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Abstract: As a long-standing research topic in the field of brain–computer interface, emotion recogni-
tion still suffers from low recognition accuracy. In this research, we present a novel model named
DE-CNN-BiLSTM deeply integrating the complexity of EEG signals, the spatial structure of brain
and temporal contexts of emotion formation. Firstly, we extract the complexity properties of the
EEG signal by calculating Differential Entropy in different time slices of different frequency bands
to obtain 4D feature tensors according to brain location. Subsequently, the 4D tensors are input
into the Convolutional Neural Network to learn brain structure and output time sequences; after
that Bidirectional Long-Short Term Memory is used to learn past and future information of the time
sequences. Compared with the existing emotion recognition models, the new model can decode the
EEG signal deeply and extract key emotional features to improve accuracy. The simulation results
show the algorithm achieves an average accuracy of 94% for DEAP dataset and 94.82% for SEED
dataset, confirming its high accuracy and strong robustness.

Keywords: emotion recognition; DE; temporal and spatial feature; DE-CNN-BiLSTM

1. Introduction

Emotion is a psychological or physiological reflection of human senses, thoughts,
and behaviors. Artificial intelligence robots can recognize emotional information through
human facial expression, body movement, and speech content [1]. The two-dimensional
Valence–Arousal (VA) coordinate system is often presented to evaluate emotional states.
Valence represents the degree of emotional pleasure, and arousal indicates the intensity
of the emotion [2]. In recent years, with the rapid development of machine learning,
signal processing and the significant improvement in electroencephalogram (EEG) signal
acquisition technology, EEG-based emotion recognition is becoming a research focus of the
artificial intelligence and biomedicine fields in a new era.

Extracting prominent features related to emotion from EEG signals is essential for
achieving satisfactory recognition performance. There are many methods used for feature
extraction in existing studies, mainly including frequency domain, time-frequency domain,
and non-linear dynamics extraction [3]. Padhmashree et al. [4] employed multivariate
variational mode decomposition (MVMD) to extract time–frequency features from multi-
channel EEG signals. Bhattacharyya et al. [5] derived the Hilbert marginal spectrum based
on the Fourier–Bessel Series Expansion based Empirical Wavelet Transform (FBSE-EWT) [6]
method to measure temporal complexity by computing Shannon Entropy. Differential
Entropy (DE) is an extension of Shannon Entropy on continuous signals and presents the
temporal complexity of the emotion-related brain activity easier.

Traditional EEG emotion classification algorithms mainly include Support Vector
Machine (SVM) [7], K-Nearest Neighbor (KNN) [8], and Random Forest, etc. However,
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those algorithms cannot extract deeper emotion features, which may lead to low accuracy
in emotion recognition. In recent years, the emotion recognition models based on deep
learning have developed rapidly, especially the application of the Convolutional Neural
Network (CNN) [9]. Jiang et al. [10] proposed a WT-CNN model, decomposing the signal
into multi-subbands containing emotion features through wavelet transform, and then
the features were input to the CNN to learn the spatial correlation of the signal, which
achieved an accuracy of 80.56%. Zheng et al. [11] extracted the DE features and then
input them into a Deep Belief Network (DBN) based on CNN, which achieved recognition
accuracy of 86.65%. Considering EEG signals also have dynamic and time-varying char-
acteristics, researchers not only need to learn its spatial position feature but also its time
slice information. Long Short-Term Memory (LSTM) is a valid model for processing time
sequences. Ozdemir et al. [12] proposed an effective model called the CNN-LSTM model
to classify emotion: EEG signals were converted to topologies according to the electrode
locations and then trained by CNN, and then LSTM was used to extract the temporal
features from the consequent time windows, which achieved 86.13% on Arousal and 90.62%
on Valence. Although emotion recognition based on the hybrid of CNN and LSTM has
made some progress, there are still some challenges. Actually, emotion not only comes
from past information but also has impact on future activities. The unidirectional LSTM
only learns past time information during the model training process; the future of the
signal sequences cannot be learned. Fully integrating past and future emotional signals is
supposed to achieve better recognition performance. Therefore, we introduce Bi-directional
Long Short-Term Memory to mine the context information of EEG signals.

In this paper, we propose a novel multi-fusion model, DE-CNN-BiLSTM, for EEG
emotion recognition. The 4D feature tensors are constructed according to the location
of electrodes by applying DE in different time slices of different frequency bands, which
contain the time complexity and the spatial location, as well as the past and the future
temporal features of the EEG signal. We conduct some simulations on both DEAP and
SEED datasets to verify the effectiveness of the model, which not only has high accuracy of
emotion recognition but also owns excellent robustness performance.

