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Abstract

WiFi-based indoor localization techniques are critical for location-based services. Among them, fingerprint-based

method gains considerable interest due to its high accuracy and low equipment requirement. One of the major

challenges faced by fingerprint-based position system is that in some places there are not enough access points

(AP) to provide features for accurate location. To address that, we propose a novel fingerprint-based system using

only a single AP. We propose a novel phase decomposition method to obtain the phase of multipath provided by

a AP and use the decomposed phase as a fingerprint after the feature exaction by principal component analysis

(PCA). Performance in the laboratory, meeting room, and corridor is investigated, and our system is also compared

with a RSSI-based and a CSI-based fingerprint localization system. As the experimental results suggest, the

minimum mean distance error is 0.6 m in the laboratory, 0.45 m in the meeting room, and 1.08 m in the corridor,

outperforming the other two systems.
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1 Introduction
In outdoor environments, GPS-based localization tech-

niques make our lives more convenient in many aspects

[1, 2]. Since the GPS signals cannot penetrate efficiently

indoors to localize objects [3], some other techniques

are used to replace GPS to provide accurate location in-

formation [4, 5] in indoor environment. Among the in-

door localization techniques, the WiFi-based localization

techniques have become one of research hotspots due to

the ubiquitous WiFi infrastructure. However, in some

occasions, there may not be enough APs to implement

the location methods [6–8], hence it is necessary to

study the location method based on single AP.

Since the received signal strength indication (RSSI) is

capable of reflecting the distance between the AP and

the node, traditional WiFi-based models use RSSI as a

metric. A RSSI-based model or fingerprint can be built,

and examples for RSSI-based localization systems are

DWELT system [9] as well as Horus system [10].

Nevertheless, RSSI fluctuates significantly in some

scenarios as being susceptible to multipath effect [11].

The positioning accuracy of most systems ranges from

3 to 10 m [12]. To overcome the fluctuation of RSSI,

Hossain et al. proposed SSD [13] that localizes nodes

using the signal strength difference. However, RSSI is

limited as it fails to reflect the spatial, temporal, and

environmental characteristics.

Signals transmitted in WiFi networks exploit orthog-

onal frequency division multiplexing (OFDM) [14],

which are transmitted and received by multiple subcar-

riers. The received signal impacted by scattering, fading,

and power loss with distance can be represented by the

physical layer information known as channel state

information (CSI). By modifying driver firmware, CSI

can be obtained using Intel 5300 or Atheros 9390 cards

[15, 16]. Due to multipath, subcarriers will propagate

along different paths, which makes the amplitude and

phase of each subcarrier different from each other.

It is witnessed in recent years that CSI-based tech-

niques have been widely adopted in localization. In com-

parison with coarse-grained RSSI, CSI is a fine-grained

indicator containing amplitude and phase information

during signal propagation [17–20]. Moreover, similar to

RSSI-based techniques, model-based techniques are also

used. LiFS using the subcarriers with minimal
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interference by multipath is designed by Wang et al. [21]

for accurate localization of fingerprint. The combination

of the amplitude with spatial diversity is used by Wu et

al. [22] for indoor location. Furthermore, to achieve

higher accuracy by obtaining high data dimension, FIFS

[23] and CSI-MIMO [20] systems, both aggregate ampli-

tude and phase information of all subcarriers of all an-

tennas for indoor location fingerprinting. Angle of

arrival (AOA) estimation is also applied in CSI-based

localization such as ArrayTrack [24] whose key method

is that make the number of antennas greater than the

number of paths, and then deduces AOAs using MUSIC

algorithm. By increasing the number of APs or the num-

ber of antennas, CSI-MIMO and ArrayTrack achieve

high positioning accuracy, respectively. In practice, most

of today’s WiFi networks deployment is primarily for

communications rather than for positioning. Thus, there

may be insufficient APs to provide CSIs to generate a

fingerprint, and increasing the number of antennas re-

sults in additional hardware costs which may not be

available in practical applications as well.

In the present study, we try to advance CSI-based in-

door localization to achieve centimeter-level localization

resolution only by using a single commercial AP under

the phase of multipath offered by CSI of subcarriers

using multiple input multiple output (MIMO) to derive

the location signatures.

The main contributions of this paper are as follows:

1. We design a method to obtain phases of multipath by

decomposing construction CSI matrix of a single AP.

2. We propose to use phase information of multipath

for indoor fingerprinting. To the best of our

knowledge, this is the first work to leverage phase

information of a single AP for indoor fingerprinting.

