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With the increasing concern on energy crisis, the coordination of multiple

energy sources and low-carbon economic operation of integrated energy

system (IES) have drawn more and more attention in recent years. In IES,

accurate and effective multi-energy load forecasting becomes a research

hotspot, especially using the high-performance data mining and machine

learning algorithms. However, due to the huge difference in energy

utilization between IES and traditional energy systems, the load forecasting

of IES is more difficult and complex. In fact, in IES, load forecasting is not only

related to external factors such as meteorological parameters and different

seasons, but the correlation between energy consumption of different types of

loads also plays an important role. In order to deal with the strong coupling and

high uncertainty issues in IES, a novel data-drivenmulti-energy load forecasting

model is proposed in this paper. Firstly, a feature extraction method based on

Uniform Manifold Approximation and Projection (UMAP) for multi-energy load

of the IES is developed, which reduces the dimension of the complex nonlinear

input data. Then, considering multi-energy coupling correlation, a combined

TCN-NBeats model is proposed for the joint prediction of multi-energy loads,

aiming to improve the prediction accuracy through ensemble learning. Finally,

the numerical case analysis using the multi-energy consumption data of an

actual campus verifies the effectiveness and accuracy of the proposed data-

driven multi-energy load forecasting model.
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Introduction

Energy has always played a fundamental role in modern society and economy, and

has shown great importance in the past three industrial technological revolutions. The

ongoing fourth technological revolution will be no exception, and revolutionary

breakthroughs in the energy sector are bound to become the focus (Liu et al., 2020;

Chen et al., 2021). Promoting the strategies of carbon peaking and carbon neutrality is

a broad and profound transformation of social and economic systems, in which the

low-carbon transformation of the energy system will be the key to achieving the “dual

carbon” goal. In order to ensure the realization of the “dual carbon” goal, high-
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proportion renewable energy related supporting technologies

should be strengthened, especially the planning and operation

of IES (Liu et al., 2021). In the planning and operation of the

IES, it is necessary to accurately forecast the multi-energy

loads, that is, predicting the future energy demands according

to the historical load data, and the available resources, such as

wind, solar, electricity, heat, etc.; then, the optimal planning

and design or operation scheduling scheme can be determined

(Liu et al., 2019). Accurate energy forecasting requires

attention to the type, size and operation characteristics of

energy demand. The IES often involves a variety of energy

forms such as electricity, gas, cooling, and heat, which will

always affect each other. This requires for a series of data

mining and analysis in the pre-design stage.

Up to present, plenty of researches have been conducted

on models and algorithms for the electric load forecasting.

Vanting et al. (2021) investigated state-of-the-art electric

load forecasting models using deep neural networks from

two main perspectives: demand-side management and

supply-side grid control. Each perspective had multiple

applications and challenges in achieving accurate

predictions, including households, buildings, and power

grids. Other studies, such as, Liao et al. (2022) proposed a

novel decomposition-based ensemble model for short-term

load forecasting using hybrid artificial neural networks.

(Rochareis and Alvesdasilva, 2005) proposed a feature

extraction method for short-term load forecasting through

multiresolution analysis. Zhang et al. (2019) presented an

integrated load forecasting model for multi-energy systems

based on Markov chain improved neural network. Sun et al.

(2017) proposed a short-term load forecasting model based

on multi-label technology and Back Propagation Neural

Networks (BPNN). However, most of the existing load

forecasting methods have not considered the coupling

effect between multiple energy sources, which is not able

to satisfy the optimal planning and operation of the

integrated energy systems.

Some other studies have been focused on the optimal

operation of power systems or integrated energy systems,

using the load forecasts as input data, i.e., Guo, et al.,

studied multi-objective optimization methods for a

distributed energy system, using the community-scale load

forecasting data (Guo et al., 2022). Song et al. (2019) proposed

a hybrid forecasting system based on multi-objective

optimization for short-term electricity load prediction.

(Yang and Wang, 2021) studied the optimal operation of

an integrated energy system, considering the multi energy

coupling effect. It can be seen from the literature review that

high-precision load forecasting under the coupling of multiple

energy sources is the basis for optimal planning and operation.

However, only very limited references have taken account of

the coupling effect of multiple energy sources, i.e., Zhang et al.

