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Abstract. In this paper, a novel damage detection algorithm is developed based on blind source separation in conjunction with

time-series analysis. Blind source separation (BSS), is a powerful signal processing tool that is used to identify the modal

responses and mode shapes of a vibrating structure using only the knowledge of responses. In the proposed method, BSS is

first employed to estimate the modal response using the vibration measurements. Time-series analysis is then performed to

characterize the mono-component modal responses and successively the resulting time-series models are utilized for one-step

ahead prediction of the modal response. With the occurrence of newer measurements containing the signature of damaged system,

a variance-based damage index is used to identify the damage instant. Once the damage instant is identified, the damaged and

undamaged modal parameters of the system are estimated in an adaptive fashion. The proposed method solves classical damage

detection issues including the identification of damage instant, location as well as the severity of damage. The proposed damage

detection algorithm is verified using extensive numerical simulations followed by the full scale study of UCLA Factor building

using the measured responses under Parkfield earthquake.
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1. Introduction

Blind Source Separation (BSS) methods have recently emerged as a powerful class of signal processing methods

capable of monitoring the health of a large class of civil structures. The application of BSS methods to flexible struc-

tures have been reported for a broad range of numerical and experimental studies, e.g., [2,10,11,13,19].These results

clearly reveal the potential of using the principle of BSS for a wide range of structural engineering problems. Orig-

inally proposed for a fewer class of problems involving broad-band excitations, static mixtures, and relatively large

sensor densities, BSS extensions to under-determined case [12,14], nonstationary environment [31], de-centralized

sensing network [29,32], and for convolutive mixing [30] have also been reported in recent studies by the authors.

In the present study, a novel time-series analysis based BSS method is proposed to tackle damage detection in civil

structures which is commonly encountered as a major structural health monitoring problem.

Structural health monitoring (SHM) entails development and implementation of damage diagnosis and progno-

sis algorithms for accurate economical management and maintenance of modern civil infrastructures. Relatively
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Fig. 1. Basic framework of blind source separation.

vast literature [6,9] presents an extensive survey of various damage detection techniques in mechanical and civil

structures that utilize changes in modal properties such as natural frequency, damping and mode shapes. Damage

indicators are primarily based on changes in the modal parameters that reflect equivalent variations in the physical

parameters of the system. Such alterations in the physical parameters commonly occur due to structural degradation

under various environmental conditions, human-induced excitation or natural events such as earthquake and strong

winds. Recently blind source separation (BSS), a powerful signal processing tool, has gained significant attentions

in the field of structural system identification [2,14,29]. Such BSS-based modal identification methods have shown

significant promises in either mild non-stationary ambient vibration [12,29] or severe non-stationary event like earth-

quake excitation [31]. In the present paper, an adaptive damage detection algorithm is developed in the framework

of blind source separation in conjunction with time-series analysis.

Various damage detection techniques [6,36] are developed in the last decades, which can be broadly classified

based on the level of attempted identification: (a) presence, (b) location, (c) severity of damage [28]. Consequently,

recent development in signal processing tools [36] has resulted a paradigm shift in its application towards dam-

age detection, leading to a class of algorithms employing various time-frequency transformation based approaches

using wavelets [16,34], empirical mode decomposition and Hilbert-Huang transform [37], statistical methods like

principal component analysis [26,35] and time-series models [4,7,22,24,38]. Recently, another powerful signal pro-

cessing method based on blind source separation principles (BSS) [2], has been studied in the context of structure

modal identification [2,12,14,29,31]. These methods show excellent applicability to the problem of structural mode

identification, and are explored here to the case of damage detection.

