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ABSTRACT We propose a novel data-driven machine learning method using long short-term memory

(LSTM)-based multi-stage forecasting for influenza forecasting. The novel aspects of the method include

the following: 1) the introduction of LSTM method to capture the temporal dynamics of seasonal flu and

2) a technique to capture the influence of external variables that includes the geographical proximity and

climatic variables such as humidity, temperature, precipitation, and sun exposure. The proposed model

is compared against two state-of-the-art techniques using two publicly available datasets. Our proposed

method performs better than the existing well-known influenza forecasting methods. The results offer a

promising direction in terms of both using the data-driven forecasting methods and capturing the influence

of spatio-temporal and environmental factors to improve influenza forecasting.

INDEX TERMS Influenza forecasting, LSTM, recurrent neural networks, spatio-temporal data, time series

forecasting.

I. INTRODUCTION

Seasonal influenza is amajor global health epidemic. Accord-

ing to the Center for Disease Control (CDC) reports [1] in the

United States alone, there were 9.2 million to 35.6 million

reported illnesses since 2010. Influenza can cause severe

illnesses and even deaths for high-risk populations. Preven-

tion and control of influenza spread can be a huge challenge

especially without adequate tools to monitor and estimate

the intensity of outbreaks in various populations. Predicting

influenza is a very difficult task given the stochastic nature

of the influenza strain and environmental conditions that

affect the severity of the spread. Given the importance of this

problem, many researchers have tried different approaches

[8]–[18] to model various aspects of influenza outbreaks.

Data-driven forecasting models offer a promising direction,

especially with availability of real-time data on affected

populations, and environmental conditions that contribute

to these outbreaks. CDC [2]–[4] and Defense Advanced

Research Projects Agency (DARPA) [5], [6] have launched

several competitions to solve the problem of real-time fore-

casting of influenza and other infectious diseases.

Influenza forecasting research may be broadly clas-

sified into three categories. The first category incl-

udes traditional compartment models such as

Susceptible-Infected-Recovered (SIR) [7], [8], Susceptible-

Infected-Recovered-Susceptible (SIRS) [9], [10], and

Susceptible-Exposed-Infected-Recovered (SEIR) [11], [12].

The compartmental models are intuitive in terms of cap-

turing the different states of infected populations. These

models are deterministic and lack flexibility to be recal-

ibrated in terms of capturing the dynamics of influenza

spread. The models in the second category employ statistical

and time-series based methodologies such as Box-Jenkins

applying some variant of Auto-Regression Integrated Mov-

ing Average (ARIMA) [13] and Generalized Autoregressive

Moving Average (GARMA) [14]. The Box-Jenkins based

time-series methods are flexible in terms of capturing the

trending behavior of affected populations, but suffer from

poor accuracy as the influence of external factors is not

well captured in existing forecasting models. The third cate-

gory models are machine learning methods that have gained

prominence in recent years. Some popular machine learning
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methods include Stacked linear regression [15], Support Vec-

tor Regression [16], Binomial Chain [17], Classification and

Regression Trees [18]. Machine learning based approaches

are data-driven approaches that offer more flexibility in terms

of capturing the influence of multiple external variables, but

are computationally expensive compared to statistical mod-

els. The use of machine learning methods in understanding

influenza dynamics are discussed in [19]–[21]. Additionally,

a review of existing influenza forecastingmethods is provided

in [22]–[24].

Recurrent Neural Networks (RNNs), a class of machine

learning methods, have the ability to model sequential (tem-

poral) data prediction [25]. However, the conventional RNNs

have shown practical difficulties in training the networks

faced with long temporal contingencies of input/output

sequences [26]. Most recently, a gradient-based method

called Long Short Term Memory (LSTM) was introduced to

develop a stable recurrent architecture [27]. This new technol-

ogy supersedes RNNs for time series forecasting. RNNs solve

the vanishing/exploding gradient problem and gives much

more flexibility to the learning algorithm on when to forget

the past or ignore the current input. The deep network archi-

tecture of the LSTM cells can provide a powerful model in

temporal data processing. Recently, LSTM and deep LSTM

have attracted much interest in temporal data prediction such

as traffic speed prediction [30] and classification of the diag-

noses given intensive care unit time series [31]. One of the
key contributions of the paper is the application of a deep
LSTMneural network for the flu prediction problem. The deep
architecture can be fulfilled by unrolling the LSTM cells in
which the input of the successor cell is provided by the output
of the predecessor cell.
Researchers have attempted to improve the forecast-

ing accuracy of influenza prediction methods by capturing

the influence of external environmental variables. Previous

studies have clearly identified direct influence of weather

variables such as temperature, humidity, precipitation etc.

on influenza virus transmission and survival [36]–[38].