3. We analyze the effectiveness of the proposed location

signature using deterministic k-nearest neighbor

(KNN), probabilistic Bayes algorithms, and support

vector machine (SVM) in the experimental scenarios.

4. We investigate impact factors on the localization

accuracy of our system such as the number of

decomposition path, the size of training and

estimation samples, the number of APs, and the

size of the cell.

5. We evaluate the performance of our system with

RSSI-based and CSI-based localization system.

The rest of this study is structured as follows. The re-

lated work is briefly presented is in Section 2. Section 3 in-

troduces preliminary study including CSI. In Section 4,

our proposed localization system is detailed. The evalu-

ation results of our system are discussed in Section 5. The

conclusion is drawn and the future research is directed in

the final Section.

2 Related work
Increasing demand of location-based service (LBS) draws

a great deal of attention to WiFi-based localization in in-

door environments. We catalog this into two classes,

device-free localization and device-based localization.

2.1 Device-free localization

As it is not convenient for a subject to carry a device,

Jie et al. [25] implement a localization system with

non-equipped entity. Some other systems [26–30] have

been proposed which constitute fingerprint-based or

model-based solutions. Model-based algorithms, which

do not require any laborious effort to build and main-

tain a radio map, estimate the distance from the object

to an AP by using statistical models. LiFS [21] achieves

the accuracy of about 1 m in indoor environments by

using selected subcarriers of CSI to build a model. Due

to the changes of direction, reflecting, or scattering sig-

nals, it is hard to obtain an accurate relationship be-

tween the signal and the location. Fingerprint-based

algorithms, however, need no prior knowledge of the

relationship between the distance and signals, gain

much attention in the localization systems. General

fingerprint-based technique has two phases named the

offline and localization phase. Offline phase is to collect

signals for generating fingerprints from every spot of an

interested area to build a radio map. During the

localization phase, observed fingerprint is matched

against the radio-map by using matching algorithms.

Zhou et al. [31] establish the nonlinear relationship be-

tween CSI fingerprints during the offline phase and es-

timate locations through SVM regression. Unlike

fingerprinting localization, MaTrack [32] uses

Dynamic-MUSIC method to identify the angles for

localization through detecting the subtle reflection sig-

nals from the human body.

2.2 Device-based localization

Due to security or commercial reasons, in some scenar-

ios, we not only need the position but also the identity

information of a person in which the device-free

localization system is not suitable. Device-based

localization system can provide identity information as

human carrying specialized equipment. Compared to

using RSSI of WiFi for localization such as Horus [10]

and RADAR [33], CSI-based localization systems pro-

vide higher accuracy. PILA [18] designs an algorithm to

identify direct path from multipath and uses MUSIC al-

gorithm to jointly estimate the AOA and time of arrival

(TOA) of each path. PhaseFi [34] implements a scheme

in which the calibrated phase information is extracted

for fingerprinting in the offline stage and a deep learn-

ing approach is used for location estimation in the

localization stage. As the bandwidth of WiFi is limited,
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ToneTrack [35] increases the effective bandwidth to ob-

tain the TOA of APs by leveraging the frequency-agile

technique. Similar to ToneTrack, CHRONOS [36] uses

Chinese remainder theorem to measure the time of fly

(TOF) across different channels and then estimate dis-

tance between devices and AP through leveraging the

TOF measurements. In addition to considering position-

ing accuracy, positioning efficiency is also of great import-

ance to localization systems. For instance, CRIL [37]

accounts for dynamic environments introduces coupled

RSSI and INS localization system to improve the efficiency

of location estimation.

3 Preliminaries
3.1 CSI

In wireless communication systems, CSI reveals the

channel response properties of transmission links,

which includes the combined effect of scattering, fad-

ing, and power decay with distance. In most WiFi net-

works, multiple input multiple output (MIMO) and

OFDM technologies are employed to transmit data

more effectively. In these networks, CSI represents the

subcarriers properties of each transmitting and receiv-

ing antennas. Halperin et al. [38] released a tool by

which both the amplitude and phase measurements of

each MIMO-OFDM subcarrier can be aggregated from

Intel’s IWL 5300.

According to the bandwidth of WiFi, it is considered

as a narrowband flat fading channel, and the channel

model is defined as follows:

y ¼ CSIxþ n ð1Þ

where y and x denote the received and transmitted signal

vectors, respectively, CSI denotes the channel frequency

response, and n is the additive white Gaussian noise.