(2021) proposed a short-term multi-energy load forecasting

method based on CNN-Seq2Seq model with attention

mechanism. Wang et al. (2020; 2021) presented a multi-

energy load forecasting method for regional integrated

energy systems, considering the temporal dynamics and

various coupling characteristics. Compared with traditional

electric load forecasting, there are more load types and the

loads are more sensitive to various influencing factors, such as

the coupling effect between loads and strong environmental

uncertainty, which makes the load fluctuation of IES more

complex and changeable.

In order to deal with the strong coupling and high

uncertainty issues in IES, a novel data-driven multi-energy

load forecasting model is proposed in this paper. The main

innovative work and contributions of this paper are as follows:

1) A feature dimensionality reduction method of input data for

multi-energy load forecasting of the IES based on UMAP is

proposed, which realizes the effective selection of complex

high-dimensional nonlinear data.

2) A multi-energy load forecasting model based on TCN-NBeats

model fusion considering multi-energy coupling correlation is

established, which significantly improves the multi-energy

load prediction accuracy.

3) The real historical data of multi-energy in different seasons

are used to verify the superiority and generalization ability of

the feature dimension reduction method and multi-energy

load prediction model proposed in this paper.

Feature extraction based on UMAP

For the data-driven multi-energy load forecasting

problem, the input features usually include related

variables such as meteorological forecast, historical load

information, etc., which leads to a large input dimension

of the load forecasting model, and it is difficult to extract the

relevant information between the features and the forecast

output (Liu et al., 2015). Traditional feature map

dimensionality reduction methods such as Principal

Component Analysis (PCA) can only construct linear

representations of input variables, which have great

limitations when applied to complex high-dimensional

nonlinear datasets. In fact, for the meteorological,

historical load and other data, the actual probability

distribution does not always fill the entire high-

dimensional space, but only concentrates in a part of the

region under the action of data correlation, which is called a

manifold. In this regard, UMAP starts from preserving the

local distance of the adjacent sample points, and maps the

sample points on the high-dimensional manifold space to the

low-dimensional Euclidean space.

UMAP believes that the local space on the Riemannian

manifold is homeomorphic to the Euclidean space, that is, it

still has the properties of the Euclidean space, and the sample
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difference in the local space can still be measured by the

Euclidean distance. On this basis, UMAP

feature dimensionality reduction can be divided into two

main steps:

1) Construct the neighboring connection graph of each sample,

that is, obtain the local connection relationship and distance

between each sample.

Given an input sample set X � {x1, x2, ..., xN}, define the

distance metric between any two sample points as

d: X × X → R≥ 0. Under this metric space, the set of k

neighboring samples of the sample xi can be expressed as

{xi1, xi2, ..., xik}, then the weights of the edges in the weighted

directed graph composed of the sample and its neighboring

samples can be calculated as:

w(xi, xij) � e
−max{0,d(xi ,xij

)−ρi}
σi (1)

Where: ρi � min{d(xi, xij)|1≤ j≤ k}, σ i satisfies∑k
j�1w(xi, xij) � log2(k). On the basis of this weight

definition, a weighted directed graph G � (X, E, w) of the

sample set X can be constructed through nearest neighbor

search algorithms such as Neural Network Descent (Teng and

Li, 2015), where E is a set composed of directed edges

between samples defined by the weight coefficient w. The

weight w(xi, xij) can be understood as the probability that the

one-way edge exists. Considering the calculation of the

probability of the existence of a bidirectional edge

under the above definition, the calculation of the bilateral

probability may be different. UMAP makes the

following transformation on the existence probability wil of

edge (xi, xl):
W′ � W +WT −W+WT (2)

Where: W is the weighted adjacency matrix of the graph G; + is

the Hadamard product of the matrix; andW′ is the transformed

edge weight matrix.

2) Map the neighboring graph to a low-dimensional space while

preserving the information of the neighboring graph as much

as possible.

Given the input sample set X, we need to obtain its sample

representation Y in the low-dimensional space, and keep the

graph G defined by X and the edge weight matrix W′
unchanged, that is, the probability weight w′ij between any

sample xi and its adjacent samples xij remains unchanged.

UMAP uses the cross-entropy as the loss function to express the

difference of the adjacency weight distribution of a single

sample, namely:

Ci � ∑k

j�1(w′ik log(
w′ik
v′ik

) + (1 − w′ik)log( 1 − w′ik
1 − v′ik

) (3)

Where: v′ik is the probability weight between the sample yi and

the adjacent sample yij in the low-dimensional space, which

satisfies:

v′ik � { 1, if
∣∣∣∣∣∣∣∣yi − yk

∣∣∣∣∣∣∣∣2 ≤min dist

e−||yi−yk ||2+min dist, otherwise
(4)

Where: min dist denotes the expected interval between closed

points in an embedded space.

