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ABSTRACT The problem of insufficient datasets has long been a hot topic in the field of prognosis and

health management of rotary machines. Generative adversarial network (GAN) and other data augmentation

algorithms can solve the problem of insufficient samples. However, the premise of the above method is the

signal collected at a constant speed rather than at large speed fluctuation. To deal with data augmentation

under large speed fluctuation, this article proposes an effective deep learning method, namely, domain

adaptive efficient sub-pixel network (DAESPN). The core idea of DAESPN is to enhance the resolution

of the original sample for data augmentation. The DAESPN framework is implemented as follows: after

the data passes through the fully connected neural network, the multi-feature maps of the four channels are

outputted. A group of high resolution (HR) features is obtained through the sub-pixel fully connected layer.

In addition, maximum mean discrepancy (MMD) and mean square error (MSE) are used to construct the

loss function of the model. Experimental results of gearbox and bearing datasets show that the DAESPN

model has strong feasibility to carry out data augmentation for fault diagnosis of rotating machines under

speed fluctuation condition. In addition, the feature learning process of DAESPN is visually displayed and

analyzed.

INDEX TERMS Data augmentation, fault diagnosis, large speed fluctuation, signal resolution enhancement,

maximum mean discrepancy, domain adaptation.

I. INTRODUCTION

Rotating parts, which are the core components of machines,

directly affect their operation and have a huge effect on the

performance, stability, and life of the mechanism [1]. The

traditional machinery industry is rapidly changing toward

automation and intelligence, and the application of intelligent

fault diagnosis methods has increased and matured [2], [3].

In general, sensors are used to collect the vibration signals

of a constant-speed rotating mechanism and apply intelligent

methods to identify fault types [4], [5]. However, the speed of

rotating parts ofmechanical transmission fluctuates due to the

influence of working conditions and loads [6]. For example,

in the cutting process of computer numerical control machine

The associate editor coordinating the review of this manuscript and

approving it for publication was Min Xia .

tools, a variable speed operation mode is used to prevent the

occurrence of chatter [7]. The speed of the gearbox in the

wind turbine will change continuously with changing wind

speed and wind direction [8], [9]. The speed of the top-

drive transmission system in an oil drillingmachine fluctuates

considerably during the working process [10]. In summary,

speed fluctuation widely occurs in mechanical equipment in

different fields.

Intelligent fault diagnosis of mechanical transmission

rotating parts under high-speed fluctuation has gained

increasing attention. Xue et al. [11] proposed an incipient

fault detection method for bearings under varying speed

conditions; a novel alarm trigger mechanism is designed

by constructing selected negative log-likelihood probability

(SNLLP) health indicator and used to detect incipient fault.

An et al. [12] built a three-dimensional numerical simulation
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model by using advantage finite element method (FEM)

for accurate diagnosis under rotating-speed fluctuations.

Han et al. [13] set up a regularized sparse filtering

model for intelligent fault diagnosis under large speed

fluctuation. Some researchers [14]–[16] effectively used

sequential tracking to eliminate the effects of speed

fluctuations.

Speed diversity and change rate under speed fluctuations

condition result in a huge amount of data to train a bet-

ter model. When the training data set is small, changes

in the intrinsic features of the sample are limited and the

performance of the neural network will decline in most

cases due to the sparse nature of the data [17]. At present,

few studies were conducted on intelligent fault diagnosis

of large speed fluctuation under insufficient samples, and

this topic needs further attention. Resolution enhancement

technology is widely used in the field of image processing.

Dong et al. [18] proposed super-resolution (SR)method using

deep convolutional neural network (CNN) to take the low

resolution (LR) image as the input and the high resolution

(HR) one as the output. Kim et al. [19] proposed an image

super-resolution (SR) method by using a deeply recursive

convolutional network (DRCN). Ledig et al. [20] presented

super-resolution generative adversarial network (SRGAN),

a generative adversarial network (GAN) for image SR; this

framework is the first that can infer photo-realistic natural

images for 4× upscaling factors. Shi et al. [21]proposed

efficient sub-pixel convolutional neural network (ESPCN),

which learned an array of upscaling filters to upscale the

final LR feature maps into the HR output. Based on the

ESPCN framework, this article proposes an effective neu-

ral network framework, namely, domain adaptive efficient

sub-pixel network (DAESPN), for data augmentation under

large speed fluctuation. The proposed method was veri-

fied using the stacked autoencoder (SAE) [22] classification

network.