In 802.11n standard, 56 or 114 subcarriers are used for

data transmission in the OFDM system. Each antenna of

the IWL 5300 exports 30 out of all subcarriers and the

index of subcarriers varies with bandwidth and grouping

Ng. The CSIk denotes the channel frequency response of

the subcarrier k shown as follows:

CSIk ¼
XL

l¼1

αle
− j2π f 0þkΔfð Þτl ð2Þ

where αl and τl denote the signal magnitude and the

TOF of path l, respectively. f0 is the central frequency,

Δf is the frequency interval of adjacent subcarriers, and

the 30 subcarriers are written as follows:

CSI ¼ CSI1;CSI2;…CSI30½ �; ð3Þ

3.2 MIMO

MIMO technology using multiple transmitting and re-

ceiving antennas greatly increases the capacity and

spectrum utilization of the communication systems

without increasing the bandwidth. Due to the multipath

effects, it is difficult to achieve high-speed data transmis-

sion in cluttered indoor environments [39]. However, in

MIMO systems, multipath effects can serve as a favor-

able factor, as the signal among different transmitting

antennas uses multipath propagation. Moreover, if the

antennas of both transmitting and receiving are inde-

pendent, the data transmission will be improved in these

parallel spatial channels created by the MIMO system.

Set t and r as the number of transmitting and receiving

antennas, respectively. Each transmitting and receiving

antenna pair is comprised of a data-stream. The CSIs

data of all antennas are defined as follows:

ð3Þ

where the CSIrt is a vector denoting the CSI of 30 sub-

carriers between the transmitting antenna t and receiv-

ing antenna r.

4 Motivation and localization system design
In this section, we investigate the challenges posed by

CSI phase measurements to improve the location esti-

mation. In accordance with (2), CSI is the superpos-

ition of multipath signals. If there is only a direct

path, phase can serve as a fingerprint for localization.

However, in practical indoor environments, indoor

propagation is dominated by severe multipath as

shown in Fig. 1, and raw phase information is not

suitable for generating fingerprints. To use phase as a

fingerprint, we design a method to obtain the phase

from multipath.

The architecture of the system is designed with four

key constituent blocks, as shown in Fig. 2. We will

describe each block in detail in the following

subsections.

4.1 Overview

The system is built on a commercial off-the-self WiFi in-

frastructure without additional hardware. It has two

phases, training and estimation. The overview position-

ing process is as follows:
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4.1.1 Training phase

In training phase, a mobile device is placed at a known lo-

cation for the collection of CSI data. After outlier removal,

a phase sanitation block is used to calibrate phase, and

then the phase information of the multipath is obtained

through a phase decomposition block, which is presented

later in this section. A unique fingerprint of one location

is generated using the feature extraction method based on

dimensionality reduction. This work is repeated on each

location until we store the whole fingerprint coupled with

the coordinates in the fingerprint database.

4.1.2 Estimation phase

During the online phase, we randomly select some un-

known locations to collect CSI data. Similar to the train-

ing phase, the collected CSI data is processed using the

same method to generate a position fingerprint. A fin-

gerprint matching algorithm is employed to compare it

with the location fingerprint database to estimate the

object location.

4.2 Outlier removal

As the outliers appear during our collection due to the

indoor environmental noise, which is capable of affecting

the localization system performance. Consequently, we

implement Pauta Criterion [40] to remove these biased

measurements, as shown in the following:

Vm ¼ Xm−X
�� �� > 3S ð4Þ

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

X i−X
� �2

n−1

vuuut
ð5Þ

where Xm denotes the one of all the measurement, and

X is the median. We declare Xm as an outlier if it meets

the condition according to (4). The CSIs of four subcar-

riers before and after performing outlier removal are

shown in Fig. 3. It is observed that the Pauta Criterion

works well to remove the significant outliers.

Fig. 1 Signal propagation

Fig. 2 System architecture
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4.3 Phase sanitization

The hardware imperfection makes it impossible to gain

the genuine CSI phase. Practically, there are two major

causes of the measurement errors. One is the carrier

frequency offset (CFO) as the center frequency is not

synchronized between the transmitter and receiver. The

sampling frequency offset (SFO) generated by

non-synchronized clocks of ADC makes the measure-

ment errors different for different subcarriers. The mea-

sured phase of subcarrier k is written as follows:

∠dCSIk¼∠CSIkþ2π
nk

N
ΔtkþβþZ ð6Þ

where the ∠dCSIk and the ∠CSIk denote the measured and

the genuine values of the subcarrier k, respectively. nk is

the index of sub-carriers, and Δtk indicates the time offset

due to SFO. N is the FFT size from the IEEE 802.11n spe-

cification. β is the unknown phase offset for CFO, and Z is

the measurement noise. It is unlikely to obtain the true

phase information as the unknown Δtk and Δtk. To elim-

inate phase offset Δtk and Δtk, the linear transformation

algorithm [41] is used to achieve this goal.