As presented in [37], low relative humidity aids in faster evap-

oration of expelled droplets or particles and longer survival

of the airborne virus. Also, geographical regions that are in

close proximity to infected regions have high risk of getting

infected due to population movements and high-likelihood

of social interactions [39]–[41]. The impact of environ-

mental factors has to be integrated effectively into the flu

forecasting model to achieve better accuracy with influenza

prediction models. Recent work from [14] tried to capture

the influence of environmental conditions for flu forecasting

usingGARMA(3,0) model. Prior experimental studies in [42]

and [43], however, demonstrated that temperature and humid-

ity are not linearly correlated with influenza spread. Some of

the recent work also includes social media interactions such

as Twitter messages [15], [16] Google searches involving flu

related words [10], travel patterns [32] to estimate flu risk

in a particular region. However, these models, specifically

the Google Flu Trends (GFT) [14] were criticized due to

lack of reliability that prompted Google to discontinue the

model for real-time forecasting. This highlights the gaps in

both gathering reliable data and forecasting methods. While

both statistical and machine learning methods have been

successfully applied for influenza forecasting, one of the

known limitations is that they have not been able to capture

the influence of external environmental variables to improve

influenza forecasting.

We propose a novel LSTM based multi-stage forecasting

method that integrates the influence of various external vari-

ables into state-of-the-art machine learning models. The first

stage of the model employs a time-series forecasting model.

During subsequent stages the situational time-lag between the

flu occurrence and weather variables, and spatial proximity

of different geographical regions are captured to adjust the

error introduced by the original forecasting model to fur-

ther improve the performance of the model. There are two

important contributions of the paper. First, is the use of LSTM
model to forecast influenza counts. Second, is the introduc-
tion of a novel method to capture the influence of external
environmental variables. The proposed method is compared

with existing state-of-the-art models on both GFT and CDC

data. The LSTM model is further improved in terms of its
ability to forecast influenza counts at multiple spatial and
temporal scales by capturing both the influence of geograph-
ical proximity, and the impacts from environmental factors
in future stage. The proposed model performs better than the

existing baseline time series based ARIMA model and the

EAKF (Ensembled Adjustment Kalman Filter) model. EAKF

is a data assimilation method and a recursive filtering tech-

nique that combines observations with a temporally-evolving

ensemble of model simulations to generate a posterior esti-

mate of the model state [44]. The notations and symbols used

in this paper are summarized in Table. 1.

II. METHOD

The proposed model consists of two stages. In the first stage,

a deep learning model based on the LSTM neural network

approach is used to estimate an initial forecast. In the sec-

ond stage the error from the initial forecast is reduced by

incorporating two different factors: (1) An impact factor

is obtained from the weather variables (humidity, precipi-

tation, temperature, sun exposure) by extracting situational

time lags using symbolic time series approach, and (2) a

spatio-temporal adjustment factor obtained by capturing the

influence of flu spread from neighboring regions within geo-

graphical proximity.

The proposed multi-stage forecasting approach includes

two following steps. In the first stage, the LSTM neural
network is trained on the flu time series of nodes to forecast
the initial flu counts. A node refers to a geographical region,

which could be a HHS region or a GFT city. In the second
stage, the impact of climatic variables and spatio-temporal
adjustment factor are added to the flu counts estimated by
the LSTM model to reduce the error. The impact component
from climatic variables is computed using the time delayed
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TABLE 1. Notations and symbols used in this paper.

association analysis between each symbolic time series of
weather and flu counts. The spatio-temporal adjustment fac-
tor is calculated by averaging over the flu variations at
nearby data nodes. The proposed model is compared against

our baseline LSTM model and two state-of-the-art models

namely ARIMA(3,0,3) and Ensembled Adjustment Kalman

Filter (EAKF).

A. DEEP LONG SHORT TERM MEMORY NETWORK

1) LSTM CELL

RNN computes an output sequence (y1, y2, . . . , yT ) based

on its input sequence (x1, x2, . . . , xT ) and its previous state

(h1,h2, . . . ,hT ) as shown in Eq. 1 and Fig. 1.

ht = σ (Wi · xt +Wh · ht−1 + bh)

yt = θ (Wo · ht + by) (1)

FIGURE 1. Recurrent neural network.

