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Abstract: Wireless Underground Sensor Networks (WUSNs) have been showing prospective super-
vising application domains in the underground region of the earth through sensing, computation, and
communication. This paper presents a novel Deep Learning (DL)-based Cooperative communication
channel model for Wireless Underground Sensor Networks for accurate and reliable monitoring in
hostile underground locations. Furthermore, the proposed communication model aims at the effec-
tive utilization of cluster-based Cooperative models through the relay nodes. However, by keeping
the cost effectiveness, reliability, and user-friendliness of wireless underground sensor networks
through inter-cluster Cooperative transmission between two cluster heads, the determination of the
overall energy performance is also measured. The energy co-operative channel allocation routing
(ECCAR), Energy Hierarchical Optimistic Routing (EHOR), Non-Cooperative, and Dynamic Energy
Routing (DER) methods were used to figure out how well the proposed WUSN works. The Quality
of Service (QoS) parameters such as transmission time, throughput, packet loss, and efficiency were
used in order to evaluate the performance of the proposed WUSNs. From the simulation results, it
is apparently seen that the proposed system demonstrates some superiority over other methods in
terms of its better energy utilization of 89.71%, Packet Delivery ratio of 78.2%, Average Packet Delay
of 82.3%, Average Network overhead of 77.4%, data packet throughput of 83.5% and an average
system packet loss of 91%.

Keywords: wireless underground sensor networks; deep learning based cooperative communication
channel; multi-input-single-output

1. Introduction

Sensor Networks (SNs) are experiencing immense development with the effective
utilization of Artificial Intelligence (AI). The incorporation of SNs and AI can make a profit
in the business and manufacturing sectors [1,2]. In addition, SNs are extensively used to
gather ecological constraints in making appropriate decisions for homes and industrial
applications based on the learning experience of day-to-day activities in a real-time manner
with AI and Machine Learning (ML). Additionally, with AI, sensor fusion can be carried
out more comfortably and precisely than with traditional algorithms [3].

Sensors 2022, 22, 4475. https://doi.org/10.3390/s22124475 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22124475
https://doi.org/10.3390/s22124475
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3599-7272
https://orcid.org/0000-0002-4750-8384
https://orcid.org/0000-0003-1919-3407
https://orcid.org/0000-0002-4958-2043
https://doi.org/10.3390/s22124475
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22124475?type=check_update&version=1


Sensors 2022, 22, 4475 2 of 16

Moreover, neural networks can handle anonymous circumstances in an intelligent
way, as they have the ability to become aware of reimbursement methods for the training
data and potentially amplify the value of the consequences to the consumer. However,
the advancement of AI has the potential to undo the gesture of new sensor applications
and push market requirements for smart sensing with the ability to extract information
from sensors [4]. Before the original information is transferred using sensors to a system
for storing, the original information from sensors must be focused on for collecting the
sequence of information. Furthermore, automatically gathered data with tagged data for
the preparation of training ML algorithms are integrated; the AI sensors in robots are
similar in their provisions such as observation, listening, and manipulation in the same
manner as humans [5].

Man-made intelligence in horticulture is supporting ranchers by enhancing their
production and reducing indifferent manners. The agricultural trade categorically and
straightforwardly uses AI in their training to modify the order. The innovation of AI
aids in the control and management of any poor-quality circumstances. Most innovative
businesses in horticulture are gradually changing to an AI-empowered manner to tackle the
improvement of agrarian formation. AI facilitated mechanisms can recognize environmen-
tal changes faster and respond wisely. Organizations in agribusiness, with the assistance of
AI, are treating farming data to reduce aggressive outcomes. Simulated intelligence in a
high-level manner is assisting the rancher with the information. The required information
helps the land-keeper’s high income and profit without being dependent on harvest by
understanding and learning AI. In addition, AI is an effective method to recognize potential
deformities for DL applications in terms of designs in agribusiness [6].

On the other hand, the Cooperative communication model has been the best choice in
complex underground environments for a high density of scalable sensor nodes but without
compromising the greater inter-and intra-communication challenges. The cooperative
nodes in the sensor network possibly create a well-organized automated dynamic structure
to obtain a strong association in signal propagation amid communication hurdles and
millimeter waves. When DL techniques and Cooperative modeling are used together in the
right way, they can be used to reduce the effects of underground communication limitations
such as transmission delay, packet loss, and throughput [7].