The offset b and the slope a are defined as follows:

a¼
∠dCSIN ‐∠dCSI1

nN ‐n1

¼
∠CSIN ‐∠CSI1

nN ‐n1

‐
2π

N
Δt ð7Þ

b¼
1

30

X30

i¼1

∠dCSIk¼
1

30

XN

k¼1

∠CSIkþ
2πΔt

30N

XN

nk¼1

nkþβþZ ð8Þ

In the OFDM system, the symmetric frequency of the

subcarriers leads
PN

nk¼1 nk ¼ 0. Then, the b is written as

follows:

b¼
1

30

X30

i¼1

∠dCSIk¼
1

30

XN

k¼1

∠CSIkþβþZ ð9Þ

By subtracting the linear term ank + b from the raw

phase, we obtain the calibrated values as follows:

∠gCSIk¼∠CSIk−
∠CSIN−∠CSI1

nN ‐n1

nk‐
1

30

XN

k¼1

∠CSIk ð10Þ

The CSI phase after sanitation is shown in Fig. 4a.

Calibrated phases are less fluctuant and more concen-

trated, in comparison with the raw phases which scatter

randomly over many different angles. The calibrated

phases for about 80 packets at 3 different locations are

shown in Fig. 4b. As can be seen, the calibrated phases

are stable at one given location and differing in different

locations, suggesting that it can be very suitable for in-

door fingerprint positioning.

4.4 Phase decomposition

Compared with RSSI, CSI is a fine-grained information,

yet the CSI value of each subcarrier is also a superpos-

ition of some paths due to the bandwidth of WiFi net-

work. In this part, we strive to acquire the phase

information of as many paths as possible by designing a

phase decomposition method.

Set CSI0 as the subcarrier of index 0. According to 2),

CSIk is a linear combination of the phase of each path

and the phase of subcarrier 0. To simplify the notations,

CSIk is represented as follows:

Fig. 3 Outlier removal. Each red point in this figure denotes the CSI amplitude of the subcarrier of each packet, and the blue circle is the outlier

found by applying Pauta criterion
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CSIk ¼
XL

l¼1

Sl0Δ
l
k ð11Þ

For the path l:

Sl0 ¼ αle
− j2π f 0τl

Δ
l
k ¼ e−jkΔ f τl

ð12Þ

In the 802.11n standard, when BW= 40 MHz and Ng

= 4 (grouping), the index of the sampled subcarriers

ranges from − 58 to 58, in which the interval of sub-

carrier index is 4. For the convenience of presentation,

assuming that there are five paths here, and a Hankel

matrix can be built:

X ¼

CSI−58 CSI−54 CSI−50 CSI−46 CSI−42
CSI−54 CSI−50 CSI−46 CSI−42 CSI−38
CSI−50 CSI−46 CSI−42 CSI−38 CSI−34
CSI−46 CSI−42 CSI−38 CSI−34 CSI−30
CSI−42 CSI−38 CSI−34 CSI−30 CSI−26

2
66664

3
77775

ð13Þ

Actually, X is written as follows:

X ¼ ΔSΔ
T ð14Þ

Where

Δ ¼

Δ
1
−29 Δ

2
−29 Δ

3
−29 Δ

4
−29 Δ

5
−29

Δ
1
−25 Δ

2
−25 Δ

3
−25 Δ

4
−25 Δ

5
−25

Δ
1
−21 Δ

2
−21 Δ

3
−21 Δ

4
−21 Δ

5
−21

Δ
1
−17 Δ

2
−17 Δ

3
−17 Δ

4
−17 Δ

5
−17

Δ
1
−13 Δ

2
−13 Δ

3
−13 Δ

4
−13 Δ

5
−13

2
66664

3
77775

ð15Þ

And

S ¼ diag S10; S
2
0; S

3
0; S

4
0; S

5
0

� �
ð16Þ

We define Δ =VS
′.