FIGURE 1
The TCN network structure.
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The mapping construction problem of the sample set X can

be transformed into an optimization problem of minimizing the

cross-entropy. Since w′ik is also a fixed value for a given X, the

optimization problem can eventually be transformed into the

minimization of the following equation:

min ⎡⎢⎢⎣ −∑k

j�1(w′ik log(v′ik) + (1 − w′ik)log(1 − v′ik))⎤⎥⎥⎦ (5)

Where: v′ik is the decision variables and the constraint is Eqn.

4. Since the above optimization problem in Eqn. 5 is non-

convex, UMAP should be solved by the stochastic gradient

descent method. We can first sample v′ik according to the

probability w′ik to obtain the positive samples, and update yi

according to the first item of Eqn. 5; while sample v′ik with a

fixed probability 1 to obtain the negative samples, and update

yi according to the second item of Eqn. 5 (Mikolov et al., 2013;

Tang et al., 2016).

Multi-energy load forecasting model
based on data-driven model fusion

In the field of multi-energy load forecasting, deep learning-

based forecasting algorithms have attracted extensive attention

and have been widely used in recent years, such as convolutional

neural networks (LeCun et al., 1989) and their variants, which

mine the change rule between the target value and the continuous

time instants through the convolution of historical samples.

Others, such as Long Short Term Memory (LSTM)

(Hochreiter Schmidhuber, 1997; Goodfellow et al., 2016), Gate

Recurrent Unit (GRU) (Cho et al., 2014), etc., are all based on the

neural network with memory capability, which improve the

prediction accuracy by selectively forgetting or retaining

historical information. Considering that different deep

learning algorithms have different advantages for data

information extraction, a multi-energy load forecasting model

based on data-driven model fusion is proposed in this paper. It is

worth noting that the base models for data-driven model fusion

are not limited to the two cutting-edge prediction models

introduced in this section.

TCN

Temporal Convolutional Network (TCN) is a convolution-

based time series forecasting neural network model. It mainly

extracts information from the input variables through causal

fully-convolutional networks, that is, the output of the

convolution layer is consistent with the length of the input time

series, and the output at any time is only related to the input at that

time. Under the basic convolution structure, in order to increase the

width of the information window, it is usually necessary to set more

convolution layers. In this regard, TCN introduces dilated

convolution. For any given one-dimensional timeseries

m � [m1,m2, ...,mT], the mapping function of its convolutional

layer is:

H(m) � ∑k−1
i�0 h(i)mT−c·i (6)

Where: h is the weight coefficient corresponding to the input of

the i - th dimension, c is the time compensation of the

FIGURE 2
The NBeats model structure.
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convolution, and k is the number of nodes participating in the

convolution. Therefore, the effective information duration of the

single-layer dilated convolution can be extended by (k − 1)c.
When the value of c is 1, the dilated convolution degenerates into

an ordinary full convolution.

In order to better apply the original information of

time series data and reduce the risk of overfitting

and training difficulty, TCN also introduces a residual

module (He et al., 2016), whose comprehensive output is

given as follows:

OTCN � F(m + P(m)) (7)

Where: F is a nonlinear activation function, such as the

common-used ReLU (Nair and Hinton, 2010), and P is a

multi-layer neural network structure including the above-

mentioned dilated convolution, activation function, etc.

The whole TCN network structure is shown in Figure 1.

The left side of Figure 1 is Dilated Causal Convolutions to

deal with long-term information problems, and the right side

is a schematic diagram of residual block structure, which is to

FIGURE 3
Schematic diagram of proposed forecasting model.

FIGURE 4
Structure of the test integrated energy system.
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make the TCN structure more capable of generalization. The

variable ẑ(i−1) in the right subfigure represents output form

previous residual block and ẑ(i) represent input for next

residual block.

NBeats

NBeats was proposed by the Bengio team in 2020. The model

does not require complex application background knowledge.

And only through simple training, its prediction accuracy can

reach up to 3% higher than that of the M4 competition champion

(Slawek, 2020). And it also has very good interpretability. The

NBeats model structure is shown in Figure 2.