2. Methods

The DE-CNN-BiLSTM emotion recognition model proposed in this paper is shown in
Figure 1.
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Figure 1. The framework of the proposed EEG-based emotion recognition model DE-CNN-BiLSTM.

The model contains the following parts:

(1) The original EEG signals are decomposed into different frequency bands reflecting
different states of brain and divided into different time slices.

(2) We calculate the DE of all slices in different frequency bands, then map them into the
brain spatial structure to obtain the 4D tensors.
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(3) We utilize CNN to pick up the detailed information of spatial structure and output a
one-dimensional vector through the last layer of CNN.

(4) The vectors are input to the Bi-LSTM to complete the prediction of the emotional state
based on the past and future information of the time sequences.

(5) The softmax function is used as the classifier of the model to output the recognition
results.

2.1. Multi-Band Decomposition and DE Feature Spatial Mapping

The human EEG signals are usually divided into four frequency bands including
Theta (4–8 Hz), Alpha (8–13 Hz), Beta (13–30 Hz), and Gamma (30–48 Hz), which reflect the
characteristics of different emotional states. Therefore, firstly the frequency decomposition
is carried out through a filter and then split into many time slices with a non-overlapping
0.5 s Hanning window in each frequency band.

Originating from information theory, differential entropy can measure the complexity
of continuous signals. Assuming that µ and σ2 are the mean and variance of the EEG signal
x, the DE can be defined as Equation (1) [13–15].

H(x) = −
+∞∫
−∞

1√
2πσ2

e
(x−µ)2

2σ2 log( 1√
2πσ2

e
(x−µ)2

2σ2 )dx

= 1
2 log(2πeσ2)

(1)

We calculate the DE for all time slices in four frequency bands and then get the DE
feature matrix, which is expressed as follows:

Mn
d = [vn

d(1), vn
d(2), . . . , vn

d(t)] (2)

where n is the number of electrode channels, d represents the frequency band number, and
t denotes the number of the time slices.

In order to explore the relationship between the DE features of different time slices in
different frequency bands, we map the DE to the brain topology and thus construct the 4D
tensor Xhxwxdxt shown in Figure 2; h and w are the height and width of the topology, and
we set h = 9 and w = 9, d is the frequency band number, and t represents the number of time
slices.
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2.2. Spatial Feature Learning

CNN is originally built based on the principle of biological vision and perception. It
consists of three parts: the input layer, the hidden layer, and the output layer [16–21]. The
CNN part of the proposed model imitates the VGGnet model [22] and is shown in Figure 3.
The 4D tensors are input to the CNN to learn the spatial feature, which contains three
Convolutional Layers, a Max-Pooling Layer, and a Fully Connected (FC) Layer. Especially,
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the first Convolutional Layer (Conv1) has 64 filters, and the filter size is 3 × 3. The next
two Convolutional Layers (Conv2, Conv3) have 128 and 256 filters, and the two filter sizes
are both 3 × 3. For all Convolutional Layers, apply the same padding and Rectified Linear
Unit (ReLU) activation function, and the calculation rule of the output size of the picture
after the Convolution Layers is defined by Equation (3). After the convolution operation, a
Max-Pooling Layer with the filter size of 2 × 2 is applied to compress the amount of data
and parameters to relieve overfitting. Finally, the output of the pooling layer is flattened
to 1296 units and fed to a Fully Connected Layer. The final output Qt (1 × 512) is the
representation of the spatial feature of the original EEG slices.
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Output_size = (Input_size − Kernel_size + 2 × Padding)/Stride + 1 (3)

When Convolutional Layers use the same padding, which is equal to 1, the stride of
them is 1. When the Max-Pooling Layer uses the valid padding, which is equal to 0, the
stride of it is 2.