Where

V ¼

1 1 1 1 1
Δ
1
4 Δ

2
4 Δ

3
4 Δ

4
4 Δ

5
4

Δ
1
8 Δ

2
8 Δ

3
8 Δ

4
8 Δ

5
8

Δ
1
12 Δ

2
12 Δ

3
12 Δ

4
12 Δ

5
12

Δ
1
16 Δ

2
16 Δ

3
16 Δ

4
16 Δ

5
16

2
66664

3
77775

ð17Þ

And

S
0 ¼ diag S1

−29; S
2
−29; S

3
−29; S

4
−29; S

5
−29

� �
ð18Þ

Thus, X = (VS′)S(VS′)T since S
′
= (S′)T X is presented

as follows:

X¼VΣV
T ð19Þ

It is easy to prove that

V ¼

1 1 1 1 1
Δ
1
4 Δ

2
4 Δ

3
4 Δ

4
4 Δ

5
4

Δ
1
8 Δ

2
8 Δ

3
8 Δ

4
8 Δ

5
8

Δ
1
12 Δ

2
12 Δ

3
12 Δ

4
12 Δ

5
12

Δ
1
16 Δ

2
16 Δ

3
16 Δ

4
16 Δ

5
16

2
66664

3
77775

¼

1 1 1 1 1
Δ
1
4

� �1
Δ
2
4

� �1
Δ
3
4

� �1
Δ
4
4

� �1
Δ
5
4

� �1

Δ
1
4

� �2
Δ
2
4

� �2
Δ
3
4

� �2
Δ
4
4

� �2
Δ
5
4

� �2

Δ
1
4

� �3
Δ
2
4

� �3
Δ
3
4

� �3
Δ
4
4

� �3
Δ
5
4

� �3

Δ
1
4

� �4
Δ
2
4

� �4
Δ
3
4

� �4
Δ
4
4

� �4
Δ
5
4

� �4

2
666664

3
777775

ð20Þ

V is a Vandermonde matrix [42]. Therefore, the prob-

lem arises to find a Vandermonde decomposition of X.

The decomposition algorithm [43] is shown as follows:

(a) (b)

Fig. 4 a Raw phase vs. calibrated phase. The orange line in is the raw phase value of each packet and the blue line is presented as calibrated

phase after linear transformation algorithm. b Calibrated phase at three different locations. Red, blue, and yellow line illustrate the calibrated

phase of subcarriers at different locations, respectively
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According to phase decomposition, the phase can be

extracted from each path. On the other hand, it cannot

be used for the calculation of TOF as it contains some

unknown phase offset caused by ADC.

4.5 PCA-based feature extraction

Assuming that our system has N transmitting antennas

and R receiving antennas. In line with the phase decom-

position method, the dimension of a vector is N*R*L = p

where L denotes the assumed number of paths. As each lo-

cation consists of T packets, we have T p-dimensional vec-

tor, and the size of a location matrixV is T*P which may be

a very high dimension for real time localization. To reduce

the dimension and yield the robust feature, principal com-

ponent analysis (PCA) is conducted for the location matrix.

For the high dimension data, PCA selects the greatest vari-

ance dimension data as the principal components.

For the location matrix V, we first calculate the median

vector of the matrix and subtract it from each row to

realize the mean-centered value. Set M and σ as the

mean-centered matrix and the convenience matrix of M,

respectively. Assuming that λi denotes the eigenvalue of

σ, and xi is eigenvector corresponding to eigenvalues.

Thus, there is a vector xi which satisfies σxi = λixi. Let T

eigenvectors and eigenvalue form matrix Φ and Λ:

Φ ¼ x1 x2 ⋯ xT½ �
Λ ¼ diag λ1 λ2 ⋯ λTð Þ

ð21Þ

By normalizing every eigenvector to unit magnitude

and orthogonal with each other, it is yielded that

Φ
0
Φ ¼ ΦΦ

0 ¼ I

σ ¼ ΦΛΦ
0 ð22Þ

With r largest eigenvalues of σ, T-r projection matrix

is yielded:

Φ ¼ x
p
1 x

p
2 ⋯ xpr

� �
ð23Þ

For each location, we project the location matrix into

a corresponding matrix as a fingerprint matrix:

F ¼ MΦp ð24Þ

5 Experiment implementation and performance
metrics
5.1 Experimental equipment and scenarios

Our system is evaluated in the laboratory, meeting room,

and corridor as shown in Fig. 5. The D-Link dir-859

wireless APs and the SONY laptops mounted WiFi

Wireless Link 5300 Cards serve as transmitters and

Fig. 5 Experimental scenarios
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receivers, respectively. The APs operation in IEEE

802.11n mode has three antennas. In some places close

to AP, the transmitting antenna and receiving antenna

are very close, the signals from different antennas at-

tenuating very similarly, causing the AP to actively

merge similar channels. In this case, we are unable to

obtain the CSI of all three antennas and the channel

merging process is controlled by internal program of an

AP that could not be intervened. Thereby, we use two of

the three antennas as transmitting antennas.