The objectives of the paper are two-folded. First, the development of a DL-based
Cooperative communication channel model for WUSNs is carried out with the proper
utilization of cooperative sensor nodes to reduce the unnecessary energy consumption by
individual nodes. Second, the proposed Cooperative communication channel model for
WUSNs based on Deep Learning is meant to help people share resources.

The paper is organized into six sections. The literature survey is explained in Section 2.
Section 3 elucidates the contributions of DL and ML in the Underground Wireless Sensor
Network Environment. The proposed Deep Learning-Based Cooperative Communication
Channel Model for WUSNs is explained elaborately. The outcome of the proposed work and
experimental results are explained by the DL-Based Transmission Path Selection in WUSN.

2. Related Works

In this section, the various DL-based Cooperative communication channel models for
WUSNs and comparative analyses are explained through a literature survey.

Zhang et al. [1] provided a survey of DL techniques based WUSNs with possible uses of
various communication technologies and frameworks to make computational intelligence
implementation on wireless systems effective. They also presented an encyclopedic analysis
of DL-based cellular and internet connection research with classification into separate
contexts. C. Gungor et al. [8] provided a comprehensive experimental report on the
statistical analysis of the wireless medium in various electric power system settings, as
well as an underground network converter vault. Additionally, ambient sound, network
topology, and amplification in the 2.4 GHz frequency spectrum were also measured for
the wireless sensors in real-world power transmission and distribution lines. On the
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whole, analytical observations and current research provide useful information about IEEE
nonionic smart grid platforms to direct selections and note the drawbacks of the Internet of
Things (IoT). For solar-powered wireless sensor networks, Ge Yujia et al. [9] suggested a new
resource provider focused on cooperative text classification in order to extract electricity
more evenly to be distributed across the entire clustered network. In this multi-agent
setting, the collective plans of Q-learning and state-action-reward-state-action (SARSA)
are being used, with a dependence on parameters such as the node cluster head, projected
energy for the subsequent duration slot, and power knowledge of sensor nodes. Their
experiments revealed that the proposed method responds well to changing circumstances,
improvements in its specifications, and implementation of the quality service specifications.
Kisseleff et al. [10] looked at how MI-WUSNs change over time, how signals travel through
networks, how core networks work, and how free energy can be converted.

The two main paradigms of the WUSNs providing for estimating signal loss were
checked and contrasted by Huang H, Shi et al. [11]. It was stated that the Friis’ model
does not account for phase margin, since the pulsing loss and polarization shift losses
were not taken into account by the Fresnel model as a near field. A simple new model has
been suggested that identifies four categories of fading channels from the field dynamics
of the amplifier. In comparison to the Friis and Fresnel models, the proposed hybrid
model had good performance with field experimental results. For the conceptual scheme
in the radio frequency area, the coefficients are based on soil types. Zungeru et al. [12]
suggested a pulse power dependent on magnetic induction. Their analytical findings
of the Magnetic Modulation derived the pulse strength with a usual electromagnetic
field communication channel, an increase in signal-to-noise ratio, and fading channels of
variance in node. Shigeru Teruhi et al. [13] implemented a device that incorporates drive-by
information congregation and fixed information gathering in order to successfully gather
audible detection information. Tests calculating the radio transmission intensity through
underground sensor nodes have been implemented in different sub-surface settings to
assess the proposed underground radio propagation model.

