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Abstract. Potentially suspicious breast neoplasms could be 

masked by high tissue density, thus increasing the probability of 

a false-negative diagnosis. Furthermore, differentiating breast 

tissue type enables patient pre‑screening stratification and risk 
assessment. In this study, we propose and evaluate advanced 

machine learning methodologies aiming at an objective 

and reliable method for breast density scoring from routine 

mammographic images. The proposed image analysis pipeline 

incorporates texture [Gabor filters and local binary pattern 
(LBP)] and gradient-based features [histogram of oriented 

gradients (HOG) as well as speeded-up robust features (SURF)]. 

Additionally, transfer learning approaches with ImageNet 

trained weights were also used for comparison, as well as a 

convolutional neural network (CNN). The proposed CNN model 

was fully trained on two open mammography datasets and was 

found to be the optimal performing methodology (AUC up to 

87.3%). Thus, the findings of this study indicate that automated 
density scoring in mammograms can aid clinical diagnosis by 

introducing artificial intelligence‑powered decision‑support 
systems and contribute to the ‘democratization’ of healthcare 

by overcoming limitations, such as the geographic location of 

patients or the lack of expert radiologists.

Introduction

In a variety of recent publications, a strong independent 

predictor of breast cancer is reported to be mammographic 

density (1-3). From the middle of the 1990s it was found that 

women with a mammographic breast density (MBD) >75% 

had an almost 5-fold increased risk of presenting with breast 

cancer (4). To this end, an objective computer system for MBD 

classification is of paramount importance for cancer screening 
and monitoring. Such computer systems are usually evaluated 

against the actual breast density scoring from expert radiologists 

using the BI-RADS reporting system of the American College 

of Radiology (ACR) (5). As of 2013, the BI-RADS descriptors 

classify breast density content as ‘entirely fat’, ‘scattered areas of 

fibroglandular density’, ‘heterogeneously dense’ and ‘extremely 
dense’.

This classification problem is usually handled by machine 
and deep learning techniques. Published studies concerning 

feature-based methods have incorporated several approaches. 

In particular, Bovis (6) proposed image analysis with spatial 

gray level dependence (SGLD) matrices as a texture feature 

extractor, dimensionality reduction with principal component 

analysis (PCA) and two-/four-class density scoring using 

artificial neural networks (ANN). Tzikopoulos et al (7) exam-

ined statistical and differential feature extraction methods for 

MBD classification by decision trees. Oliver et al (8) utilized 

the fuzzy C-means algorithm paired with both k-NN and ID3 

decision trees for scoring mammographic data.

On the other hand, a deep learning framework was previ-

ously applied by Fonseca et al (9) with a three-layer CNN for 

feature extraction and a Support Vector Machine (SVM) for a 

four‑class classification according to the American College of 
Radiology (ACR) density characterization. Petersen et al (10) 

investigated both learnable segmentation and patch-based CNN 

classification based on scoring of percentage mammographic 
density (PMD). Kallenberg et al (11) proposed a merged unsu-

pervised segmentation and feature extraction process with an 
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external classifier for PMD scoring. The performance metrics 
of the relevant literature is summarized in Table I.

This study constitutes an extensive analysis of MBD clas-

sification using two publicly available datasets incorporating 
various feature extraction methods, such as histogram of oriented 

gradients (HOG) (12), speeded-up robust features (SURF) (13), 

local binary pattern (LBP) (14), Gabor filters (15) and deeper 
end-to-end convolutional neural networks (CNNs) fully trained 

or off-the-shelf models trained on the ImageNet dataset (16).

The main aim of this study was to present and discuss the 

results of modern machine learning techniques combining 

the aforementioned feature extraction methods alongside with 

more robust CNN schemes presented in the bibliography. In 

the following section, the mammographic datasets and the 

proposed workflow are presented.

Patients and methods

Patient cohort. The patient population used in this study is 

based on two publicly available datasets, the Mammographic 

Image Analysis Society Digital Mammogram (mini-MIAS) and 

the Digital Database for Screening Mammography (DDSM). 

Further information regarding each dataset is presented below:

Mini‑MIAS. The mini-MIAS (http://peipa.essex.ac.uk/info/ 

mias.html) is a free scientific database for research and consists 
of 161 patients with 322 mammograms. The database is digi-

tized at 50-micron pixel edge. Image labels are categorized by 

their breast density from expert radiologists, using 3 classes: 

Fatty (F) (106 images), fatty-glandular (G) (104 images) and 

dense-glandular (D) (112 images).