We select the three experimental scenarios due to dif-

ferent floor areas and mobility. The scenarios can be cat-

egorized into static and dynamic based on the mobility,

which depends on the number of people present and the

frequency of their mobility during experimentation. In

the meeting room, it is almost static with one people sit-

ting at their place most of the time during experimenta-

tion. In contrast, the laboratory is fully occupied with

the people at every desk location with the frequent mo-

bility such as moving in and out of the place, therefore it

can be a typical dynamic environment. Similar with the

laboratory, corridor also can be seen as a dynamic envir-

onment since people frequently walk by.

In training phase, the areas fall into many cells with

the size of about 0.6 m × 0.6 m and label each cell

with a number. At each cell, we collect 1000 packets

from each AP. During the estimation phase, some

cells are randomly selected, and 200 packets are

gained at each cell. The layout and major parameters

of three scenarios are shown in Fig. 6 and Table 1,

respectively.

5.2 Performance metrics

Two metrics are used to evaluate the performance of

our indoor localization system.

Fig. 6 Floor-plan of the three scenarios. The red points denote the sampling location. At each location, we collect 1000 packets from each AP
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5.2.1 Cell estimation accuracy

The cell estimation accuracy (CEA) suggests the ratio of

the number of correctly estimated testing cells to all cell

locations during the estimation phase, which is calcu-

lated as follows:

CEA ¼
1

N

XN

i¼1

I yi ¼ ŷið Þ ð25Þ

where N denotes the number of total testing cells.

5.2.2 Median distance error

The estimation phase may suggest that some testing cells

are being misclassified. Given such circumstances, the aver-

age distance between the center points of the estimated cells

and true cells are calculated, which is termed as median dis-

tance error. Formally, the median distance error is given by

MDE ¼
1

N

XN

i¼1

yi−ŷik k2 ð26Þ

where ‖·‖2 denotes the L2 norm.

Combining with the size of cell size, the CEA could be

used to express the precision of positioning and the

median distance error (MDE) is utilized to represent the

overall performance of positioning system.

5.3 Overall performance

The most machine learning algorithms can be catego-

rized into deterministic and probabilistic algorithms, so

we selected KNN, SVM, and Bayes as matching algo-

rithms. KNN and SVM are deterministic algorithms

which use the distance between a test fingerprint and

each training fingerprint from the fingerprint database

to estimate the test location. Bayes algorithm was a

probabilistic algorithm that estimates the test location

by maximizing the posterior probability.

Three fingerprint matching algorithms are used to

examine the overall performance of our system in the

three scenarios with only one AP. The cell estimation

accuracy and median distance error in three scenarios

are shown in Fig. 7. It is observed from Fig. 7 that the

CEA in laboratory is higher than that in the meeting

room, while the MDE is lower than that in the meeting

room and among all scenarios, the corridor also reaches

the maximum MDE and the minimum CEA. This is pri-

marily because the furniture, the number of people, and

the frequency of their mobility in the meeting room are

less than those in the laboratory. Thus, the multipath ef-

fect is small during our experiment. In comparison with

the other matching algorithms, SVM reaches the best

cell estimation accuracy and the lowest median distance

error in both scenarios. The overall performance in the

two different environments is summarized in Table 2.

Table 1 Main parameters of the scenarios

Parameters Laboratory Meeting room Corridor

Size 23.6 m × 5.8 m 7.2 m × 5.8 m 31.2 m × 1.5 m

Access points 2 2 2

Cells 81 42 88

Fig. 7 Cell estimation accuracy and median distance error in three scenarios. In the top figure blue, orange and yellow bar represent the cell

estimation accuracy for using KNN, Bayes, and SVM as the match algorithm in the laboratory and meeting room, respectively. In the bottom

figure, blue, orange, and yellow bar represent the median distance error for using KNN, Bayes, and SVM as the match algorithm in the laboratory,

in the meeting room and in the corridor, respectively
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5.4 Impact of the number of decomposition path

As the number of specific paths in the environment can-

not be accurately obtained, we can only intuitively as-

sume the number of paths in the environment. We

investigate the impact of the number of decomposition

paths, as shown in Fig. 8. It is observed that more de-

composition paths do not result in higher positioning

accuracy. In contrast, due to the noise in the indoor en-

vironment, considerable decomposition path may make

it difficult for differentiation of each fingerprint, as the

fingerprint dimension increasing more noise is intro-

duced to the fingerprint. We believe that 2–3 decompos-

ition paths are appropriate in a scenario where the

multipath effect is not obvious, and 4–5 decomposition

paths are appropriate in a multipath effect environment.