The basic problem statement of BSS as illustrated in Fig. 1, is given by:

x(n) =As(n)

ŝ(n) = y(n) = Wx(n) (1)

where, Anm×ns
is the instantaneous mixing matrix and Wns×nm

is the estimated un-mixing matrix, which is the

inverse of A for the case when the number of sources (ns) is equal to the number of measurements (nm). An estimate

of the sources ŝ are then given by y. BSS methods attempt to determine the un-mixing matrix W and ŝ using the

information contained in x only. Hence, the term blind is commonly used. There are two popular BSS approaches

in the literature: higher-order statistics (HOS) based independent component analysis (ICA) [17], and second-order

statistics (SOS) based second-order blind identification (SOBI) [3]. ICA exploits the marginal non-Gaussianity and

statistical independence of sources without considering the time structure of sources. On the other hand, SOBI uti-

lizes SOS by constructing multiple co-variance matrices of the responses, for the case when the sources are spatially

uncorrelated but temporally correlated [8]. The concept of BSS has been extended to the ambient system identifi-

cation of structural systems [2,12,14,29,31], where the normal modes of a linear dynamical system can be regarded

as virtual sources. Recently ICA-based BSS method [18,27,39] is developed for the structural damage detection.

However, the ICA methods suffer performance issues in presence of structural damping even in the order of 2% [11].

Unlike ICA, SOBI-based BSS method that considers time structure pertaining to several time-lagged co-variance

matrices, enables better handling of sources with different spectral contents. In the present study, SOBI-based BSS

method is proposed in conjunction with time-series analysis to detect the damage in the structural systems.

The effects of damage in a structure are classified as linear or nonlinear [9]. A linear damage situation is defined

as the case when a initially linear-elastic structure remains linear-elastic after damage. Such elastic changes in
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modal properties primarily occur due to changes in the geometry and/or the material properties of the structure,
however the structural response can still be modeled using a linear equation of motion [9]. This is the basis of the
proposed method where the SOBI-based BSS is used for the modal identification, and then the estimated sources in
conjunction with the time-series analysis are used for the prediction of future measurements to identify the damage.
Time-series models [5,15] are used to characterize the sources that are obtained from the past observations and
then the future sources (i.e., the measurements) are predicted. With the arrival of newer measurements containing
the signature of structural damage, significant difference is observed between the predicted and true measurements,
which is used as a damage indicator. Once the damage is detected, the measurements prior to the damage are
discarded and the modal parameters of the damaged state are estimated based on the current measurements. In this
way, the damage and un-damaged modal parameters are estimated in an adaptive fashion. The proposed method
is used to solve the previously mentioned three classes of damage detection problems including identification of
presence, location and severity of damage.

This paper is organized as follows. The problem statement is presented first wherein the general problem of
structural system identification is cast in BSS framework followed by the verification using the extensive numerical
studies. Finally, the identification results of the UCLA building are presented, followed by the main conclusions of
this study.

2. Background

The algorithm developed in this paper is based on the concept of prediction of sources of the BSS method using
time-series analysis. The sources are first estimated based on the current measurements using the BSS method,
which are then modeled by suitable time-series models and are used to predict the future measurements. With
the arrival of true future measurements, an error is evaluated between the true and predicted measurements and
subsequently the damage is identified. Instead of time-series modeling of raw vibration measurements, the estimated
sources are chosen for the prediction of the measurements. This is primarily due to complexity in developing time-
series models from raw vibration measurements containing large number of degrees-of-freedom with significant
measurement noise [7,22,24]. On the other hand, mono-component sources are easy to predict using low-order
time-series model [25] and thus the accurate response prediction is obtained for the damage detection. This is the
essence of the proposed method. A brief background of time-series analysis is included herein.

2.1. Time-series model

In general, an auto-regressive moving average (ARMA) (p, q) model [5,15] for a zero-mean time series (x) can
be described as:

xt − φ1xt−1 − φ2xt−2 − . . .− φpxt−p = at − θ1at−1 − θ2at−2 − . . .− θqat−q (2)

Using B operator, Eq. (2) can be expressed as:

(1 − φ1B − φ2B
2 − . . .− φpB

p)xt = (1− θ1B − θ2B
2 − . . .− θqB

q)at

φ(B)xt = θ(B)at (3)

where φ(B) and θ(B) contain auto-regressive (AR) and moving average (MA) parameters respectively. at is the
zero-mean white noise sequence characterized by its variance, σ2

a. The AR parameters of order p describe the
system dynamics while MA part of order q is related to external disturbances, and ensures the overall stationarity
of the response. An appropriate time series model is primarily developed using three steps process consisting of (a)
identification, (b) parameter estimation and (c) diagonastic checks [5,15]. In order to identify the model order (i.e., p
and q), several forms of auto-correlation functions (ACF) are used such as partial auto-correlation function (PACF),
inverse auto-correlation function (IACF) and inverse partial auto-correlation function (IPACF). Sample ACF (rk) is
defined as [15]:

ck =
1

N

N−k∑

i=1

(xi − x̄)(xi−k − x̄)
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Fig. 2. Response of a SDOF system and its Fourier spectrum.

rk =
ck

c0
(4)

The PACF is defined as a function which cuts off for an AR process. Sample PACF, φkj is defined as the jth

coefficient in a stationary AR process of order k so that φkk is the last coefficient. It can be calculated using Yule-
Walker equation [15]. IACF is defined as the ACF associated with the reciprocal of the spectral density function and
is expressed as [15]:

rik =
φ̂k +

∑r−k
i=1 φ̂iφ̂i+k

1 +
∑r

i=1 φ̂
2
i

10 < r < 40 (5)

The characteristics of IACF are similar to PACF. The inverse PACF (θkk) is the PACF of an ARMA (q, p) pro-
cess [15]. One can replace the sample IACF in the Yule-Walker equation and solve for the IPACF. The characteristics
of IPACF are similar to ACF. Once the mode order is decided, the model parameters are estimated using Yule-Walker
equations. The chosen model order is then optimized using Akaike information criteria (AIC) [1]. When there are
several suitable models available for a time series, the model possessing minimum value of AIC is selected.

In order to demonstrate the use of time series analysis in the present context, a simple example is shown herein.
Figure 2 shows the response of a single-degree-of-freedom (SDOF) system under white noise excitation and its
Fourier spectra respectively. Such SDOF system simulates the mono-component sources that are obtained from
BSS. The sample ACF, PACF, IACF and IPACF of the response are shown in Fig. 3. It can be observed that the
ACF trends to follow a damped exponential curve, which suggests that some sort of AR models fit the data [15].
The sample PACF and IACF cut off after lag k = 2, which suggests that AR(2) type of model would be suitable for
the data. The slow decay of sample IPACF also indicates the presence of single frequency in the data and confirms
the suitability of the low order AR model. The results are summarized in Table 1. It is noted that the sources
extracted from BSS are primarily mono-component signal, and therefore can be modeled using AR(2) model. Once
the model order is selected, the associated AR coefficients φ(B) are estimated using Yule-Walker equation [15].
Such chosen AR(2) model can be used for minimum mean-square error forecast of measurement xt using Eq. (2)
with the following expression [5,15]:

x̂t = φ1xt−1 + φ2xt−2 + at (6)

where φi is the ith AR coefficient.
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Table 1

Identification results of x(t)

x(t) Fig. Observations Proposed model

Time-series 2 Zero-mean stationary process Stationary

ACF 3(a) Attenuates AR(p)/ARMA(p,q)
PACF 3(b) Truncates at lag 2 AR(2)

IACF 3(c) Truncates at lag 2 AR(2)

IPACF 3(d) Attenuates AR(p)/ARMA(p,q)

Fig. 3. (a) ACF, (b) PACF, (c) IACF, (d) IPACF of x(t).

3. Proposed method

Consider a linear, classically damped, and lumped-mass ns degrees-of-freedom structural system, subjected to an

excitation force, F(t).