DDSM. The DDSM (http://www.eng.usf.edu/cvprg/ 

Mammography/Database.html) database consists of approxi-

mately 2,500 patients with 10,239 multi-view images including 

benign, malignant and normal cases. Image resolution varies 

from 42 to 50 microns. Breast density labels for this dataset 

are categorized using four classes: Fatty, glandural, dense and 

extremely dense.

Dataset stratification. Medical imaging databases usually 

consist of limited patient cohorts, such as the aforementioned 

datasets restricting the learning capacity of deep models. 

Therefore, to avoid biases related to the low sample number, 

an exhaustive k-fold cross-validation was performed for split-

ting the dataset into the multiple convergence and testing set. 

Additionally, the corresponding convergence set was split into 

the training and validation set by a shuffle hold‑out process 
as presented in Fig. 1. In particular, the performance metrics 

on mini-MIAS were acquired by 64 testing images and the 

fitting process on 258 images (208 training, 50 validation) per 
fold. Similarly, the same stratification procedure was applied 
on the whole patient cohort of the DDSM dataset but only the 

cranio-caudal images were used (approximately 5,000). Every 

examined image analysis methodology including deep and 

feature-based models were adapted on the same convergence 

set and evaluated on same unseen testing set to establish a fair 

assessment among the resulted models.

Pre‑processing. In order to ensure reliable image quality 

without artefacts, and limit background noise that may poten-

tially affect the feature extraction analysis, both mini-MIAS 

and DDSM images were pre-processed as follows. Initially, the 

threshold selection method described in the study by Otsu (17) 

was applied as a method for background removal. Moreover, 

boundary detection (18) was performed for the elimination 

of these areas (labels with a patient's personal information, 

as illustrated in Fig. 2, ‘Original Dataset’). Image cropping in 

addition to bicubic interpolation for resizing was applied to 

reduce computational complexity for the MBD analysis and 

ensure consistent image size across the studied cohorts.

Machine learning workflow
Feature extraction. Distinguishing key points in imaging 

structures is a crucial step to capture essential abstractions, 

pixel intensity variations and local dependencies for differen-

tiating between tissue classes. Mammography images usually 

include different structures, including muscle, breast tissue and 

benign/malignant lesions. To address this variability in tissue 

content, a number of algorithms with diverse mathematical 

backgrounds were employed for extracting discriminative 

compact representations, including gradient-based features, 

such as HOG, SURF and texture features, such as LBP and 

Gabor filters combined with LBP.
Feature selection. This step has been established in the 

proposed methodology for reducing the high-dimensional 

raw features to the most significant components resulting 

in an improved computational complexity and improved 

performance. The selection was enacted with the use of the 

neighborhood component analysis (NCA) (19).

Classification. Linear discriminant analysis (20) was used 

for the classification of the annotated feature vectors following 
the NCA selection process by modeling the differences among 

the examined classes and searching for linear combinations 

of the most statistical significant features. A graphical repre-

sentation of the proposed machine learning methodology is 

provided in Fig. 2.

Deep learning‑fully trained CNN methodology. Deep learning 

analytics introduce a fully automated analysis pipeline with 

data‑driven learnable parameters providing a domain‑specific 
modelling methodology. The main objective of these deep 

learning architectures, such as CNNs is to learn hierarchical 

representations of the examined domain across several layers 

by convolving and propagating features maps of the initial input 

in an end-to-end and automatic manner. This is formulated 

as a convex optimization where the model adapts its weights 

through backwards propagation. To address the clinical ques-

tion of this study, several pre-trained deep learning models were 

evaluated for feature extraction such as inception networks, 

VGG19 (http://www.robots.ox.ac.uk/~vgg/research/very_

deep/), DenseNet (https://ai-pool.com/m/densenet-1556378134) 

and NASNet (https://ai-pool.com/m/nasnet-1556378807). 

Additionally, a custom end-to-end 2D CNN architecture 

trained on the studied datasets was developed.

Data augmentation. This process represents an artificial 
method of increasing the training set and simultaneously 

promote the generalization ability of the models by offering 

alternative variants of the original image. The added 

noise of image transformations, including rotation, flip-

ping, elastic deformation and mirroring amplifies model 

properties, such as translation, rotational and scale invariance.
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Proposed architecture. The fully trained 2D CNN archi-

tecture consists of 15 layers, including the image input of 

shape 725x234x1, 6 convolutional layers each followed by 

a batch-normalization layer, 2 fully-connected layers with 

100 neurons each and finally a softmax classification layer 
as depicted in Fig. 3. ReLU was selected as the activation 

function of the convolutional layers with 30 to 240 kernels 

per layer and a 3x3 receptive field. Additionally, 20% chance 
of dropout was applied to the fully-connected neurons. 