Here σ and θ are the hidden and output activation functions.

W and b determine the adaptive weight and bias vectors of

the RNN.

LSTM is a variation of RNNs preserving back-propagated

error through time and layers. Furthermore, the LSTM learn-

ing algorithm is local in both space and time, with compu-

tational complexity of O(1) per time step and weight [27],

which is faster than the popular RNN learning algo-

rithms (e.g. real-time recurrent learning (RTRL) [47] and

back-propagation through time (BPTT) [48]). An LSTM cell

performs as a memory to write, read, and erase information

according to the decisions specified by the input, output, and

forget gates, respectively. The weights associated with the

gates are trained (adapted) by a recurrent learning process.

FIGURE 2. An LSTM cell containing the input gate, the forget gate, and the
output gate. Each gate receives two vectors as input, xt , and previous
output, ot−1.

The memory cell shown in Fig. 2 is implemented as

follows:

It = σ (Wxixt +Wmiot−1 + bi) (2)

Ft = σ (Wxf xt +Wmf ot−1 + bf) (3)

Yt = σ (Wxoxt +Wmoot−1 + bo) (4)

At = Wxcxt +Wmcot−1 + bc (5)

Bt = Ft ⊙ Bt−1 + It ⊙ θ (At ) (6)

ot = Yt ⊙ θ (Bt ) (7)

where Wx and Wm are the adaptive weights, initialized ran-

domly in the range (0,1). xt and ot−1 denote the current input

and previous output vectors, respectively. b parameters are

bias vectors that are not shown in Fig. 2. The cell state,

Bt , is updated by the forget gate, the input gate, and the

current input value (At ). The functions σ and θ determine

the Sigmoid and Tanh activations respectively.

2) DEEP LSTM ARCHITECTURE

A number of approaches for developing the deep archi-

tectures of RNNs and LSTMs have been discussed

in [28], [29], [49], and [50]. In this investigation, we construct

an LSTM network by unrolling the LSTM cells in time. This

model provides a suitable architecture for the time series

prediction problems due to its sequential framework. Fig. 3

shows the network architecture consisting of the unrolled
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FIGURE 3. LSTM neural network consisting of the unrolled LSTM cells. The red backward arrows show
the backpropagation algorithm and are not part of the network architecture.

LSTM cells that are trained by the back-propagation algo-

rithm based on the mean-square-error cost function (training

criterion). The corresponding LSTM cell at time t−i receives
the flu count calculated by the predecessor cell (ot−i−1) and

the input, xt−i, to calculate the flu count at t − i, ot−i. This
process is repeated for all LSTM cells in the model. The

number of LSTM cells denotes the number of time steps,

T , before the current time. To calculate the flu count at the

current state, t , the data points from T previous time steps are

used. After different experimental setups, we selected T = 20

time steps.

B. CLIMATIC VARIABLE IMPACT

There is strong evidence from prior literature that the dynam-

ics of flu spread and intensity is influenced by various cli-

matic conditions [33]–[35]. Humidity, sun exposure, pre-

cipitation, temperature all have different levels of impact

on the flu counts. For example, in Fig. 4, one can observe

the strong correlation between the maximum and minimum

temperatures with flu counts from CDC data in one of the

geographical regions. While the impact of these climatic

variables is evident, a linear relationship between a climatic

variable and flu count may not be effective. This is because

the dynamics of flu spread is not linearly correlated with

climatic variables [36]–[38]. One way to capture these non-

linear relationships between the composite climatic variables

(i.e. temperature, sun exposure and precipitation) with the

flu counts is through a symbolic time series approach. With

FIGURE 4. A plot showing correlation between minimum and maximum
temperatures with flu counts.

the symbolic time series approach, the numerical time series

is converted to a sequence of symbols [57]–[59]. These

symbols can be based on the characteristics of the original

time series that include magnitude, change over time, etc. The

situational time lag represents the time lag between a climatic

variable and flu count.

Approach to Compute Situational Time Lags (STL):
1) Convert each of numeric time series (i.e. flu counts,

temperature, sun exposure, precipitation) into symbolic

time series, where the numerical value at each time step

is converted to a symbol represented by a tuple (XY),

where X ∈ {high, medium, low} and Y ∈ {increasing,

decreasing, stable}.