Mẍ(t) +Cẋ(t) +Kx(t) = F(t) (7)

where, x(t) is a vector of displacement coordinates at the degrees of freedom. M, C, and K are the mass, damp-

ing and stiffness matrices of the multi-degree-of-freedom system. For the case of earthquake excitation (ground

acceleration, üg(t)), F(t) = −MIüg(t) (I is the identity matrix), the solution to Eq. (7) can be written in terms of

superposition of vibration modes with the following matrix form:

x = Ψq (8)

where, x ∈ ℜnm×N is the trajectory matrix composed of the sampled components of x, q ∈ ℜns×N is a matrix

of the corresponding modal coordinates, Ψnm×ns
is the modal transformation matrix, and N is the number of data

points of the measurements. The measurement at ith degree-of-freedom (i = 1, 2, . . .nm) of Eq. (8) can be expressed

as xi(t) =
∑ns

r=1 ψirqr(t) with

qr(t) =
µr

Mrωr
Wr(t) (9)
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where

Wr(t) =

∫ T

0

üg(τ)e
−τrωr(t−τ) sinωr(t− τ)dτ ; Mr = ψT

r Mψr; µr = ψT
r MI (10)

Note the similarity between Eqs (1) and (8). Under the conditions where the modal coordinates are mutually uncor-
related with non-similar spectra, the normal coordinates can be regarded as the most uncorrelated sources. Thus, the
modal coordinates q are a special case of general sources s with time structure, and subsequently form the basis of
the BSS-based modal identification procedure described in this paper. Furthermore, the scalar multiplication for the
components in x is not expected to introduce ambiguity in the process of modal identification.

The proposed method operates under the basic framework of SOBI, resulting in the following steps: simultaneous
diagonalization of two covariance matrices Rx(0) and Rx(p) evaluated at the time-lag zero and p, respectively. This
can be written as:

Rx(0) = E
{
x(n)xT (n)

}
= ARs(0)A

T (11)

Rx(p) = E
{
x(n)xT (n− p)

}
= ARs(p)A

T

where,

Rs(p) = E
{
s(n)sT (n− p)

}
(12)

The following three steps set up the essence of SOBI: whitening, orthogonalization, and unitary transformation.

Whitening is a linear transformation in which, Rx(0) = (1/N)(
N∑

n=1
x(n)xT (n)) is first diagonalized using singular

value decomposition,Rx(0) = VxΛxV
T
x whereΛx andVx are the eigenvalues and eigenvectors of the co-variance

matrix of Rx(0) respectively. Then, the standard whitening is realized by a linear transformation expressed as,

x̄(n) = Qx(n) = Λ
− 1

2

x VT
xx(n) (13)

Because of whitening, Rx(p) becomes Rx̄(p), which is given by the equation,

Rx̄(p) =

(
1

N

)(
N∑

n=1

x̄(n)x̄T (n− p)

)
= QRx(p)Q

T (14)

Using the Eqs (11) and (14), we get

Rx̄(p) = QARs(p)A
TQT (15)

The above equation states that by diagonalizing the whitened covariance matrix at a particular time-lag, the
unitary matrix product QA can be determined, resulting in the mixing matrix, A. This process of diagonalization
is implemented numerically, and typically involves jointly diagonalizing several covariance matrices at a given lag
p [12]. The second step, called orthogonalization, is applied to diagonalize the matrix Rx̄(p) whose eigen-value
decomposition satisfies

Vx̄Rx̄(p)V
T
x̄ = Λx̄ (16)

Since the diagonal matrix Λx̄ has distinct eigen-values, it is easy to see that the product QA is a unitary matrix, and
the mixing matrix can be estimated by the equation,

Â = Q−1Vx̄ = VxΛ
1/2
x Vx̄ (17)

where Â is the estimated mixing matrix of A. The problem now becomes one of unitary diagonalization of the
correlation matrix Rx̄(p) at one or several non-zero time lags. Equation (15) is a key result, which states that the
whitened covariance matrix Rx̄(p) at any non-zero time lag p is diagonalized by the unitary matrix QA. The de-
termination of the unitary matrix is carried out using a numerical procedure, commonly known as joint approximate
diagonalization [3]. Denoting V = QA, D = VT R̃x̄(p)V, the problem is one of finding the minimum of the
performance index J given by,

J(V,p)=
∑

p

∑

1�i�=j�ns

∣∣Dp
ij

∣∣2 (18)

Then, the unitary matrix V corresponding to minimum J over fixed h iterations is said to be an approximate joint
diagonalizer [3]. Once Â is estimated, the sources ŝ can be estimated using the inverse of Eq. (1):

ŝ = Â−1x (19)
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Fig. 4. Flowchart of the proposed method.