Glorot methodology was utilized for weight initialization. 

The complete source code and the final hyperparameters of 
the custom 2D architecture are available online (https://github.

com/trivizakis/breast-density-analysis).

Hyperparameter optimization. The fitting process of a deep 
architecture poses a challenging task of searching the optimal 

parameters in order to discover the best performing model. 

The validation set as part of the convergence set was used 

to perform this task in a transparent and unbiased way on a 

limiting database, as depicted in Fig. 1. In particular, overlaying 

the training and validation loss curve reveal details about the 

fitting status of the model and assists in the parameter selec-

tion process. Adjusting the number of learnable parameters, 

such as layers, kernels and neurons can minimize the memo-

rization of the dataset from the model therefore preventing 

overfitting. Additionally, early‑stopping was performed after 
maximizing the validation accuracy to provide the best fitted 
models, avoiding overtraining and refraining from unnecessary 

time-consuming convergence cycles.

Deep learning based on pre‑trained models

Models. Transfer learning is a powerful research method-

ology used in the data science community particularly for 

overcoming the limitations arising in highly-specialized 

but small datasets. In particular, the contribution of an 

‘off-the-shelf’ model in terms of performance was evaluated 

by an external classifier as a feature extraction component. 
The selected pre-trained models compute different type 

of deep features since they integrate diverse architecture 

elements, such as residual connections, connectivity 

between successive layers, number of layers and number of 

parameters.

Deep feature extraction. The pre-trained models with 

ImageNet weights were employed for this purpose from the 

open source Keras library (21). During feature extraction, the 

input layer and the neural part of the trained network were 

discarded. This was a necessary step considering the differ-

ences in the ImageNet versus the mini-MIAS image size. 

Only the weights of the convolutional part were retained for 

extracting deep features from the last convolutional layer of 

each pre-trained model.

Classification. SVMs are popular classifiers widely 

used in a variety of image analysis problems demonstrating 

robust performance. Taking into account the different types 

of feature-based and deep features calculated by the corre-

sponding proposed methodologies, SVM was selected for the 

evaluation of the classification performance among the feature 
extraction processes in a meaningful and direct manner. In 

Table I. Breast density scoring.

 mini-MIAS  mini-MIAS  DDSM  DDSM  DDSM  

Methodology or study,  (2-class)  (3-class)  (2-class)  (3-class)  (4-class)  No. of

authors (Refs.) ACC/AUC (%) ACC (%) ACC/AUC (%) ACC (%) ACC (%) images

Machine learning      

  HOG 71.8/52.3 53.1 - - - Full

  LBP 83.3/78.0 74.2 67.1/71.4 55.1 36.6 Full

  SURF 82.6/77.6 68.3 79.3/84.2  67.5 46.8 Full

  Gabor + LBP 76.7/68.4 61.7 62.8/67.1  52.1 35.8 Full

  Selected HOG 69.0/48.7 53.1 - - - Full

  Selected LBP 77.9/71.1 70.2 73.7/79.2 64.5 40.7 Full

  Selected SURF 83.8/77.6 73.6 75.6/81.5 62.9 46.8 Full

  Selected Gabor + LBP 64.9/60.9 50.9 62.1/67.7 55.4 37.7 Full

  Bovis et al (6) - - 96.6/ -  - 71.4 377

  Tzikopoulos et al (7) - 70.3 - - - Full

  Oliver et al (8) - - - - 40.3-47 300

Deep learning      

  Proposed architecture 84.2/87.3  79.8 75.2/82.7 68.6 54.8 Full

  Inception 3 73.6/75.7 70.8 72.7/79.1 49.5 48.8 Full

  VGG19 68.6/67.8 72.4 72.1/79.3 62 36.8 Full

  InceptionResNetV2  69.9/63.7 73.1 72.7/79.2 55.6 37.3 Full

  DenseNet201  75.5/79.6 77.9 73.1/80.5 61.7 36.5 Full

  NASNetLarge  66.5/66.3 72.8 72.3/78.7 61.4 37.8 Full

The table presents a 5-fold cross-validation averages for the examined methodologies. HOG, histogram of oriented gradients; LBP, local binary 

pattern; SURF, speeded-up robust features. Values in bold font indicate the optimal performing methodologies.
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particular, the selected kernels for the studied SVMs were the 

following: Radial basis function for the multiclass and linear 

for the binary MBD classification. Finally, input feature vectors 
were generated from the original 5-fold splits of the corre-

sponding model to guarantee a fair evaluation.