2) Identify frequent symbol associations at different time

lags between the climatic variable and the flu counts

using the Apriori algorithm [60]. In this context, sym-

bols represent items.

3) From the frequent symbol associations identified in

the earlier step, pick the symbol pairs that have high

confidence. The confident frequent associated symbol

pairs at any time lag represent the situational correla-

tion between the climatic variables and the flu counts.

4) If symbol pairs are confident at multiple time lags,

then an average of these time lags is assigned to that

particular pair. Also, for symbol pairs missing from the

final confident pair list, an overall average time lag is

assigned to them by default.

5) Create Situational-Time Lag STLv table (from step

3&4) for each climatic variable v that includes a symbol

pair (XY) and its appropriate situational time-lag.
Once the time lags between flu counts and each weather

variable are computed for all the data nodes, total impact, I tot,
inflicted at time step t from the weather variables for data

node n is estimated using the formula shown in Eq. 8.

I totn,t =

D
∑

i=1

(

Wn,i × I in,t

)

(8)

where I totn,t is the total impact from all the D climate variables

on the node n at time t , I in,t is the individual impact from

climatic variable i on the node n at time t calculated as

shown in Eq. 9 and Wn,i is the impact weight associated

with the node n and climate variable i. The weights, Wn,i are

trained using Widrow-Hoff learning [51] with mean square

error (MSE) criterion as the cost function on the training

data with target function as shown in Eq. 8. The target of
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this Widrow-Hoff learning is to reduce the MSE to obtain

the optimum weights (Wn,i). These weights are exclusive and

trained separately for each data node.

I in,t =

(

V i
n,t−lag − V i

n,t−lag−1

)

max
(

V i
n,t−lag,V

i
n,t−lag−1

) (9)

The impact value at node n coming from ith climatic

variable at time t is the ratio of change happening before

the appropriate situational time-lag (lag) retrieved from the

situational time lag table STL i at time t and symbolic repre-

sentation of flu count Fn,t−1 at node n and time t − 1. V i
n is

the numeric time series (not the symbolic data) of ith weather
variable at node n.

C. SPATIO-TEMPORAL ADJUSTMENT FACTOR

Geographical proximity, in general, strongly affects influenza

outbreak in a particular region. One can observe similar flu

trends between data nodes within spatial proximity as shown

in Fig. 5 for both GTF and CDC data. This impact is captured

by computing an adjustment factor from the nearby data

nodes. Similar to the weather variables, each neighboring

data node impacts this data node independently from the

other neighboring data nodes. Thus, a weighted summation

of individual adjustment factors is used. Here, Widrow-Hoff

learning [51] is used to train those weights. Similar to the

impact weights, the mean square error (MSE) training crite-

rion is used as the cost function. Adjustment factor coming

FIGURE 5. A plot showing similar trends in flu counts in 2015 for different
CDC regions (top). A map showing the CDC-HHS regions (bottom).

FIGURE 6. Comparison of MAPE, RMSE and RMSPE of the flu prediction
models for 1 to 5 weeks ahead forecasts with the CDC-ILI dataset.

from each neighboring node is the average of flu variation

difference during the previous three time stamps at that node.

The adjustment factor, γ , to be applied at data node n on

the initial forecast at time step t is the weighted average of

changes in the flu counts obtained at other nearby data nodes

at time step t − 1.

γ tot
n,t =

∑

i∈N

(

Wn,i × γ i
n,t

)

(10)

γ i
n,t =

1

y

y
∑

j=1

(Fi,t−j − Fi,t−j−1) (11)

Total adjustment γ totn,t at data node n and time t is the

average weighted summation of the individual adjustments

γ in,t coming from all its neighbors that are in geographical

proximity of n. Similar to the impact weights, adjustment

weights(Wn,i) are also trained using the Widrow-Hoff algo-

rithm on the historical data from this node as well as its

neighbors. Here Fi,t−j is the actual flu count at neighbor i
to n at time t − j. In our experiments we selected y to be 3 as
it gave us optimum results.
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FIGURE 7. Comparison of Actual and predicted ILI counts for CDC-HHS Regions 1, 6, and 9 while forecasting 1 to 5 weeks ahead for an entire
flu-season.

D. FORECAST VALUE ESTIMATION

Final forecast after applying impact factor I totn,t from weather

variables and adjustment factor γn,t from spatio-temporal

neighbors as computed in Eq. 8 and 10, Ffinal
n,t , of data node n

at time t is computed as shown in the Eq. 12.