3.1. Time-series modeling and one-step ahead prediction of sources

Once the sources are extracted using the BSS method with the measurement up to (k − 1)th time instant, the

sources can be predicted for kth time instant using their time-series models. Since the sources are primarily mono-
component, they can be predicted using Eq. (6):

ŝk = φ1ŝk−1 + φ2ŝk−2 + at (20)

The AR parameters (i.e., φ(B)) are estimated using sources up to (k − 1)th time instant as described in Section 2.
Once the sources are predicted, one-step ahead response can be estimated using:

x̂k = Âk−1ŝk (21)

where Âk−1 is the mixing matrix based on the measurements up to (k − 1)th time instant. With the occurrence of
new measurement at kth time instant i.e, xk, one can find the error between the predicted (i.e., x̂k) and true mea-

surement (xk). Therefore, by utilizing a suitable error index, damage can be estimated using the true and predicted

measurement. In this study, we define a variance-based error index as:

Ei,k =
Ri(0, k)− R̂i(0, k)

Ri(0, k)
(22)

where, Ri(0, k) =
∑k

n=0
x2

i
(n)
k and R̂i(0, k) =

∑k
n=0

x̂2

i
(n)
k are the variances of the true and the predicted mea-

surement of ith floor location at kth time instant. When the error index Ei,k attains a value more than a specified

tolerance ǫ, then it signifies that the modeling of ŝ based on the measurements up to (k − 1)th time instant is inap-
propriate. This particular scenario happens when there are significant changes in the system and leads to a situation

when the damage occurs. Under such situation, the measurements up to (k− 1)th time instant represents the system
response of undamaged state. On the other hand, the current measurements hereby represent the response of dam-

aged state. Therefore the measurements up to (k − 1)th time instant (i.e., damage instant td) is separated out and
the BSS method is employed separately to undamaged and damaged data sets to estimate the modal parameters of

undamaged (ŝu, Âu) and damaged system (ŝd, Âd) respectively. In this way, time series analysis-based error index is

implemented in the framework of BSS to characterize the successive damage and undamaged states. The flowchart
of the proposed method is shown in Fig. 4.
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Fig. 5. Typical floor measurements showing the overall damage of the system at t = 50 sec.

3.2. Identification of damage location

Once we estimate the mode shapes of the damaged (i.e., Âd) and undamaged system (i.e., Âu), the damage
location can be subsequently identified. It may be noted that the mode shape of the system under undamaged state
can be utilized as a baseline data, and subsequently any difference in the mode shape ordinates under damaged state
with respect to the baseline data (i.e., undamaged state) can be used to find the damage location. A new damage index
is proposed herein to identify the differences in the mode shapes between the undamaged and damaged system as
following:

E
φ
i =

∑ns

j=1{Â
i,j
d − Âi,j

u }2

ns
(23)

where Âi,j
u and Â

i,j
d represent the jth mode shape ordinate at ith floor under undamaged and damaged states respec-

tively and E
φ
i is the error index based on the mode shape ordinate (i.e., φi) of the ith floor. The difference between

the modal co-ordinates of the mode shapes under undamaged and damaged condition is used as performance index.
Higher E

φ
i values amongst all floor levels indicate the damage location at any particular floor.

4. Numerical simulation

In order to illustrate an application of the proposed method, simulations are performed on a 5-storey shear-beam
structure model [29]. The state-space model for this system subjected to an external disturbance vector w is given
by:

ẋ =Ax+Ew

y = C̃x (24)

Here, the vector x is a vector of states, and the vector y represents the output vector, which is governed by C̃ matrix.
The matrix E governs the location of the excitation on the structure. The system matrix A is constructed using M,
C and K matrices as follows.