5.5 Impact of size of training and estimation samples

We have evaluated four combinations: 1 k/200, 500/100,

200/50, and 50/50. Figure 9 presents the MDE of four

combinations. Bayes algorithm needs to calculate the

prior probabilities, and if there is not enough data for

calculating the prior probabilities, the location accuracy

would decrease Moreover, in Bayesian algorithm, it is as-

sumed that the features are independently and identi-

cally distributed; however, this assumption is often not

valid in practice. Therefore, it can be seen from the

Fig. 9, on the condition of small size of training and esti-

mation samples Bayes achieves the highest MDE com-

pared to KNN and SVM.

KNN calculates the Euclidean distance between the

features of test location and the features in the finger-

print database to estimate location. The same as Bayes

algorithm, it also needs a large amount data to improve

the location accuracy. SVM is different from KNN, as it

can build the model for classification only using a few

samples. Additionally, SVM is good at dealing with

high-dimensional and non-linear data.

The SVM approach performs the best in all of combi-

nations as shown in Table 3. The best accuracy is 0.6 m

in the laboratory and 0.45 m in the meeting room. They

are both reached under the combination of 1 K/200 with

SVM algorithm. In comparison with the other two algo-

rithms, Bayes algorithm needs more data to achieve high

accuracy as it calculates the prior and posterior probabil-

ities. In brief, a larger amount of data improves the esti-

mation of the data characteristics and is conducive to

building a more accurate model to improve the position-

ing accuracy.

Table 2 Overall performance

Scenario Performance metric KNN Bayes SVM

Laboratory CEA 0.933 0.918 0.942

MDE (m) 0.64 1.20 0.60

Meeting room CEA 0.956 0.93 0.97

MDE (m) 0.58 0.83 0.45

Fig. 8 MDE for different number of decomposition path. In the top figure, blue, orange, and yellow bar represent the median distance error of

different decomposition path by using KNN, Bayes, and SVM as the match algorithm in the laboratory, respectively. In the middle figure, blue,

orange, and yellow bar represent the median distance error of different decomposition path by using KNN, Bayes, and SVM as the match

algorithm in the meeting room, respectively. In the bottom figure, blue, orange, and yellow bar represent the median distance error of different

decomposition path by using KNN, Bayes, and SVM as the match algorithm in the corridor, respectively
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5.6 Impact of the number of APs

Although our system only uses one AP to reach ac-

curate localization, the number of APs is also a cru-

cial factor for localization. In all scenarios, two APs

are used to investigate the impact for positional ac-

curacy. The MDE for different numbers of APs is

demonstrated in Fig. 10. It is observed that adding an

AP will only reduce the MDE by about 0.05 m when

KNN and SVM approaches are used for localization.

This level of reduction is inconsequential in some ap-

plication scenarios. However, it would be very useful

for Bayes to increase the accuracy whose MDE drop

from 1.21 to 1.08 m in the laboratory and from 0.83

to 0.63 m in the meeting room, respectively.

5.7 Impact of the size of cell

The size of cell is also an important factor that affects

the positon accuracy. We conduct experiments in la-

boratory, meeting room, and corridor respectively to

analyze the impact of the sizes of cell. We select three

size of cell which are 0.3 m × 0.3 m, 0.6 m × 0.6 m, and

1.2 m × 1.2 m. The results are shown in Fig. 11. As can

be seen from the figure, the size of 0.6 m × 0.6 m reaches

the minimum mean distance error. Since the variance of

the feature in a fingerprint is not small enough com-

pared to the distance between two adjacent cells, if the

size is too small, the features of the fingerprint would be

very similar to that of the fingerprint of the adjacent cell

in feature space, which would make it difficult to distin-

guish. Hence, too small size would not help to improve

positioning accuracy, but would only increase the labor

and time during building the fingerprint database. On

the other hand, if the size is too big, the measurement

scale would be more extensive which would not be

beneficial to improve the position accuracy, too.