The main contributions of this article are summarized as

follows:

(1) This article attempts to use deep learning to improve the

resolution of samples for data augmentation of insufficient

samples under large speed fluctuation.

(2) The maximum mean discrepancy (MMD) [23], which

is widely used in domain adaptation, is used in the sub-pixel

fully connected layer of the proposed framework to ensure

the similarity and stability of the generated features.

(3) At the end of the proposed framework, a sub-pixel fully

connected layer is used for upsampling, and SAE is used to

verify the performance of the reconstructed data obtained by

this method.

The rest of this article is organized as follows. In Section II,

the theoretical backgrounds of MMD and ESPCN are

introduced. In Section III, the proposed method is intro-

duced in detail. In Section IV, the two diagnosis cases

of gear and bearing datasets are investigated using the

proposed method. Conclusions are drawn in the final

section.

FIGURE 1. Intelligent learning systems.

II. THEORETICAL BACKGROUNDS

A. DOMAIN ADAPTATION

As shown in Fig. 1, traditional machine learning often

requires training and testing data from the same domain.

Domain adaptation, however, allows the distributions of the

training and testing data to be different and is a representative

method in transfer learning. This method uses information-

rich source domain samples to improve the performance of

the target domain model and is widely applied to intelligent

fault diagnosis of mechanical equipment. The problem of

domain adaptation has two crucial concepts: source domain

and target domain. The source domain has a wealth of labeled

information but has a different domain from the test sample.

The target domain indicates the domain where the test sample

is located, with no or only few tags. The source and target

domains often belong to the same type of task but has differ-

ent distribution.

The background and purpose of domain adaptation is

converted into the following mathematical expressions to

facilitate problem description.

(1) X is a data space, and P(X) is a marginal probability

distribution. Therefore, {X, P(X)} represents that the dataset

X belongs to the data space X and follows the distribution

P(X). The problem to be solved in domain adaptation is

that source domain Ds and target domain Dt have different

data spaces and marginal distributions, that is, Xs 6= Xt and

P(Xs) 6= P(Xt).

(2) The label space for the source and target domains is the

same, that is, Ys = Yt .

(3) Themethod ofmarginal probability distribution adapta-

tion in domain adaptation is to find a map F only with labeled

samples from Ds and unlabeled samples from Dt for satis-

fying P(F(Xs)) = P(F(Xt)) and P(Ys|F(Xs)) = P(Yt|F(Xt)),

where P(Y|F(X)) is the conditional probability distribution.
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FIGURE 2. Structure of ESPCN.

B. MAXIMUM MEAN DISCREPANCY

MMD is a loss function widely used in transfer learning,

especially in domain adaptation. As an effective criterion for

comparing distributions, MMD can measure the difference in

probability distribution between two samples. Given the two

probability distributions p and q in X, MMD is defined as:

MMD (8, p, q)=supf ∈F
(

Ex1∼p [f (x1)]−Ex2∼p [f (x2)]
)

(1)

where 8 is a class of functions f : X → H. H means repro-

ducing kernel Hilbert space (RKHS) [24].

{x(i) s}i=1,...,ns and {x(j) t}j=1,...,nt are data vectors drawn

from distributions Ds and Dt on the data space X, respec-

tively. Based on the fact that f is in the unit ball in a universal

RKHS, the empirical estimate of MMD can be rewritten as

follows:
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where φ(· ) : X → H is referred to as the feature space map.

The kernel method is used to calculate the distribution dis-

tance of high-level learned features in different domains [25].
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whereD(xs, xt ) is the unbiased estimation ofMMDe(xs, xt ). k

(·, · ) is a kernel function that could compute the inner product

in a higher dimensional space, i.e., k(x, y) =< φ(x), φ(y) >.