A =

[
0 I

−M−1K −M−1C

]
(25)
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Fig. 6. Fourier spectra of the separated sources using SOBI method.

where I5×5 and 05×5 is an identity and zero matrix respectively. For the example building, the lumped weight

of each floor is assumed to be 19.2 kN, and the damping is assumed to be 2% critical in all modes. The natural

frequencies are 0.91, 3.37, 7.1, 10.66 and 12.73 Hz. The mode shape matrix (normalized with respect to top floor)

for the building is given by:

⎡
⎢⎢⎢⎢⎣

1.00 1.00 1.00 1.00 1.00
0.82 −0.087 −1.29 −2.52 −3.39
0.59 −0.91 −0.87 1.81 5.43
0.34 −1.02 1.23 0.94 −5.84
0.11 −0.48 1.35 −2.86 4.84

⎤
⎥⎥⎥⎥⎦

(26)

The correlation between the theoretical structural modes and the estimated modes is calculated using the modal

assurance criterion (MAC) defined by [21]:

MACi =
(ψT

i ψ̂i)
2

(ψT
i ψi)(ψ̂T

i ψ̂i)
(27)

where ψi and ψ̂i represent ith true and estimated mode shape vector respectively. MAC value of 1 indicates perfect

correlation, and the values greater than 0.95 are usually considered good.

4.1. Overall damage: Estimation of damage instant and modal parameters

In order to simulate damage in the building, the overall stiffness is decreased by 60% at time t = 50 seconds.

The natural frequencies of the softened building are reduced to 0.57, 2.13, 4.49, 6.74 and 8.05 Hz respectively.

Figure 5 shows 5th and 3rd floor responses of the damaged system, where there is a significant reduction in the

floor response due to the softening of the system at td = 50 seconds. The SOBI method [3] is employed using

the floor measurements of 100 seconds including both the damaged and undamaged states. Equations (17) and (18)

are used to estimate the mode shape and subsequently the sources are estimated using Eq. (19). Figure 6 shows

the Fourier spectra of the separated sources. It is seen that there is presence of mode mixing (fm) in the frequency
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Fig. 7. Time-dependent variance of various floor measurements. Fig. 8. Variation of E3,k in x3(t).

pairs of damaged and un-damaged building. For example, the first source contains the first natural frequency of the

undamaged (i.e., 0.91 Hz) and the damaged system (i.e., 0.57 Hz) respectively. The estimation of mixing matrix
becomes significantly erroneous due to presence of such mode mixing in the sources and yields the MAC numbers

(see Eq. (27)) below 0.7. Therefore the standard SOBI method is unable to perform accurate source separation of
the damaged and undamaged system in the current framework.

The proposed method is then employed in the floor vibration measurements. By looking at Fig. 5, it can be seen

that the variance of the signal is almost constant before and after the damage. Figure 7 shows the time-dependent
variances (i.e., Ri,k) of 1st, 3rd and 5th floor respectively. There is a decaying nature in Ri,k due to abrupt drop

in the response envelope after the damage at td = 50 seconds, which confirms the suitability of the variance based
damage index as defined in Eq. (22).

Now, we use the proposed error index to identify the damage instant in adaptive fashion. Figure 8 shows the

temporal variation of Ei,k of the 3rd floor measurement (i.e., i = 3). It is seen that the error becomes extremely large
at damage instant (i.e., td) due to inappropriate time series modeling of the predicted responses at time td based on

the un-damaged measurement as measured till time t < td. Such error index is utilized to ignore the measurements
prior to time td for the system identification of damaged state. When the measurements under undamaged state is

separated out, the Ei,k value is reduced. Immediately after the damage, initial fluctuation of Ei,k is observed due to
presence of fewer measurement data points of damaged data sets, however it gets stabilized with time when there is
subsequent increase in the data length of newer measurements.

Figures 9 and 10 show the separated sources of the building for the un-damaged and damaged condition respec-
tively. The advantage of the proposed method is that the sources in damaged and un-damaged states are obtained

in an adaptive fashion for which the corresponding mixing matrices are estimated in an easier way. The mixing
matrices of damaged and undamaged states are estimated using the sources of damaged and undamaged sources re-

spectively. The MAC values are within 0.99 due to absence of the mode mixing in the respective sources. Therefore
the presence of damage and its successive time instant is accurately identified, followed by the modal identification
of the undamaged and damaged states.