Fig. 9 MDE for different size of training and estimation samples. In the top figure, blue, orange, and yellow bar represent the median distance

error of different size of training and estimation samples by using KNN, Bayes, and SVM as the match algorithm in the laboratory, respectively. In

the middle figure, blue, orange, and yellow bar represent the median distance error of different size of training and estimation samples by using

KNN, Bayes, and SVM as the match algorithm in the meeting room, respectively. In the bottom figure, blue, orange, and yellow bar represent the

median distance error of different size of training and estimation samples by using KNN, Bayes, and SVM as the match algorithm in the

corridor, respectively

Table 3 MDE for different sizes of training and estimation

samples

Scenario Sample size KNN (m) Bayes (m) SVM (m)

Laboratory 1K/200 0.64 1.21 0.6

500/100 0.79 1.53 0.7

200/50 1.02 2.31 0.76

50/50 1.53 6.54 1.45

Meeting room 1K/200 0.58 0.83 0.45

500/100 0.63 1.83 0.54

200/50 1.22 2.95 0.75

50/50 1.38 7.36 1.31

Corridor 1K/200 1.26 1.58 1.08

500/100 1.31 2.03 1.11

200/50 1.42 5.34 1.36

50/50 1.49 8.91 2.06
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5.8 Comparison with other localization system

Our localization system is compared with two

fingerprint-based systems, i.e., a RSSI-based system

(RADAR) [33] and a CSI-based system (CSI-MIMO)

[20] in the three environments. In the experiments, the

RSSI used in the RADAR system is the mean signal

strength of the three receiving antennas and in the

CSI-based system, we use the same CSI data as that in

our system. KNN approach is introduced to all the three

systems for matching fingerprints. The performance of

the three systems under the conditions of one AP and

two APs are shown in Fig. 11.

Since an AP only provides one RSSI, the RADAR sys-

tem lacks features for localization whose MDE is

Fig. 10 MDE for different number of APs. In the top figure, blue and orange represent the median distance error of different match algorithm

under the one AP and two APs conditions in the laboratory, respectively. In the middle figure, blue and orange represent the median distance

error of different match algorithm under the one AP and two APs conditions in the meeting room, respectively. In the bottom figure, blue and

orange represent the median distance error of different match algorithm under the one AP and two APs conditions in the corridor, respectively

Fig. 11 Different size of cell. In the figure, blue, orange, and yellow line represents the experiment scenarios. Blue represents the experiment

done in the laboratory, orange line represents the experiment done in the meeting room and yellow line represents the experiment done in the

corridor. Star represents the size of cell is 0.3 m × 0.3 m, circular represents the size of cell is 0.6 m × 0.6 m, and triangle represents the size of cell

is 1.2 m × 1.2 m
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15.3 m in laboratory, 12.5 m in the meeting room, and

16.5 m in the corridor, respectively. Two APs contrib-

ute to reducing the MDE for RADAR, the MDE de-

creases significantly in all three scenarios. Similar to

RADAR, more APs are also conducive to improving the

localization accuracy for our system. With two APs, the

MDE of our system is 0.61 m in the laboratory, which

is better than 0.82 m reached by CSI-MIMO. In terms

of one AP, the advantage of our system is apparent,

reaching 0.64 m in the laboratory, 0.58 m in the meet-

ing room, and 1.12 m in the corridor. Moreover, this is

superior over 1.53 m, 1.78 m, and 3.15 m of

CSI-MIMO system, respectively (Fig. 12).

6 Conclusion
In this study, a fingerprint-based localization system is

presented that only using a single AP. We use the phase

information for fingerprinting localization and a linear

transformation algorithm to eliminate the noise in the

phase. A new phase decomposition method is proposed to

acquire the phase information of multipath, and a

PCA-based algorithm is used to extract features for the

generation of a fingerprint. The performance in the la-

boratory, the meeting room, and the corridor is validated.

The results reveal a minimum mean distance error of

0.6 m in the laboratory, 0.45 m in the meeting room, and

1.08 m in the corridor. We also analyze the impact factors

on the localization accuracy of our system and compare

our system with a RSSI-based and a CSI-based fingerprint

localization system. The results demonstrate that our sys-

tem outperforms the other two systems.

Our future work will focus on more complex scenarios

where multiple sensing elements are used to obtain

more exact information for localization. Research is on-

going to verify whether the current system can also be

extended to a multi-level floor.
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