WUSNs are made up of sensors that are hidden in the substrate and interact through
it with the underlying climate, such as moisture content and density, on the operational
controls of WUSNs. The underground sensor nodes constantly need to sense due to
precipitation and weather extremes, making remote contact far more difficult than in
traditional over-the-air sensor networks. Zhao et al. [14] suggested using sensors to detect
strategies to achieve accurate and resource-efficient data collection in complex WUSNs to
reduce the path loss through sensory information transfer, energy constraints, and device
traffic shaping. They also examined the impact of underground conditions on wireless
communications, route possibility, power production, and data aggregation functions in
terms of prompting questions about security and availability. The research of an intelligent
Wireless Sensor Networks (WSN) for backflow prevention and scale estimating in piping
systems was proposed by Sidra Rashid et al. [15]. In their work, autonomous functions
such as slow or small leakages in gas and oil pipelines using wireless connectivity and DL
are achieved. A sequence of experiments for a site-implemented test platform was used to
evaluate the efficiency and strengths in the detection of defects and size approximation in
reservoirs. S. Wang and Y. Shin [16] suggested an effective routing protocol using machine
learning and Q-learning to analyze strategic planning in structured channels. The authors
also extracted the upgrading function of the scheduling scheme by defining the individual
hopping incentive metric of duration and energy. Furthermore, they developed a legislative
factor to change the proportions between energy conservation and low delay, allowing
them to satisfy a variety of needs. The experiments demonstrated that the proposed method
provides a better communication range and lower transients. K. I. Wang et al. [17] proposed
the WUSNs architecture of agriculture by experimenting with a soil channel model to allow
precise simulations in real-world deployments using Long Range Wide Area Network
(LoRaWAN) technology.
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Silva et al. [18] explored the connection strength properties of the triple messaging
services accessible in WUSNs for groundwater pipeline monitoring. The three messaging
services in WUSNs, such as received signal frequency, link quality measure, and queue
length ratio, were measured. Their analysis indicated that the underground medium is
strongly perpendicular and cognitively consistent. An experiment involving many machine
learning-based electronic networks was developed and tested in an extracorporeal circuit
by X. Tan et al. [19]. The experiments were carried out in a controlled earthquake zone
with variables such as vegetative cover and salt content. They presented the principles and
instructions for designing the MI tunnel connectivity test platform, which is tremendously
hard and sustained owing to the latest communication protocols and wireless transmissions.
E. P. Stuntebeck et al. [20] investigated system communication arrangements to determine
the structures of multiple distant complex systems. For reference purposes, data from
the various sensors are controlled by a centralized terminal through a cellular connection
with fewer communication channels available. The sensors must be arranged properly for
efficient estimation at the gateway. They also devised an integrated Markov chain method
to deal with the task scheduling.

A systematic analysis was presented by Singh et al. [21] to capture the emergence
of construction methods in sensor network applications. The benefits and drawbacks of
various epochs in development were examined in their study to identify the potential
research topics in the wireless sensor unifying framework. The wide range uses of wireless
networks in a future era of information and network access, which have received much
interest in recent decades, were explained. They also handled the issue of the efficient
implementation of “cluster heads” to determine the output and longevity of any wireless
sensor network. Scholars have reported a number of models for deploying SNs in massive
open areas by Vikrant Sharma et al. [22]. Their studies also looked at the connection error
margin and the transmission range of accurate data signals for a network of underground
sensors using a subterranean sensor.

The various existing papers could provide solutions for monitoring dynamic under-
ground environments but with a lack of accuracy in decision making in WUSNs. The
inaccuracy has been because of conventional methods being used in the proposals in taking
decisions under hostile situations. In addition, due to the limited communication range of
WSNs in an underground environment, there must be flexibility in increasing the number
of sensor nodes. From the assessment and evaluation of the literature surveys, it is inferred
that the underground sensor networks certainly in need of DL methods that are accurate
and reliable in terms of decision making.

3. Deep Learning vs. Machine Learning (ML) in Underground Wireless Sensor
Network Environment

The differences between machine learning and DL in underground situations are given
as follows:

• DL needs more unlabeled training data than ML does to make accurate decisions,
because ML users use less data [23].

• DL is in need of high-performance hardware.
• ML needs certain functionalities to be precisely found by users, but DL creates fresh

functionalities by itself.
• ML breaks up the work into smaller pieces before putting the final results together

to make a decision. On the other hand, DL fixes mistakes in the order in which they
were made [24].

• When compared with ML, DL requires a long time to provide training.
• DL is able to offer sufficient steps and procedures for making decisions.

DL models are more flexible than ANN models, making them more sensitive to
overfitting. The number of variables and hidden networks in the network can be reduced,
and the network can be pruned after training [25]. Hence, the advantages of DL can be taken
for better decision making in monitoring and surveillance applications in underground
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environments using WSN. This section can be divided into subheadings in order to explain
the interpretation and conclusions in a clear and concise way [26].

4. Proposed Deep Learning Based Cooperative Communication Channel Model
for WUSNs

Figure 1 depicts a proposed DL-based wireless underground sensor network infras-
tructure with Cooperative communication nodes. The source and sink nodes of cooperative
modules have been critical components in monitoring outer communications. The compo-
nent of a Cooperative communication framework to allow the WUSN and DL networks
for efficient communication has been separated. Through the WUSN middleware console,
various system components collaborate for computation and storage functions [27]. As
a result, the virtualized distributed DL network structure is designed using the WUSN
middleware management platform. In the WUSN, nodes with storage capabilities, such as
source nodes, sink endpoints, and Cooperative access points, can contribute to building the
DL network of WUSN Middleware. The improved process will be communicated to solve
the problem of the sink node. Furthermore, the cooperating connections will be the main
computational components. Moreover, the Cooperative communication node is embedded
in the WUSN middleware controller.
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Figure 1. Deep learning network structure in WUSNs middleware.