So far the results are shown for an overall damage due to 60% decrease in the stiffness. In order to show the effect
of damage in the performance of the proposed method, relatively broad range of stiffness reduction is considered

which is characterized by a factor β. For example, β = 0.6 means 60% reduction in overall stiffness. Table 2
summarizes the performance of the proposed method under different damage scenarios for a wide range of β. It
is seen that the proposed method successfully detects the damage and identifies the modal parameters before and

after the damage for β = 0.2 − 0.6. However when β = 0.1 (i.e., 10% reduction in overall stiffness), the natural
frequencies of damaged and undamaged system are very close, and thus there is mode mixing in the resulting sources

which yield poor MAC values. This is one of the limitations of the proposed method and is reserved for the future
work.
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Fig. 9. Separated sources (Su) of undamaged system.

Fig. 10. Separated sources (Sd) of damaged system.
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Table 2

Damage sensitivity of the proposed method

β 0.6 0.4 0.2 0.1 0.0

Damage detected Yes Yes Yes No No

MAC (Before/After damage) 1.0/1.0 1.0/0.99 1.0/0.99 1.0/0.91 1.0/0.99

Fig. 11. Difference in mode shapes due to change in the inter-storey stiffness between 2nd and 3rd floor (α = 25%).

4.2. Elemental damage: Identification of damage location and its severity

In this section, the proposed method is used to identify the location of damage within the building. For this

purpose, the inter-storey stiffness between 2nd and 3rd floor is decreased by a factorα. Figure 11 shows the estimated

normalized mode-shapes under undamaged and damaged states using the proposed method and the plot of the error

index (i.e., E
φ
i ) as defined in Eq. (23) with α of 25%. It indicates that the highest error occurs in 2nd floor followed

by second highest error in 3rd floor, which is evident from the fact that there is decrease in inter-story stiffness

between 2nd and 3rd floor. Therefore the results clearly show that proposed error index using mode shapes can be

used as an indicator of the damage locator. Figure 12 shows the variation in E
φ
i for various level of decreasing

inter-storey stiffness between 2nd and 3rd floor. It can be seen that the E
φ
i increases significantly with the damage,

especially around 2nd and 3rd floor.

5. Full scale study

In this section, the proposed identification method is applied to the ambient vibration data recorded during Park-

field earthquake at the UCLA Doris and Louis Factor building (UCLAFB) [20]. This building houses several centers

for the health sciences and other biomedical facilities of UCLA. The structure is 74.5 m in height and consists of 15

floors plus a roof and a basement. The plan of this structure is rectangular with dimensions 30.5× 22.35 m [20].

This building is one of the most extensively instrumented buildings in North America, whose vibration data in

real-time is made available for researchers world-wide through a remote data-base server. Designed and constructed

in the late 1970s, this building consists of a special moment resisting steel frames (SMFs) supported by concrete
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Fig. 12. Variation in RMS error in the mode shape coordinates at dif-

ferent floor levels.

Fig. 13. Roof acceleration of UCLAFB in NS direction.

bell caissons and spread footings. Following the 1994 Northridge earthquake, the building was instrumented with

an array of 72 Kinemetrics FB-11 uniaxial-accelerometers at the floor levels including the basement and the sub-

basement levels. Each level has two pairs of orthogonal sensors parallel to the NS and EW directions. The building’s

sensor network was upgraded in 2003 to a 24-bit network that continuously records data that includes numerous

small earthquakes to date. Details of this building along with significant seismic events recorded by this network has

been extensively documented in several published articles [10,20,23,29,31,33].

For the current identification study, the transformed floor accelerations (to the center of mass of the floors)

recorded during Parkfield earthquake on September 28, 2004 at 10:15 AM PDT are used. Furthermore, consistent

with the current set-up for the wired sensors at this building, each sensor is assumed to measure only one direction.