Ffinal
n,t =

(

1 + γn,t
)

×
(

1 + I totn,t

)

× FLSTM
n,t (12)

III. EXPERIMENTS AND RESULTS

The baseline LSTM model and the new proposed model are

compared against two state of the art models ARIMA and

EAKF on two different publicly available data sets related to

influenza counts, namely the CDC and GFT data sets. Both

data sets represent a broad sample in terms of spatio-temporal

granularity. The model was evaluated on three widely

accepted evaluation metrics, namely Mean Absolute Percent-

age Error (MAPE), Root Mean Square Error (RMSE) and

Root Mean Square Percentage Error (RMSPE) used in [52]

and [53]. Each of the models were implemented in R [54].

The LSTM model was implemented using the Tensorflow

library [55]. Computational complexity of BPTT and LSTM

are both O(W ) where W is the number of adaptive weights.

However, LSTM, unlike the BPTT, is local in time and space

and does not need to store unlimited activation values [27].

The computational complexity of both the Widrow-Hoff

models trained for Eq. 8 and 10 is dependent on the size of
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the weight vectorW and the number of iterations required for

their convergence. The equations in Eq. 9, 11 and 12 are com-

puted in linear timeO(1) as they are simple additions and sub-

tractions. A personal computer with Intel I7-6700k processor,

16 gigabytes of RAM and an NVIDIA 1070 GTX GPU was

used for the experiments. The LSTM model for each training

dataset takes 18-20 minutes to converge, and the overall

model takes approximately 24 to 25 minutes to train. The

prediction takes less than 2 seconds on the same hardware.

A. DATA DESCRIPTION

For influenza activity, two different real-world data sets were

chosen. The CDC-reported Influenza Like Illness (ILI) data

from CDC for all ten HHS regions between 2002-2016 [1] is

the only national level dataset available for the United States.

Google Flu Trends (GFT) [45] data (available from 2003 to

2014) is a weekly estimate of influenza activity derived from

aggregated search query data. A subset of the GFT dataset

including the flu count trends reported for 6 cities from

Texas and Louisiana (Austin, Dallas, Houston, San Antonio,

Baton Rouge and New Orleans) is selected as a sample for

our experiments. The weather data is downloaded from Cli-

mate Data Online (CDO) [46] that provides free access to

National Climatic Data Center (NCDC) archive of historical

weather and climate data. The weather variables that were

used include precipitation, maximum temperature, minimum

temperature, and sun exposure. For each city from the GFT

dataset, all available stations from the CDO within that city’s

geographical limits are downloaded. For the CDC dataset, all

the stations within each HHS region boundaries are down-

loaded from the CDO. The data collected from the CDO for

the both datasets are then aggregated for each city or region

by averaging into single weekly summarized time-series with

respect to each climatic variable. This aggregated data is

then cleaned to treat any further missing values using sim-

ple moving average based smoothing. At this time all col-

lected datasets ILI, GFT and respective weather variables

are weekly summarized time series. For each experiment a

combination of training (80%) and testing set (20%) is used,

where training and testing sets are in sequence and mutually

exclusive. For LSTM the dataset is divided into training

(60%), validation (20%) and testing (20%) sets. During each

of the training exercises approximately 560 samples are used

for training and/or validation and the last 140 samples are

used for testing with respect to CDC dataset. At the same time

for GFT dataset the training and/or validation, testing sample

sizes are approximately 480 and 120 respectively.

B. EVALUATION CRITERIA

The prediction performance of the proposed system is evalu-

ated using the following three metrics:

Mean absolute percentage error (MAPE) measures the

average percent of absolute deviation between actual and

forecasted values.

MAPE =
1

N

∑ |A− F |

|A|
× 100 (13)

FIGURE 8. Comparison of MAPE, RMSE and RMSPE of the flu prediction
models for 1 to 5 weeks ahead forecasts with the GFT dataset.

Root mean squared error (RMSE) captures the square root

of average of squares of the difference between actual and

forecasted values.

RMSE =

√

1

N

∑

(

A− F
)2

(14)

Root mean squared percentage error (RMSPE) captures

percentage of square root of average of squares of the devia-

tion between actual and forecated values.

RMSPE =

√

1

N

∑

(A− F

A

)2
× 100 (15)

where, N is the number of test samples, A is the actual flu

count, and F is its respective forecasted value.