2.3. Temporal Feature Learning

Long Short-Term Memory (LSTM) is a chain model used to process time sequences;
the unique advantage is to use memory cells to replace hidden layer nodes, and it effec-
tively solves the problem of gradient vanishing and gradient explosion. After inputting
continuous time sequences into the model, it learns the temporal information of the EEG
signal. The weight between the hidden layer and the output layer of LSTM can be recycled
at any time [23], and it has a strong memory ability when the information sequence is very
long. An LSTM unit is composed of three gate control units: forget gate, input gate, and
output gate, and the calculation formulas are defined by Equations (4)–(9).

ft = σ
(

W f ·[ht−1, xt] + b f

)
, (4)

it = σ(Wi·[ht−1, xt] + bi), (5)

C̃t = tanh (WC·[ht−1, xt] + bc), (6)

Ct = ft × Ct−1 + it × C̃t, (7)

Ot = σ(WO·[ht−1, xt] + bO), (8)

ht = tanh (Ct) × Ot, (9)

where xt represents the input time sequences, σ is the sigmoid function, the W terms are
the weight matrix, and b terms are the bias vectors of the corresponding weights. The
forget gate ft determines the retention of the feature. The information of the previous state
and the current are input into the sigmoid function at the same time. The input gate it is
responsible for updating the state of the LSTM unit. Ct represents the cell state. ht is the
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hidden output of the backward layer. The output gate Ot controls the output values into
the next LSTM unit [24].

Compared with the above unidirectional LSTM, the Bi-LSTM network adds a back-
ward layer to learn the future emotion information, which is the extension of the past.
Bi-LSTM combines bidirectional characteristics and gating architecture perfectly, which can
memorize and process more information through two LSTM units [25]. The structure of
the Bi-LSTM network is shown in Figure 4. Time sequences xi are input to the model. The
forward network connects the feature information from the past sequence to the present,
and the backward network can connect the information from the future sequence to the
present [26], and finally the predicted values yi will be output by Equation (10).

yi = σ
(
Wh·

[
ht, h′t

]
+ bh

)
, (10)
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3. Simulation and Result Analysis

In this part, we apply two public EEG datasets, DEAP and SEED, to validate the
effectiveness of our proposed DE-CNN-BiLSTM model for emotion recognition. Firstly,
we give a detailed description of the datasets. Then we introduce the DE feature and
analyze the model property. Finally, we compare with other emotion recognition models to
demonstrate the better performance of our model.

3.1. Experimental Datasets

DEAP [27] is a multi-channel EEG dataset of 32 healthy subjects recorded by the
research institutes of Queen Mary University of London, etc. Each subject is required to
wear an EEG cap to collect the EEG emotional signals stimulated by 40 music video clips
and fill out the SAM psychological scale afterwards. The electrode position is distributed
according to the international 10–20 system [18], using 32 channels. Each trial of DEAP
contains 63 s EEG signals. The first 3 s are the baseline signals, where subjects are in a silent
state, and the rest of the 60 s are the emotionally evoked state. There are four dimensions of
emotional states: Valence, Arousal, Dominance, and Liking. Using the numbers 1 to 9 to
measure the intensity of the state, as in Equation 11, we set the threshold value to 5, where
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above 5 is judged as High Valence (HV) and below 5 is judged as Low Valence (LV), and
we set the label −1 for LV and +1 for HV.

Emotionlabel =
{

1 ≤ Valence ≤ 5; LV
5 < Valence ≤ 9; HV

(11)

SEED is a public dataset for studying emotion recognition collected by Bao Liang Lu’s
team [14] at Shanghai Jiao Tong University including 15 subjects (7 males, 8 females). The 62
channels refer to the standard international 10–20 system. Fifteen clips are selected from six
movies, and the subjects need to watch video materials to induce different emotions. Each
clip of SEED contains 4 min, and subjects are provided a 15 s rest before each clip. Every
subject performs the experiment a total of three times and with an interval of approximately
one week between each time. There are three types of emotions in SEED: Positive, Neutral,
and Negative. We set −1 as negative state, 0 for neutral, and +1 for positive [28].

3.2. DE Feature Analysis

We studied the characteristics of emotional changes by calculating the DE in different
frequency bands. As is shown in Figure 5, the horizontal and vertical axes represent time
and frequency bands, respectively. In Figure 5a, one of the subjects, S01, is used to analyze
the generation mechanism of positive emotion; theta and beta bands in the frontal lobe,
alpha band in the occipital lobe, and beta and gamma bands in the lateral temporal lobe
have higher activating degrees. The activation capability of alpha and beta bands is greater
than that of theta and gamma bands.

In Figure 5b, similarly, the subject S21 who watched music video is used to present the
negative emotion, from which we notice that the left and right temporal lobes and occipital
lobe of four frequency bands are activated with visual stimulation. The emotional intensity
is evoked to the maximum at 50 s. The topology changes in the temporal lobe are obvious
in the theta and alpha bands, and the changes in occipital lobe are evident in the beta and
gamma bands.
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In view of the topology of the emotion in both positive and negative, it can be con-
cluded that the activation areas of the four frequency bands under two states are different;
the positive is frontal lobe, occipital lobe, and temporal lobe, but the negative is temporal
lobe and occipital lobe. The similarity between the two is that the emotion fluctuates over
time, which is consistent with the time-varying trajectory of the DE.