It can be seen from Figure 2 that NBeats has a hierarchical

multi-level structure. The basic units in the first layer and the second

layer are stacks and blocks, respectively. The sum of multiple stacks

constitutes the final output of NBeats. The underlying unit Block is

usually composed of a fully connected neural network, namely the

FC Stack in Figure 2, activated by 4 layers of ReLU (Guo et al., 2022)

FIGURE 5
Correlation between cooling, heating and electrical load and the meteorological data.
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and 2 independent network branches. A simple linear layer gives the

final model output, which corresponds to the RForecast arrow in the

figure. The other one has the same structure. Its function is tomake a

difference with the input of the block and use it as the input of the

next block, so as to remove the information in the input features that

are not highly related to the prediction, which corresponds to the

RBackcast arrow in the figure. The specific calculation is as follows:

V � FC(p) (8)
θf � WfV (9)
θb � WbV (10)

RForecast � gf(θf) � VT
fθ

f (11)
RBackcast � gb(θb) � VT

b θ
b (12)

FIGURE 6
Correlation between cooling, heating and the electrical load information.
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Where:p is the input vector of Block;V is the intermediate output of

p processed by the multi-layer fully connected layer; Wf and Wb

are the parametermatrices of fully connected network in order to get

the forward prediction coefficient θf and backward prediction

coefficient θb; Vf and Vb are the forward and backward basis

vectors, respectively, since the parameters θf and θb have different

dimensions; the output RForecast is the linear transformation of the

intermediate variable θf; Vf is the basic vector representing the

output, which can be determined by automatic learning or set as

Multi-energy load forecasting based on model fusion.

The basic principles and frameworks of TCN and NBeats are

given in the above subsections. For different prediction objects or

scenarios, the prediction effects of different base models are

different. In order to maximize the comprehensive prediction

effect, it is necessary to assign different weights to different sub-

learners in different prediction ranges, that is, the comprehensive

output is given by:

OFusion � ∑
f∈Sf

ωf(s)f(s) (13)

Where: Sf is the complete set of models used for load forecasting; s is

the input feature sequence after UMAP processing; ωf is the

dynamic weight for sub-learner model f, and its value can be

determined by a fully-trained neural network with softmax as the

output unit. Therefore, the multi-energy load forecasting model of

the IES can be illustrated as the schematic diagram shown in Figure 3.

The specific training process is described as follows:

Step I. Input the multi-energy load forecasting data samples,

and initialize UMAP, TCN, NBeats parameters;

Step II. Perform the dimensionality reduction of the feature

data using the UMAP algorithm;

Step III. For episode in max_eps.

a) Given different time window data, train TCN and NBeats

sub-models, respectively,

b) Adjust the weights of different forecasting models by gradient

descent algorithm according to the prediction results.

Step IV. Obtain the final multi-energy load forecasting model

and weights for the sub-models by training.

Performance evaluation results of the
proposed forecasting model

System description

The test IES studied in this paper is shown in Figure 4,

which is extracted from the Engineering Research Center at

Tempe campus of Arizona State University and mainly

composed of electricity, cooling and heating loads. The 6-

years electricity, cooling and heating load data from 2016 to

2021 (http://cm.asu.edu/) are used in this paper, which

FIGURE 7
MAPE corresponding to each month under different
forecasting models.
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includes 19-dimensional features such as hourly cooling, heating

and electrical load data, the number of rooms, the number of light

bulbs, gasoline consumption, and Green House Gas (GHG), etc.

The meteorological data of the corresponding area is extracted

from the national oceanic and atmospheric administration

(NOAA) (https://www.ncei.noaa.gov/), which includes a total of

14 dimensional features, such as hourly altimeter values, dew point

temperature, dry bulb temperature, precipitation, pressure change,

pressure trend, relative humidity, sea level pressure, surface

pressure, visibility, wet bulb temperature, wind direction, gust

wind speed, and wind speed. The time interval of the dataset is

1 h, with a total of 52,608 pieces of data, of which the first 75% are

used as the training set, and the last 25% are used as the

validation set.

Data preprocessing

Before load forecasting, the collected data needs to be preprocessed,

including the processing ofmissing data and data normalization. In the

process of data collection, data can usually be lost due to

communication interferences and other reasons. Here, the missing

data is assigned to the observation value of the previous moment.

Different input variables always have different dimensions

and value ranges. If the original raw data is directly applied to

model training, the forecasting results may be unsatisfactory.

Therefore, the data needs to be normalized before model training.

The normalization formula is as follows:

xp
i �

xi − xmin

xmax − xmin
(14)

Where: xp
i and xi represent the values before and after normalization,

respectively; xmin and xmax represent the minimum and maximum

values of the specific variable in the whole sample dataset. The value

range of each variable after normalization will be [0,1].