C. EFFICIENT SUB-PIXEL CONVOLUTIONAL

NEURAL NETWORK

The network structure of efficient sub-pixel convolutional

neural network (ESPCN) is shown in Fig. 2. ESPCN ismainly

composed of two convolution layers for feature map extrac-

tion and a sub - pixel convolution layer. L layer convolutional

neural network directly to the LR image, and a sub-pixel

convolution layer is applied to upscale the LR feature maps

to produce ISR. For a network composed of L layers, the first

l-1 layers can be described as follows:

f1 (ILR;W1; b1) = ϕ (W1 ∗ ILR + b1) (4)

f l (ILR;W1:l; b1:l) = ϕ
(

W l ∗ f l−1 (ILR) + bl
)

(5)

whereW l , bl, l ∈ (1,L−1) are learnable weights and offsets,

W l is a 2D convolution tensor with the size of nl−1 × nl ×

kl × kl , where nl is the feature numbers at layer l, kl is the

convolution kernel number at layer l, offset bl is the vector

with the length of nl , and activation function ϕ is applied

element-wise and is fixed.

The sub-pixel convolution layer consists of two parts, a

convolution layer and subsequent arrangement of pixels. The

convolution layer partially outputs r2 channel feature maps,

where r is the upscaling ratio. The last layer fL has to convert

the LR feature maps to HR image ISR in the following form:

ISR = fL (ILR) = PS (WL ∗ fL−1 (ILR) + bL) (6)

where PS is a periodic shuffling operator that rearranges the

elements with shape H ×W ×C · r2 to shape rH × rW ×C ,

ILR and ISR have C color channels. PS is important to insert

LR features into the HR image periodically, and the mathe-

matical description is as follows:

PS(T )x,y,c = T⌊x/r⌋,⌊y/r⌋,c.r .mod(y/r)+c.mod(x/r) (7)

where x, y are the output pixel coordinates in the HR space.

Pixel-wise mean squared error (MSE) is employed as an

objective function to train the network, and the formula is as

follows:

ξ = (W1:L , b1:L) =
1

r2HW

rH
∑

x=1

rW
∑

y=1

(I
x,y
HR − f

x,y
L (ILR))

2 (8)
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FIGURE 3. Illustration of the proposed framework.

FIGURE 4. (a) Bench of the fault planetary gearbox and (b) inner structure of the planetary gearbox.

where InHR(n = 1.... N ) represents the HR image examples,

and InLR(n = 1.... N ) represents the resulting LR image

examples.

III. PROPOSED FRAMEWORK

As shown in Fig. 3, data augment domain adaptive efficient

sub-pixel network (DAESPN) is mainly composed of the

fully connected neural network layer and sub-pixel fully

connected layer. The fully connected neural network contains

two fully connected layers and can be described as follows:

h1 = f1 (XLR;W1) = φ (W1 ∗ XLR) (9)

h2 = f2 (XLR;W2) = φ (W2 ∗ f1(XLR)) (10)

where hi represents the hidden layer feature of layer i, Wi

represents the weight of the i-layer fully connected layer. For

each fully connected layer, 64 and 32 are set as the number

of channels. The LR data XLR is output to the sub-pixel fully

connected layer through the fully connected neural layer for

resolution enhancement.

The sub-pixel fully connected layer consists of a fully

connected layer and a subsequent arrangement of pixels. The

fully connected layer f3(· ) outputs r
2 (r = 2) channel data of

the same dimension as the input data.

h3 = f3 (XLR;W3) = φ (W3 ∗ f2(XLR)) (11)

In the last layer f4(· ) of the network, the SR data XSR are

obtained through the PS function:

XSR = f4 (XLR) = PS (W3 ∗ f2 (XLR)) (12)

The form of pixel-wise MSE is as follows:

Lc = ξ (W1:L , b1:L) =
1

r2HW

rH
∑

x=1

rW
∑

y=1

(h
x,y
3 − XLR)

2 (13)

where h3 represents the feature of the third hidden layer, that

is, the simulated signal generated by fully connected neural

network. XLR represents the original LR signal.

The purpose of domain loss Ld is to let the deep features

of the source and target domains into the same feature space.
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FIGURE 5. Fault feature diagrams of sun and planet wheels.

