in the cilia is also of 

great interest because of recent data demonstrating the signal-

ing pathways that lead from the cilia to the nucleus. The best 

documented of these is the hedgehog pathway that leads to 

processing of gli transcription factors (Huangfu and Anderson, 

2005). It has been suggested that this processing may occur in 

the cilia, and the processed gli products would need to be sent 

to the nucleus (Haycraft et al., 2005). Several other cilia to 

nuclear signaling pathways have been described necessitating 

the need for the traf� cking of proteins from the cilia to the 

nucleus (Chauvet et al., 2004; Low et al., 2006). Therefore, 

importins may have a role transporting proteins from the cilia 

directly to the nucleus. In summary, our � ndings describe a 

unique membrane compartment containing CRB3-CLPI that 

lies close to centrosomes during cell division and ciliogenesis. 

They also indicate an important role for this membrane com-

partment not only in ciliogenesis but also in cell cycle control 

and possibly polarity determination. Finally, they point to a new 

role for the multipurpose importin family in delivering cellular 

components to the centrosome.

Materials and methods

Plasmid construct
CRB3-ERLI constructs were previously described (Makarova et al., 2003; 
Fan et al., 2004). For expression of Myc–CRB3-CLPI, full-length CRB3-CLPI 
was amplifi ed from a human embryo cDNA library and cloned into 
pcDNA3.1 Zeo (+) vector via BamH and Not1 sites. Then, using single 
primer mutagenesis, a single Myc tag was placed behind the signal pep-
tide (Makarova et al., 2000). To rescue CRB3-CLPI shRNA clones in MDCK 
cells, we deleted the CMV promoter of pcDNA3.1 Myc–CRB3-CLPI to de-
crease the expression level of the transfected construct. For expression of 
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Flag–importin β-1 wt and Flag–importin β-1 N-deletion, we amplifi ed human 
full-length importin β-1 from an EST clone (American Type Culture Col-
lection) and subsequently ligated the amplifi ed product to p3xFLAG-CMV-9 
vector and pGSTag vector (Sigma-Aldrich) via a BamH1 site. Then, we de-
leted the fi rst 360 amino acids of importin β-1 full length to generate Flag–
importin β-1 N-deletion. Full-length human GTPase Ran was amplifi ed from 
an EST clone (American Type Culture Collection) and subsequently ligated 
to pcDNA3.1 Zeo(+) vectors via BamHI and Xho1 sites. Ran Q69L and 
Ran T24N were generated by mutagenesis using single primers (Makarova 
et al., 2000).

Cell culture
MDCK II, HeLa, and COS-7 cells were cultured as described previously 
(Hurd et al., 2003; Roh et al., 2003). MDCK cells were transfected with 
Myc–CRB3-CLPI or Myc–CRB3-ERLI (FuGENE 6 transfection Reagent; Roche) 
and cultured in DME complete media supplemented with 200 μg/ml Zeo-
cin (Invitrogen) for 10–14 d, and clones were selected. Flag–importin β-1 
N-del stable cell lines were cultured in DME media with 600 μg/ml G418 
to obtain clones.

shRNA
Double-stranded oligonucleotides corresponding to canine CRB3-CLPI 3′ non-
translated sequences T A G C A G G G A A G A A G G T A C T  and G A A G G T A C T T C-
A A A G A C T C  were selected for CRB3-CLPI shRNA targeting sequences and 
inserted into the pSilencer vector (Ambion). Stable knockdown clones were 
selected in 200 μg/ml Hygromycin B. CRB3-ERLI shRNA stable knockdown 
clones were selected as described for CRB3-CLPI shRNA clones using 
the canine targeting sequence of C C T C A A G C T G C C A C C C G A G . Double-
stranded oligonucleotides corresponding to canine importin β-1 sequences 
A C C C C A A C A G C A C A G A G C A  and G A G G A T G C C C T G A T A G C A G  were 
selected as importin β-1 shRNA targeting sequences using the pSilencer 
vector. Importin β-1 transient knockdown was induced by importin β-1 
shRNA transfection using Lipofectamine 2000 (Invitrogen) for 48 h.