Performance evaluation metrics. The studied binary clas-

sification models were evaluated mainly in terms of the area 
under curve (AUC) score, which is a widely used performance 

metric of class separability. The multi-class analyses were 

evaluated with the following accuracy (ACC) metric:

 TP + TN
 ---------------------------------------

 TP + TN + FP +FN

where TP, TN, FP, and FN stand for true-positive, true-negative, 

false-positive and false-negative respectively.

Results

All studied models were fitted on the same stratified hold‑out 
convergence (training/validation) set and evaluated on identical 

testing folds of cross-validation to ensure a fair and transparent 

comparison. This resulted in 64.6% training, 15.4% validation 

and 20% testing mammography images from the mini-MIAS 

and 63.9% training, 16.1% validation and 20% testing from the 

DDSM database, respectively.

Different algorithms and annotation strategies were 

performed on the two studied datasets to identify the optimal 

feature space representation. Accuracies in the mini-MIAS 

dataset ranged from 50.9% (GABOR + LBP selected features) 

to 74.2% (LBP) for three‑class classification, while for binary 
classification, the AUC scores varied from 48.7% (HOG 

selected features) to 78.0% (LBP). Similarly, the previously 

described methodology was applied on the full DDSM dataset 

for predicting the MBD scoring in a binary and multi-class 

annotation scheme. The optimal score (ACC 79.3% and AUC 

84.2%) for the feature-based techniques was observed in binary 

(non-dense versus dense mammograms) analysis with the 

SURF method. The full performance metrics of the proposed 

machine learning analyses are presented in Table I along with 

results from relevant studies in the literature.

The proposed 2D CNN, as depicted in Fig. 3, is a custom 

architecture with hyperparameters tuned on the studied data-

bases. Data augmentation was applied on the training set to 

Figure 2. Graphical representation of the machine learning workflow illustrating the three‑class breast density mammogram classification case.

Figure 1. The data stratification methodology for model fitting, hyperparameter optimization and transparent performance evaluation across every examined 
image analysis process.
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artificially increase the total number of samples up to a factor 
of 10 with targeted transformations, leading to models that are 

less prone to overfitting, as mentioned above (please see subsec-

tion entitled ‘Data augmentation’ in the section entitled ‘Deep 

learning-fully trained CNN methodology’). This increased 

the validation accuracy by 4% on average. The convergence 

process was performed on an Nvidia GTX 1070 with approxi-

mately 7 sec per epoch on the mini-MIAS and 34 sec per epoch 

on DDSM. The pre-trained models with ImageNet weights 

were downloaded from the Keras library and were utilized as 

‘off-the-shelf’ feature extractors with a new input and no fully 

connected layers. Only the convolutional kernels with weights 

trained on ImageNet were transferred to the new pipeline, 

where a feature vector was extracted from the last convo-

lutional layer of the model and an SVM was trained on the 

same cross validation folds as the previous methodologies. A 

complete pipeline overview of this methodology is provided in 

Fig. 4. An empirical comparison of the average cross-validation 

performance metrics reveals the superiority of the data-driven 

custom CNN against the other methodologies employed in 

this study. In addition, the proposed CNN exhibit a greater 

efficiency than those reported in relevant studies on datasets 

of similar sizes as presented above in the Introduction section, 

apart from the methodology reported by Bovis and Singh (6), 

achieving up-to 96.9% accuracy, but on a selected subset 

of DDSM dataset consisting of 377 images as opposed to 

this study with >2.500 patients. The proposed architecture 

demonstrates the highest performance in density scoring with 

AUC performance of up to 87.3% for the binary classification 
task and up to a 79.8% accuracy for the multi-class models. A 

complete comparison of the metrics across every methodology 

and the corresponding literature is provided in Table I.

Discussion

In the present study, modern machine and deep learning tech-

niques for MBD classification were developed and evaluated 
on two open datasets. A variety of texture and gradient-based 

features were investigated in the context of breast density 

scoring classification. Additionally, end‑to‑end image analysis 
architectures including fully trained CNN and ‘off-the-shelf’ 

deep learning models were also employed with the goal to 

increase accuracy in the automated breast tissue density 

classification.

Figure 3. Overview of the proposed architecture (fully‑trained CNN), including the network layout and layer parameters, such as the receptive field, number of 
filters, convolutional stride, activation function, number of neurons, dropout and classifier. CNN, convolutional neural network.