We compared our results with two state-of-the-art models

namely ARIMA and EAKF. The four models compared in the

results section are as follows:

• EAKF (Flu count estimated using the state-of-art

Ensembled Adjustment Kalman Filter)

• LSTM (The value predicted by LSTM (FLSTM) alone,

that is without the variable impact and adjustment factor

applied to it)
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FIGURE 9. Comparison of Actual and predicted GFT counts for cities of Baton Rouge, Dallas and New Orleans while forecasting 1 to 5 weeks
ahead for an entire flu-season.

• ARIMA (Flu count estimated using the state-of-art

ARIMA)

• Proposed (This is the final forecast value (Ffinal
n,t ) after

both climatic variable impact factor and spatio-temporal

adjustment factor are added to LSTM as computed in

Eq. 12. This is the proposed approach)

C. RESULTS

Plots from Fig. 6 and Fig. 8 show the errors for various mod-

els for both CDC and GFT for weekly forecasting ranging

from 1 week to 5-weeks. The prediction error presented in

the figures is the average forecast across all the geographical

regions. From both tables, one can observe that for both CDC

and GFT data, the error increases with increase in forecast

length (i.e. 1 week to 5 weeks in advance) for all four models

(i.e. EAKF, LSTM, ARIMAmodel and the proposed model).

The charts in Fig. 7 and Fig. 9 show the flu distribution

and forecasts over a one-year time period for three regions

from CDC data and three cities from GFT data respectively.

One can observe that the error in the forecast is typically

high when there is a sudden increase or decrease in flu obser-

vations. The prediction errors for both LSTM and EAKF

models are less compared to the baseline ARIMA model for
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both datasets. ARIMA has been extensively used in the past

because the data sample was not too large. We now have a

sizable dataset of 14 years of flu data from CDC for 10 HHS

regions, and 11 years of data from GFT. Given the large

sample size, we observe that both LSTM and EAKF models

outperform the baseline ARIMAmodel. We were also able to

reliably quantify the impact of weather on influenza spread,

the impact of neighboring regions at a regional and city scale.

This enabled us to further improve the baseline LSTMmodel

by adjusting the error of the baseline forecast by incorpo-

rating the impact of climatic influence and spatio-temporal

flu patterns. This error adjustment leads to a better forecast

compared to the baseline LSTMmodel and the EAKFmodel.

The primary limitation of the model is the requirement of

sufficient training data both for capturing the influence of

external variables and training the baseline forecast model.

So, this model may not be effective when sample sizes are

small.

The plots in Fig. 7 compares the predicted values from the

four models with actual data for 1 to 5 week-ahead forecasts

and HHS-CDC regions 1, 6 and 9 separately. For regions

1 and 9, all four models are successful in predicting the peak

flu season for 1-week and 2-week ahead forecasts; however

ARIMA fails to identify peak for 4-week and 5-week ahead

forecasts. The other 3 models could identify peaks up to

5-week ahead forecasts. The proposed model’s prediction is

closest to the actual observed peak. In Region-6, there are

two different peaks during the flu season. ARIMA failed to

identify the second peak after 1-week ahead forecast, whereas

the other 3 models identified both peaks up to 3 week-

ahead forecasts, with the proposed approach being the most

accurate.

The plots in Fig. 9 compare the predicted values from

the four models with actual data for 1 to 5 week-ahead fore-

casts and GFT cities Baton Rouge, Dallas and New Orleans

separately. For Baton Rouge ARIMA fails to identify peaks

after 2-weeks ahead forecasts, while the other 3 could predict

the peaks up to 5-weeks ahead forecasts with the proposed

approach being the most accurate.

IV. CONCLUSION

In this paper, we proposed a new data-driven approach for

influenza forecasting. The first key contribution is the appli-

cability of the LSTM based deep-learning method which

is shown to perform well compared to existing time series

forecasting methods. We further reduced the error of the

deep learning based forecasting method by introducing an

approach to integrate the impact from climatic variables and

spatio-temporal factors. We evaluated the proposed approach

on publicly available CDC-HHS ILI and GFT datasets. The

proposed method offers a promising direction to improve the

performance of real-time influenza forecasting models.

In this paper, we have implemented separate learning com-

ponents for the climatic variables and for the geospatially

proximal variables. Our future study seeks to develop an

end-to-end learning model incorporating all the modules.

This could be done by using a convolutional LSTM [56] to

learn spatio-temporal patterns.
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