3.3. Result Analysis

The DE features are calculated as the inputs of the DE-CNN-BiLSTM model in the
DEAP dataset. Our DE-CNN-BiLSTM model is trained with a learning rate of 0.001. Using
the Adam optimization algorithm, each iteration is 64 batches. The training progress of
the proposed model in terms of the training and validation accuracy on Valence is shown
in Figure 6. Then, the classification outputs are performed by softmax. The model is
prevented from over-fitting through 5-fold cross validation, and the execution time of
model is 4254.1 s. Figure 7a is a box plot depicted the accuracy distribution of emotion
recognition for 32 subjects, with an average accuracy of 94.86% on Arousal and 94.02% on
Valence, the median is 95.90% on Arousal and 94.80% on Valence, the highest classification
accuracy even reaches to 99.13% on Arousal, three red circles represent that the accuracy of
three subjects is abnormal.

The SEED dataset has a total of 20,364 samples for one subject [29]. We calculate the DE
of the sample signals and input the values arrayed as the 4D map to the proposed model,
as is shown in Figure 7b, the accuracy rate of 15 subjects is all above 90%, the median is
95.46%, and there is an average accuracy rate of 94.82%.

The above results show that complexity, spatial features, and temporal features of EEG
signals are important factors for emotion recognition. The DE-CNN-BiLSTM model makes
full use of these features to obtain better recognition performance on two public datasets,
which indicates the good generalization and robustness of it.

To verify the effectiveness of the proposed model, we compare it with the existing
models applied to the DEAP dataset on the binary classification of Arousal and Valence.
As shown in Table 1, there are some traditional machine learning models, such as Support
Vector Machine (SVM) [30] and Artificial Neural Network (ANN) [31]. The accuracy
of our model has improved more than 20%, which indicates the deep learning network
can extract more detailed emotion features and spatial structure of the signals. We also
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investigate some advanced deep learning models, such as the Bi-directional Long and
Short-Term Memory Network, Convolutional Neural Network, and the related fusion
model CNN-LSTM and 2DCNN-BiGRU. Compared with the single Bi-LSTM [32] and
CNN [33,34] model, our method has a substantial improvement, which shows our hybrid
model not only extracts the spatial feature, but also extracts the dynamic temporal feature
of EEG signals, and the DE feature is also an important factor. Compared with the 2DCNN-
BiGRU [35], the accuracy of our model has improved approximately 7% on Arousal and 5%
on Valence, which is because the input of our model is a 4D structure feature, containing the
complexity feature, spatial feature, and temporal feature. Meanwhile, compared with the
CNN-LSTM [20], our method has improved 4.62% on Arousal and 4.57% on Valence, which
shows that our method can excavate the past and future information of signal sequences.
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Table 1. Comparison of results of different emotion recognition models.

Dataset Models Feature Information
Accuracy (%)

Arousal Valence

DEAP dataset

SVM [30] PSD 73.30 72.50
ANN [31] MEMD 75.00 72.87

Bi-LSTM [32] LF-DfE 76.00 75.50
CNN [33] Wavelet Transform 78.12 81.25
CNN [34] DE 88.20 86.20

2DCNN-BiGRU [35] DE 87.89 88.69
CNN-LSTM [20] DE 90.24 89.45

DE-CNN-BiLSTM(ours) DE 94.86 94.02

4. Conclusions

In this paper, we proposed a new EEG signal emotion recognition model named
DE-CNN-BiLSTM, fully taking the complexity and spatial structure of the brain and the
temporal characteristics of dynamic EEG signals into account. The DE feature was used
to decode the detailed emotion features of the brain. The 4D spatial–temporal features
based on DE were fed into the DE-CNN-BiLSTM model. The average accuracy rate reached
94.86% on Arousal and 94.02% on Valence of the DEAP dataset, and 94.82% of the SEED
dataset, which was 4% more than the existing emotion recognition models. The model also
has the advantages of good robustness and generalization, which has important significance
for future research on emotion recognition systems based on brain–computer interfaces.
In the future step of research, we will try to implement another deep learning network
to replace the CNN to explore the deeper spatial feature of the electrodes, such as Graph
Convolution Network (GCN) [36].
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