FIGURE 6. Speed fluctuation information of the three gear fault samples: (a) NC, (b) WW,
and (c) WWPW. (d) Speed curves.

FIGURE 7. Architecture of SAE.

In this article, XLR is the source domain data, and h3 is the

target domain data. Multiple-kernel MMD (MK-MMD) [26]

is employed to reduce the distribution distance between two

domains to ensure quality of the generated simulation sample,

and the form is as follows:

Ld = MK − MMD2(h3,XLR) =

K
∑

i=1

D2
i (h3,XLR) (14)

where K represents the number of different kernels.

FIGURE 8. Flow chart of the proposed fault diagnosis method.

Combining the two optimization objects, the final opti-

mization object can be written as:

L = Lc + Ld (15)

IV. FAULT DIAGNOSIS USING THE PROPOSED METHOD

A. CASE 1: FAULT DIAGNOSIS OF A PLANETARY GEARBOX

1) EXPERIMENT DEVICE AND DATA INTRODUCTION

A large speed fluctuation experiment of the planetary gearbox

fault test bench is carried out to verify the ability of the

proposed method. The test bench shown in Fig. 4 includes

VOLUME 8, 2020 143387
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FIGURE 9. Spectra comparison of four data types.

a motor, a planetary gearbox, shaft couplings, and bearing

seats. Fig. 5 shows gears in different health conditions: nor-

mal condition (NC), sun wheel crack (WC), sun wheel pit

(WP), sun wheel worn (WW), pinion crack (PC), pinion

pit (PP), pinion worn (PW), wheel worn and pinion worn

(WWPW), wheel pit and pinion crack (WPPC), and wheel

pit and pinion worn (WPPW). The sampling frequency used

in the experiment is 12.8 kHz., and the rotating speed ranges

from 700 r/min to 1500 r/min. According to the formula [27]:

1f =
fs

N
(16)

where fs represents the sampling frequency, N represents the

sampling points, and 1f represents the frequency resolution.

Assuming that the sampling frequency does not change, the

value of the frequency resolution decreases with increasing

number of sampling points, that is, the frequency resolution

is improved. Therefore, the essence of DAESPN is to gen-

erate four times of sampling points under the premise of

unchanged sampling frequency, thereby enhancing the fre-

quency resolution. In addition to the HR dataset generated by

DAESPN, three sets of comparative experiments are set up,

namely, LR dataset, efficient sub-pixel fully connected net-

work (ESPFCN) generated dataset, and HR dataset. Except

that there is no MMD loss function, the network structure

of ESPFCN is the same as that of DAESPN. For the HR

dataset, each health condition contains 200 samples, and

each sample contains 2400 data points. For the LR dataset,

each health condition contains 200 samples, and each sample

contains 600 data points. The input of DAESPN and ESPFCN

are LR data, and the output is the simulated HR data. Fast

Fourier transform (FFT) analysis is performed to each sam-

ple to convert the time domain signal into the frequency

domain signal. Given that the data points of the LR dataset

143388 VOLUME 8, 2020
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FIGURE 10. Testing accuracies of four data types.

FIGURE 11. Feature visualization map of the t-SNE result of four data types: (a) LR, (b) ESPFCN, (c) DAESPN, and (d) HR.

are 1/4 of the data points of the HR dataset, the former

can be regarded as an insufficient dataset. The process of

generating HR dataset by DAESPN can be regarded as data

augmentation.

As shown in Figs. 6(a)-(c), three gear examples (NC,

WW, and WWPW) are randomly selected under the speed

fluctuation condition. The vibration signals of different gear

fault types show different speed fluctuations in the time

domain. The irregular rotation rate fluctuation curves of three

gear fault types between 700 and 1000 r/min are shown

in Fig. 6 (d).

2) DIAGNOSIS RESULTS

The parameters of DAESPN are set as follows. The training

epoch is set to 200, and the activation function is Leaky

ReLU. Adam is employed to train the model with learning

rate 0.01/(1+10 × q)0.75, and q is the training progress that

changes from 0 to 1. As shown in Fig. 7, SAE is employed

to test the validity of the data generated by DAESPN. The

number of hidden layer neurons is arranged as follows: when

the input dimension is 300, the number of neurons in the hid-

den layer is 200-150-100; when the input dimension is 1200,

the number of neurons in the hidden layer is 600-200-100.
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FIGURE 12. Feature visualization of SAE output layer.