Immunostaining and confocal microscopy
We performed immunostaining as described previously (Fan et al., 2004). 
Rabbit anti–CRB3-CLPI was made against peptides of N H A A E A R A P Q D S K-
E T V R G C L P I . Mouse anti–Flag M2, mouse anti–acetylated tubulin, mouse 
anti–α-tubulin, mouse anti–γ-tubulin (Sigma-Aldrich), rat anti–α-tubulin 
(Chemicon), mouse anti–importin β-1 (ABR Affi nity BioReagents and BD 
Biosciences), mouse anti–importin α/Rch-1, mouse anti-Ran, mouse anti-
EEA1, mouse anti-Rab11, mouse anti-GM130 (BD Biosciences), rabbit 
anti-Giantin, and rabbit anti-pericentrin (Covance) were used for immuno-
fl uorescence or immunoblots. Rabbit anti–CRB3-ERLI was as previously de-
scribed (Makarova et al., 2003). All images were obtained using a meta 
laser-scanning confocal microscope (LSM 510; Carl Zeiss MicroImaging, 
Inc.). Samples were scanned with appropriate lasers and fi lter sets, and 
images were collected at 0.5-μm intervals on an inverted microscope 
(Axiovert 100M; Carl Zeiss MicroImaging, Inc.) using a 63× water objective 
(C-Apochromat) with 1.2 NA. LSM 510 meta software (Carl Zeiss Micro-
Imaging, Inc.) was used to collect images. Images were analyzed with LSM 
image browser (Carl Zeiss MicroImaging, Inc.), and subsequent prepara-
tion was performed using Creative Suite software (Adobe). 2D images 
were taken using a 60× oil objective with 1.4 NA (Plan Apo) on an in-
verted microscope (Eclipse TE2000U; Nikon). Image acquisition was per-
formed with MetaMorph software and a charge-coupled device camera 
(Carl Zeiss MicroImaging, Inc.).

Immunoprecipitation and Western blotting
Lysis buffer (50 mM Hepes, 150 mM NaCl, 1.5 mM MgCl2, 1 mM EGTA, 
1% Triton, and 10% glycerol) with protease inhibitor cocktail tablets 
(Roche) and phosphatase set I and II (EMD Bioscience) was used to extract 
cells. Antibodies to Myc 4A6 (Upstate Biotechnology), Flag M2 (Sigma-
Aldrich), or importin β-1 (BD Biosciences) were added to Cos-7, HeLa, or 
MDCK cell extracts overnight at 4°C. 50 μl of 50% protein A/G beads 
(Zymed Laboratories) was added to the lysate for 2 h to bind the anti-
bodies. After washing, the immunoprecipitates were eluted with sample 
buffer, separated by Bis-Tris PAGE, transferred to nitrocellulose, and immuno-
blotted (Hurd et al., 2003). Large-scale anti-Myc immunoprecipitation of 
Myc–CRB3-CLPI and Myc–CRB3-ERLI MDCK stable cells was performed as 
described previously (Roh et al., 2002). The specifi c bands that coimmuno-
precipitated with Myc–CRB3-CLPI were cut from the gel and analyzed 
at the Michigan Proteome Consortium using a 4800 Proteomic Analyzer 
(Applied Biosystems).

Calcium switch experiments
MDCK II, CRB3-CLPI, and CRB3-ERLI shRNA MDCK stable cells were 
grown on transwell fi lters until confl uent. After washing with cold PBS (with-
out calcium) three times, low calcium media (5 μM Ca2+) was added to the 
cells overnight. The next day, DME complete media (2 mM Ca2+) was 
added to the cells that were then fi xed and stained at the time points indi-
cated (Roh et al., 2003).

Synchronization of HeLa cells
For synchronizing HeLa cells, 100 ng/ml Nocodazole (Sigma-Aldrich) in 
DME complete media was added to the cells for 12 h. After washing three 
times with ice-cold PBS, cells were placed in warm DME complete media 
and lysed 30 min later.

Online supplemental material
Fig. S1 shows that the CRB3-CLPI antigenic peptide blocks the anti–CRB3-
CLPI staining of both endogenous and transfected proteins, CRB3-CLPI 
localizes to spindle poles and the midbody during mitosis in COS-7 cells, 
and CRB3-ERLI does not localize to the spindle poles during mitosis. Fig. S2 
shows that overexpression of Myc–CRB3-ERLI does not induce the multi-
nuclear phenotype in MDCK cells. Fig. S3 shows that after growth arrest, 
CRB3-CLPI knockdown cells did display multinuclei and supernumerary 
centrosomes. Fig. S4 shows that an importin β-1 GST fusion protein is able 
to precipitate Myc–CRB3-CLPI. Fig. S5 shows that the Flag–importin β-1 
N-deletion mutant protein colocalizes with CRB3-CLPI in spindle poles during 
mitosis in MDCK cells, and CRB3-CLPI does not colocalize with GM130, 
EEA-1, or Rab11. Online supplemental material is available at http://www
.jcb.org/cgi/content/full/jcb.200609096/DC1.
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