Figure 4. The examined pipeline for feature extraction and classification using ‘off‑the‑shelf’ pre‑trained methods.
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The examined classification clinical tasks were selected 
based on the current literature regarding mammography image 

analysis and classification. The majority of similar published 
works incorporate binary tissue type analysis (non-dense 

versus dense). This was achieved by merging the fatty and 

glandular into the ‘non‑dense’ class for binary classification in 
the mini-MIAS dataset. The DDSM can also be examined as a 

two-class set by merging fatty-glandular and dense-extremely 

dense, or as a three-class problem with fatty, glandular and a 

unified dense‑extremely dense and finally a four‑class analysis 
based on the BI-RADS criteria for tissue characterization.

The reported results in Table I confirm that deep learning 
architectures outperform feature-based methods by a wide 

margin, exhibiting increased performance regardless of the 

number of classes in the classifications tasks. The integration 
of the NCA feature selection process in the feature-based 

analysis did not improve the performance in most scenarios. It 

is noticeable that the performance of all the examined methods 

is reduced in the DDSM comparing to the MIAS database 

providing a robust and objective benchmark for performance 

evaluation mainly considering the larger patient cohort. As 

discussed in the previous section, according to the study by 

Bovis and Singh (6), the authors reported the optimal perfor-

mance method concerning the DDSM database, but using only 

a limited set of images of the DDSM database. As regards 

the findings of this study, the custom CNN achieved an AUC 
performance of up to 87.3%, the pre-trained ‘off-the-shelf’ 

models up to 79.6% and the best feature-based model up to 

70.6%, all for the MIAS database and the binary classification 
case. It is worth mentioning that the transfer learning technique 

seems promising, particularly as regards the investigation of 

fine‑tuning of the trained weights to better model the target 
domain by adapting additional neural and classification layers.

This study mainly focused on the medium-size database 

setting. As regards the presented deep-learning framework, 

other published studies using databases of similar sizes, have 

reported an AUC from 59 to 73% for binary MBD classification. 
In particular, Kallenberg et al (11) reported an AUC of 59%, 

while Fonseca et al (9) and Petersen et al (10) reported an ACC 

of 73% and AUC 68%, respectively. Driven from the results 

of this study, the deep learning methodology outperforms the 

aforementioned publications as shown in Table I.

Recently, in the literature, deep learning architectures for 

MBD classification have achieved greater performances than 
this study; however, these were with databases that are not 

publicly available and the sample sizes were in the order of tens 

of thousands of images. In particular, Lehman et al (22) claimed 

an accuracy of 86-94% on >40,000 examinations; however, 

some issues were raised regarding the density annotation by 

the expert radiologists. Similarly, Mohamed et al (23) reported 

an AUC of 92.6-98.8% from a cohort of 1,427 patients, but 

with >20,000 images. Ma et al (24) also reported an accuracy 

of 80.7-89% with 2,581 cases. It is important to note that the 

proposed methodology is not comparable with these studies due 

to the lack of performance metrics on benchmark open databases, 

such as the examined DDSM, the vastly different database size 

and the different, unknown data-curation curation strategies.

The high dimensionality of extracted features and the 

challenging feature selection process can be a limiting factor 

in feature-based methods. Selecting the optimal extraction 

algorithm and reduction strategy requires a domain expert in 

both clinical field and statistics. In particular, the extraction of 
HOG features could not be completed due to the high demand 

in computational time and memory resources for the analysis 

of a large dataset like DDSM. By contrast, deep architectures 

converge to better models with large databases, but require 

specialized high throughput computing (HTC) and a complex 

hyperparameter search to ensure a generalizable analysis. This 

can be partially resolved by utilizing pre-trained models with 

the only drawback being the potential need for fine‑tuning for 
domain adaptation.

A dense breast could possibly mask suspicious neoplasms 

difficult to differentiate in routine mammographic images; thus, 
a computer-based decision support can add valuable, objective 

information in support of the clinicians' assessment. To this end, 

MDB classification is a challenging and important task and the 
results of this study call for further research in this field, as well 
as for the further testing of new methodologies, particularly in 

the smaller dataset setting.

To facilitate future research, a meta-model analysis on 

multiple feature extraction methods, sophisticated selec-

tion algorithms and machine learning classifiers fused by a 
higher-level decision component, such as logistic regression, 

AdaBoost, weighted average or even voting could provide 

richer compact representations of the mammographic data 

improving the inference confidence. As regards the pre‑trained 
models, fine‑tuning could introduce domain‑specific analysis 
improvements allowing an end-to-end fully automated infer-

ence and consequently offering substantial performance gains. 

Finally, the integration of both cranio-caudal and medio-lateral 

mammographic images either in a unified model or by 

combining different methods, features and models derived 

from both views, may further enhance the prediction power of 

such automated breast density classification systems.
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