FIGURE 13. Feature visualization of different layer for gear signal in DAESPN.
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FIGURE 14. Spectrum visualization of four data types: (a) LR, (b) ESPFCN, (c) DAESPN, and (d) HR.

The activation function of the network is Sigmoid, the number

of iterative training is 20, the learning rate is 1E-4, and the

batch size is 20. The last layer uses the softmax classifier, and

the back propagation (BP) algorithm [28] is used for network

fine-tuning. Meanwhile, the batch normalization (BN) algo-

rithm [29] is used before each activation layer of the SAE. The

dataset generated by DAESPN is the training sample, and the

original HR dataset is the testing sample. The original HR

sample and the LR sample are used for comparison. About

50% of the samples are randomly selected from different

health conditions as the training set, and the remaining 50%

of the samples are the testing set. It should be noted that due

to the large variation range of the LR samples of different

fault types, the range of the spectral amplitude generated by

ESPFCN and DAESPN has changed, so the datasets need to

be standardized and normalized. In Fig. 8, this model includes

three parts: signal collection, data augmentation, and fault

diagnosis. Specially, the raw vibration signal are collected

using experimental device, and then DAESPN is employed

to generate simulated HR samples, finally SAE is adopted

for fault diagnosis.

Fig. 9 shows the spectra of four different data types. Com-

pared with the spectra of the three other sample types, each

LR sample contains only 300 data points, and the characteris-

tics of different fault types are not evident. Fig. 9 (b) (c) shows

the frequency spectra generated by ESPFCN and DAESPN,

respectively. In both spectra, more features are generated

on the basis of the LR samples and the discrimination of

samples with different fault types becomes larger and has a

characteristic trend consistent with that of the LR samples.
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FIGURE 15. (a) Bearing fault test rig and (b) three fault bearings.

FIGURE 16. Large speed fluctuation information of the four bearing fault types.

The spectrum generated by ESPFCN generates redundant

feature points, and the spectrum generated by DAESPN is

more similar to the HR spectrum in Fig. 9 (d).

The classification results of the three data types obtained

through SAE are shown in Fig. 10. Fifteen experiments are

carried out to reduce the influence of randomness. The results

from the HR dataset achieve the highest average testing accu-

racy (99.48%) and the lowest standard deviation (0.24%). The

testing accuracies of the LR dataset is 90.32% with 0.57%

standard deviation, which is lower than the other experimen-

tal results. The performance of ESPFCN is better than the

LR dataset, and the average accuracy is 97.48% with 0.48%

standard deviation. The testing accuracies of DAESPN are

close to that of the HR dataset, and the average accuracy is

98.41%with 0.34% standard deviation. T-distributed stochas-

tic neighbor embedding (t-SNE) [30] is employed to show the

visual classification results of dimension reduction. Fig. 11(a)

shows that the classification effect of the LR dataset is the

worst, and samples of various fault types have different

degrees of misclassification. As shown in Fig. 11 (b - d), the

dimension reduction result of DAESPN is only second to the

HR dataset and is superior to ESPFCN. Only the sample PW

is misclassified into the sample WP, and the samples of other

fault types are all correctly classified. Furthermore, the effect

of feature clustering is good for the same failure type sample,

and the separation between features is obvious for samples of

different fault types. Fig. 12 shows the output feature of SAE

in the third hidden layer, the samples under the same health

condition have similar feature trend, the samples under the

different health conditions are obviously different. In sum-

mary, after the verification of the SAE discriminant network,

the performance of the samples generated by DAESPN is

excellent.