In order to verify the effectiveness of the proposed feature

extraction method and the data-driven multi-energy load

forecasting model based on TCN-NBeats, the results of

different feature processing methods and different forecasting

models are then compared in detail.

Comparison between different feature
extraction methods

Taking the data of 2016 as an example, Figure 5 shows the

correlation coefficient between the cooling, heating and electrical load

and meteorological data, Figure 6 shows the correlation coefficient

between the cooling, heating and electrical load information. The

correlation coefficient between the two variables can be calculated as:

CRx1x2 �
Cov(x1, x2)������������
D(x1)pD(x2)

√ � E(x1px2) − E(x1)pE(x2)������������
D(x1)pD(x2)

√ (15)

Where: CR represents the correlation coefficient; Cov represents

the covariance; D represent the variance; and E represents the

mathematical expectation/mean.

From the characteristic heat maps of Figure 5 and Figure 6, after

calculating the absolute values, the correlation coefficients in the

range of 0–0.09 is considered as no correlation, 0.1–0.3 as weak

correlation, 0.3–0.5 as medium correlation, and 0.5–1.0 as strong

correlation. It can be seen that the multi-energy load prediction

(electric, cooling, heating load) are not only related to external

features such as meteorological information (for instance, electrical

load is moderately correlated with wet bulb temperature (0.31);

cooling load is strongly correlated with dry bulb temperature (0.6)

and wet bulb temperature (0.57); and heating load is strongly

correlated with altimeter setting (0.53) and sea level pressure

(0.57)), but also coupled with other load types (for example the

electrical load (kW) is moderately correlated with combined

TABLE 1 Comparison of MAPE between single and joint forecasting under different models.

MAPE Cooling load Heating load Electrical load Average

Single Joint Single Joint Single Joint Single Joint

LSTM 3.1428 2.7301 7.8404 5.9478 5.0010 5.3517 5.3281 4.6765

NBeats 2.6618 3.3321 7.6023 4.9634 6.8059 5.6522 5.6900 4.6492

TCN-NBeats 2.4097 2.6519 5.1641 4.7046 3.4311 3.4666 3.6683 3.6077

TABLE 2 Different feature extraction and corresponding statistical
data under TCN-NBeats model.

Model Feature dimension MAPE Epoch time (s)

Original 33 3.6077 2362

PCA 22 3.3607 2103

mRMR 20 3.5781 1989

UMAP-20 20 3.6264 2000

UMAP-15 15 3.6953 1887

UMAP-10 10 3.7509 1640

Frontiers in Energy Research frontiersin.org09

Yao et al. 10.3389/fenrg.2022.955851

https://www.ncei.noaa.gov/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.955851


mmBTU (0.44) and combined tons carbon (0.44); the cooling load is

strongly correlated with the combined mmBTU (0.95) and

combined tons carbon (0.95); and the heating load is strongly

correlated with cooling load (-0.55)). Therefore, when

considering the cooling, heating and power load forecasting

problem, the joint prediction of multi-energy loads can better

reflect the coupling effect of multiple energy types, and utilize the

comprehensive feature information to improve the model accuracy.

Comparisons of single-energy forecasting
and multi-energy joint forecasting

In order to verify the effectiveness of the proposed model, this

paper compares and analyzes the cooling, heating and electrical load

prediction results using different feature extraction methods and

forecasting algorithms. The feature extraction methods include

PCA, mRMR and proposed UMAP in this paper, and

forecasting models include LSTM, NBeats and TCN-NBeats

proposed in this paper. The Mean Absolute Percentage Error

(MAPE) metric is used as the evaluation index to measure the

forecasting effect, which can be computed as follows:

MAPE � 1
n
∑n

i�1

∣∣∣∣∣∣∣∣∣
li − l̂i
li

∣∣∣∣∣∣∣∣∣ × 100% (16)

Where: li is the actual value of the load consumption; l̂i is the

predicted value of the load consumption; and n is the number of

samples.

Figure 7 and Table 1 shows theMAPE distribution and average

MAPE of the forecast results of cooling, heating and electrical load

for the first week of each month in 2020, using different forecast

models. In Figure 7, we compare the scenarios in which different

forecasting models are applied to separate forecasting for single-

energy load and joint forecasting of cooling, heating and electrical

load. In terms of annual average MAPE, the results of multi-energy

joint forecasting models are more accurate than the separate

forecasting models. According to Table 1, due to the randomness

of the test dataset, someMAPE of the multi-energy joint forecasting

model may be higher than single-energy forecasting as shown

through the highlighted values. However, the annual average

MAPE can fully reflect the effectiveness of the joint forecasting.