Typical measured acceleration at roof is plotted in Fig. 13. Sudden jump in the roof acceleration at t = 400 sec

implies the occurrence of Parkfield earthquake. The earthquake with Mw = 6.0 on the moment magnitude scale

originated in Parkfield, CA, epi-centered 163 miles from the UCLAFB. The peak acceleration recorded at the roof

of UCLAFB was 0.0025 g.

The occurrence of Parkfield earthquake introduced damage in the building and softened the system. All the floor

responses are used for identification using the proposed method. Typical plots of time-dependent variances of the

floor responses at 1st and 2nd floor are shown in Fig. 14. The proposed method identifies the damage instant as

td = 400 sec which is detected using the proposed error index (see Eq. (22)) based on variance of the signal as

shown in Fig. 14. Once the damage instant is identified, the first 400 seconds of ambient response data prior to the

earthquake is then used for the identification of the undamaged state of the building and the data after td = 400

sec is subsequently used for damage state estimation. The undamaged states and damaged states are identified

using the measurements prior and after td respectively. Tables 3 and 4 show the identification results, i.e., the

modal frequency (ω) and damping (ξ) of the undamaged and damaged system respectively for first 12 modes. The

identification results using the proposed method are compared with the popular stochastic subspace identification

(SSI) method [33], which is performed separately using the measurement of undamaged and damaged segments of

the response. The estimated modal parameters compare significantly well with the SSI method. It may be noted that

the use of computationally expensive stability diagrams prevents the use of SSI in adaptive algorithms. On the other

hand, the proposed time-series based BSS method is free from user-interventions, and thereby extremely suitable

for the real-time implementation. The results show that the proposed method leads to accurate estimation of damage

instant and the successive identification of damaged and undamaged states.
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Table 3

Undamaged state: Identified ω and ξ of the UCLAFB before the

occurrence of Parkfield earthquake

Mode Shapes ω (Hz) ξ (%)

No Dir SSI Proposed SSI Proposed

1 EW 0.545 0.532 5.1 4.1

2 NS 0.588 0.580 8.3 4.2

3 Torsion 0.807 0.794 10.8 5.0

4 EW 1.63 1.65 2.1 2.6

5 NS 1.79 1.82 1.4 1.8
6 Torsion 2.48 2.47 2.9 3.5

7 EW 2.83 2.86 2.2 2.6

8 NS 3.06 3.05 1.3 2.1

9 Torsion 4.02 4.01 2.9 3.5

10 EW – 4.2 – 3.1

11 NS – 4.76 – 2.6

12 Torsion – 5.12 – 3.2

Table 4

Damaged state: Identified ω and ξ of the UCLAFB after the occur-

rence of Parkfield earthquake

Mode Shapes ω (Hz) ξ (%)

no Dir SSI Proposed SSI Proposed

1 EW 0.467 0.462 4.8 4.1

2 NS 0.506 0.501 4.7 4.2

3 Torsion 0.681 0.690 5.8 4.6

4 EW 1.488 1.510 5.4 4.2

5 NS 1.665 1.622 4.9 4.2
6 Torsion 2.362 2.382 7.4 5.2

7 EW 2.677 2.668 4.4 3.5

8 NS 2.862 2.858 4.9 3.8

9 Torsion 3.826 3.814 4.6 3.6

10 EW – 4.12 – 3.1

11 NS – 4.32 – 3.4

12 Torsion – 4.92 – 3.8

Fig. 14. Time-dependent variance and damage index of the typical floor response in NS direction.

6. Conclusion

In the present paper, blind source separation-based damage detection method in conjuction with time-series anal-

ysis is proposed for civil structures. Blind source separation is first utilized to estimate the modal responses using

the vibration measurements. Time-series model is then employed for one-step ahead prediction of the past measure-

ments. With the arrival of the newer measurements contaminated with the damaged state, the proposed error index

is used to identify the damage instant. Once the damage instant is identified, the damage and undamaged modal

parameters of the system are estimated in an adaptive fashion utilizing in the framework of blind source separation.

Classical damage detection issues including identification of damage instant, location and severity of damage are

addressed using the proposed method. The proposed method is verified via numerical simulations followed by the

full scale study of UCLA factor building using ambient vibration data under Parkfield earthquake.
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