The Deep Learning Auto Encoder (DLAE) is built on top of a distributed DL network.
The primary controller has hidden layers and output units. DLAE is responsible for
estimating the underground dynamic condition through information in the approach [28].
Local storage package query information needs to be gathered and sent to the server by the
sink nodes [29]. The previous information will also be examined in the input layers by the
analytics system during the test process. The analytics function summarizes the existing
data from many timestamp requests for the input layers in the preprocessing phase. The
DLAE then makes a forecast for the known data packet [30]. Depending on the forecast,
the WUSN middleware develops a storage approach. Additionally, the storage method
is matched up with these storage servers so that preemptive storage can happen over
time [31].

In this work, we identify the effects of multiple factors as well as utilize DL tools in
evaluating an optimal transmission strategy to decrease transmission loss and intelligent
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consumption of sensor power [27]. Using the DL method, the exploration of environmental
conditions impacts on wireless connectivity in underground surroundings, such as trans-
mission pathway loss, energy consumption, and system bandwidth balancing [32]. As
a result, the development of a dependable and powerful data collection transmission is
structured as a Cooperative and multi-constrained communication-based limitation.

The intended solution is identified from the surroundings and articulated together
for numerous limitations using DL approaches. An adaptive threshold strategy has also
been established to benefit from diverse networks [33]. The proposed methodology aims to
increase efficiency by means of transmission loss and energy constraints. Additionally, the
proposed method can enhance transmission dependability and reduce network costs.

4.1. Energy Model for DL Based Cooperative WUSN Communication Channel

One of the most common WUSN routing algorithms is Cooperative communication
concentrated routing protocols, in which sensors that make up the network are partitioned
into Cooperative cluster nodes subject to constraints. For each of these groups, they work
together as a large configuration to collect sensed data [34]. The standard method to figure
out how much energy has been lost because transmitters need power to send a (l) level of
compliance over a (w) wavelength is:

ET (l,w) = l (Etx + Esf × r2), whether h < h0 (1)

ET (l,w) = l (Etx + Epm × r4),whether h ≥ h0 (2)

In order to attain a (l) level of functionality, the receiving nodes will also burn a
significant amount of energy and the wasted energy, by the receiver:

ER (l) = l × Erx (3)

(Etx) and (Erx), respectively, reflect the actual capacity of each transmission used to
power the broadcasters and receiver radio equipment. (Esf) and (Epm) reflect the power
used by packages broadcast to operate the radio amplifier in attenuation and modulating
methods over several paths. The below link between (Esf) and (Epm) can also be used to
compute the threshold width [35].

h0 =
√

Esf + Epm (4)

The total power consumption is compensated by the connection between other end-
points in a communication network. The primary function of communications is not only to
find the shortest path from a source to a receiver but also to find a far more efficient method
to extend the process duration, which could be accomplished using DL methods [36].
Following the detection of environmental elements, the data will be transferred to the
source [37]. Information exchange energy consumption (Etx) among sensing devices can be
expressed as

Etx = Edtx × q + £ampl × lwar (5)

where,

• q denotes the maximum number of information packets transmitted;
• ar denotes the level of aspect ratio depending on the wireless communication case;
• lw is the length and width of the sensor nodes, which is denoted by d.
• £ampl is the set of enhancing equations needed to achieve a low bit error rate and

reliable broadcaster responses.
• Edtx is the energy dissolute to function for the sender/receiver and is expressed by

Edtx = Vcc × Ctp/qdr (6)

where
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• Vcc indicates the operational power.
• Ctp species the power for communication procedure
• qdr represents the information transmit velocity

The energy consumed for data receiving can be expressed as

ERx = Edrx × q (7)