The improvement of the Nbeats is the most significant, which

reduces the average annual MAPE from 5.7 to 4.6%, demonstrating

that it is suitable formulti-energy load forecasting. The TCN-NBeats

ensemble learning model proposed in this paper has a better

performance in majority month, and the MAPE of cooling,

heating and electrical load prediction is generally around 3.6%,

which is superior to the LSTM and NBeats models. Comparing the

12-months cooling, heating and power load prediction results, it can

be seen that the TCN-NBeats model has stronger generalization

ability againstmeteorological changes. In summary, joint forecasting

FIGURE 8
Different feature extraction and corresponding monthly
MAPE under TCN-NBeats model.
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considers the correlation between different load types, and thus

further improve themodel accuracy, and the proposed TCN-NBeats

model better assists the forecasting process and shows significant

advantages for its generalization ability.

In addition, Table 2 shows the statistical data when

different feature extraction methods are combined with the

TCN-NBeats multi-energy joint forecasting model, and

Figure 8 shows the MAPE distribution of the cooling,

heating and electrical load forecasting results for the first

week of each month in 2020 under the same condition. It

can be seen in Figure 8 that, compared with PCA and mRMR

feature extraction methods, UMAP can reduce the feature

dimension more while ensuring enough prediction accuracy.

In order to further verify the advantages of the UMAP method

in terms of dimension reduction, more tests are carried out

under different scenarios when the feature dimension is

reduced from the original number of 33 to 10, 15, and 20.

Table 2 shows that the MAPEs can maintain at about 3.6%,

which is very close to the accuracy of the original model

without feature reduction. But the feature dimension has been

significantly reduced, which will effectively reduce the

hyperparameters of the prediction and the training/testing

time of the model. To sum up, all of the three feature

extraction methods can effectively improve the training

speed of the model, but the UMAP method can guarantee

its forecasting accuracy while reducing its feature dimension.

Forecasting results of typical day in
different seasons

In different seasons, due to the climatic and meteorological

differences, the fluctuation patterns of cooling, heating and

electrical loads are quite different. In order to verify the

reliability of the multi-energy load forecasting model proposed

under different seasons, one typical day is selected for each season

for illustration (due to page limit, only summer and winter

forecasting results are shown in Figure 9 and Figure 10,

respectively). The average MAPE for load forecasting in

different seasons under different models are shown in Table 3.

Combined the data in both two Figures and the Table, it can be

seen that the prediction accuracy is improved under the joint

forecasting model of cooling, heating and electricity, and the

improvements in summer, autumn and winter are more

significant than spring. The TCN-NBeats joint forecasting model

withUMAPdimensionality reduction to 10 shows an averageMAPE

of 5.42% in spring typical day, which is higher than that of both

multiple energy TCN-NBeats model and the single-energy

forecasting model. The reason is that there are no specific

correlations between electrical and cooling loads during spring of

the selected dataset, thus, the joint forecasting may interfere the

prediction. For winter months, the heating demand is large, most

models have lower prediction accuracy. In this case, the TCN-Nbeats

multi-energy joint forecasting model using UMAP dimensionality

reduction to 10 has an average MAPE of 1.91%, which shows an

FIGURE 9
Typical daily load forecasting curve (Jun. 1st, 2021).
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improvement of 0.72 and 0.87%, compared to the single-energy

prediction models and no feature processing, respectively.

Conclusion

This paper focuses on the multi-energy joint forecasting of

cooling, heating and electricity loads in IES, and a novel data-

driven multi-energy load forecasting model is proposed, which

consists of feature dimensionality reduction and ensemble

learning-based load prediction. Based on the correlation

analysis between the cooling, heating and electrical loads, the

UMAP feature extraction method is utilized to reduce the

complexity of the model and improve the training and

forecasting speed. A TCN-NBeats ensemble learning model is

then proposed, which improves the generalization ability of

multi-energy load prediction while improving the overall

prediction accuracy. The cooling, heating and electrical load

forecasting case study shows that the UMAP-based feature

extraction method is much superior to PCA, mRMR methods;

and the proposed TCN-NBeats multi-energy joint forecasting is

more accurate comparing to the traditional single-energy load

forecasting methods, also shows great advantages over other

machine learning models, such as LSTM, Nbeats, etc.; and the

forecasting accuracy will be improved under different seasons

using the proposed model.
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