3) FEATURE LEARNING PROCESS

Fig. 13 (a-c) shows the feature mapping of a sample through

three fully connected layers to understand the data aug-

mentation of DAESPN. As the number of fully connected

layers increases, the feature dimension of the sample does

not change, the number of channels of the sample is deter-

mined by 64 reduced to 4, and the characteristics of different

channels are more obvious. In Fig. 14 (b) (c), the spectrum

143392 VOLUME 8, 2020
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FIGURE 17. Spectra comparison of four data types.

generated by ESPFCN and DAESPN generates more fea-

ture points according to the characteristic trend of the spec-

trum in Fig. 14(a). The similarity between the spectrum

in Fig. 14(c) and Fig. 14(d) is higher, and the effect of

the spectrum generated by the DAESPCN method is better

than that generated by ESPFCN. Therefore, DAESPN can

generate reliable HR samples and achieve data augmentation

of insufficient samples.

B. CASE STUDY 2: FAULT DIAGNOSIS OF

A MOTOR BEARING

1) EXPERIMENT DEVICE AND DATA INTRODUCTION

As is shown in Fig. 15 (a), the platform is mainly com-

posed of motor, shaft couplings, bearing seat, and brake. The

bearing dataset contains four different fault types: normal

condition (NC), outer race (OF), inner race (IF) and roller

faults (RF). There are three different degrees of damages for

each fault type: 0.2mm, 0.4mm and 0.6mm. Therefore, there

are 10 health conditions of the bearing dataset. The three

fault bearings are depicted in Fig. 15 (b). The accelerometer

is mounted on the bearing box with a sampling frequency

of 25.6 kHz. Fig. 16 shows the irregular speed fluctuation

information of the four different bearing fault types between

500 and 3000 r/min and the four different curves correspond-

ing to the four different gear speeds. The network structure

and parameter set are similar to those in Case 1.

2) DIAGNOSIS RESULTS

The network structure and parameter set are similar to those

in Case 1. Fig. 17 (a) shows few feature points of the sample.
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FIGURE 18. Testing accuracies of four datasets.

FIGURE 19. Feature visualization map of the t-SNE result of four data types: (a) LR, (b) ESPFCN, (c) DAESPN, and (d) HR.

The features of different fault types are not obvious. The HR

spectrum generated by ESPFCN and DAESPN have more

data points. As can be seen from the spectrum in Fig. 17(b)

and Fig. 17(c), the generation effect of Fig. 17(c) is better,
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FIGURE 20. Feature visualization of SAE output layer.

the difference among different fault types is obvious and is

basically consistent with the characteristic trend of the HR

spectrum in Fig. 17 (d).

The test accuracy of the three data types after fifteen

experiments is shown in Fig. 18. The test accuracy of the

LR dataset has the lowest accuracy (89.01%) with the highest

standard deviation (0.77%). The performance of ESPFCN is

better than that of the LR dataset; the average accuracy is

97.12%, and the standard deviation is 0.51%. The best results

are obtained from the HR dataset, and the average accuracy is

99.37% with 0.28% standard deviation. The performance of

DAESPN is second only to the test results of the HR dataset,

and the average accuracy is 98.23% with 0.40% standard

deviation. Finally, t-SNE is employed to investigate the clas-

sification results of the three datasets. As shown in Fig. 19(a),

the scattered points of the gear samples under different health

conditions are interlaced. Fig. 19 (b)(c) illustrates that the

dimension reduction features of DAESPN is better than those

of ESPFCN. Moreover, few samples are misclassified in the

proposed method, and the dimension reduction results are

close to that of the HR dataset in Fig. 19(d). As shown

in Fig. 20, the sample features under different health condi-

tions have a high degree of discrimination, and the sample

features under the same health status are similarity.

V. CONCLUSION

A framework called DAESPN is proposed for insufficient

fault classification under large speed fluctuation of rotating

machineries. DAESPN is mainly composed of serial fully

connected layers and a fully connected sub-pixel layer. The

framework uses MSE and MMD as loss function. Through

the sub-pixel fully connected layer, the sample resolution is

changed from low to high, and the data points of the sample

are augmented 4 times. The gearbox dataset and bearing

dataset are employed to verify the proposed DAESPN. The

experimental results show that the spectrum generated by

DAESPN is close to that of the HR dataset, and both have

the same characteristic trend. Moreover, the performance of

DAESPN is better than that of ESPFCN without MMD. The

comprehensive performance of DAESPN is close to that of

the HR dataset.
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