4.2. DL Based Routing Model in WUSN

DL can maximize the utility by determining the optimum route through ongoing
testing with the environment. DL combines a hierarchical machine learning model with
reinforcement systems [38]. It is necessary to train variables using the current values of
reinforcement learning and to replace the reinforcement learning’s Q value table with
a neural network [39]. Depending on the type of Cooperative communication channel
construction and the benefits of DL in terms of evaluation and decision, the proposed route
planning strategy is based on labeled data to meet the Q-value table of DL. The DL-based
Routing model is depicted in Figure 2. The control layer mainly includes data collection
module, data processing module, routing decision module and processing module. Data
collection and processing are done before, it is given to the routing decision format in order
to get undergo flow table processing module. Here, the deep learning actually refers to the
decision making process which following the routing decision format.
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The essential aspects of the central controller in the overall system design are informa-
tion collection domain, information analysis, routing choice, and route table information
processing. The information collection domain collects a piece of data for data transfer to
reduce the dimensionality before route table information processing in the traffic method.
Finally, the path discovery decision module includes a traffic method-based method [40,41].
A DL neural network is used in the routing selection module to acquire sufficient knowledge
from the information collection domain and receive environmental monitoring attributes
using DL neural networks [29].

The trained neural network uses classification methods to accomplish the decision
making task. It may turn the current circumstances into tasks using suitable procedures and
evaluate various moving platforms [42]. Finally, the Q-value tables created by supervised
learning can be linked into key entities to act as the foundation for routing decisions. In
this work, a multi-Cooperative communication channel path routing scheme using deep r
training is built successfully:

Multi-Cooperative communication channel path routing Algorithm 1 based on Deep
Learning:
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Algorithm 1 Multi-Cooperative Communication Channel Path Routing

Initiate position = IP,
Final position = fp, Quality of Service intensity = δ

Least obtainable bandwidth of present connection = bw available
the volume amount of traffic = bwmin
(s, r) routing = routing values of sender/receiver
pp← present topology
While bwmin > 0
Configure monitoring valueset preprocessing condition of packets = Sp,
Initialize buffer pool storage amount
Loop traversal:

C = the data package’s choice of operation,
Perform the operation C to get re, se
Keep these values re, se, C to buffer pool storage
If the information in the memory pool is sufficient
Calculate _ Computation of the net carry away percentage

Computation Q (re, se, C; θ)
From Eval _ Net to target _ Net, there are N phases.
Target _ Subtract the sampling computation from the net value

Computation Q (r’e, s’e, C’; θ’)
Preparation neural network to obtain direction
Break
Else

if ip’ = fp
Else

ip = ip’
Final position Routing (s,d)← Routing
Using two nodes in this routing, least amount obtainable bandwidth
If bw available ≤ bwmin
t[nodes] = 0, to update t

The packet loss of traffic frequency is defined as the ratio of the total amount of
bandwidth lost by all traffic to the total amount of bandwidth requested by all traffic.

Loss rate = ∑_iBw loss(x)/∑_iBw (x) (8)

Bw shows the bandwidth of the xth traffic. xth traffic is the formula for specifying
traffic bandwidth loss.

Bwx
loss = Bwx minBwRx

bw (9)

Rx
bw includes the overall link throughput of the xth traffic’s forwarded pathway;

minBwRx
bw is the route’s minimal connection frequency.

5. DL Based Transmission Path Selection in WUSN

The ambient and contextual ubiquitous computing elements in implementing strategic
and energy-efficient sensory data collection broadcasts are carried out in underground
wireless environments. The operating segments of sensors have been used to save energy
and limit the number of packets with errors [37]. Sensor information is sent to sensor nodes
through a process called a Cooperative communication transmission channel. The creation
of an adaptive threshold strategy is also executed that learns from its interaction with the
environment in order to collect the data in order to make an effective contribution [35].

Fp = (wusnsn, Wway, Cway, Possway, Engway, Eblway) (10)

where

• wusnsn is the information from the original sensor network being sent to sensor node
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• Wway is a set of sensor nodes that participate in the transmission of sensory input from
the WUSN to the sensor node.

• Cway is a series of connections between two points of Wway.
• Possway is a collection of possibilities for different paths of Epath.
• Engway is a collection of energy necessities for the transmission of sensory information

from WUSNsn to SN.
• Possway is a collection of possibilities for different paths of wusnx to wusnx+1

Possway = {(Possway (wusnsn, wusn) Possway (wusnsn, wusnx+1) Possway (wusnway, SN)} (11)

Engway is a collection of energy necessities for the transmission of sensory information
from wusnsnto SN.

Engway = {Engway (wusnsn, wusn) Engway (wusnsn, wusnx+1) Engway (wusnway, SN)} (12)

Eblway is a set of variables for balancing load of Engway.

Eblway = {Eblway (wusnsn, wusn) Eblway (wusnsn, wusnx+1) Eblway (wusnway, SN)} (13)

The gathered information is regularly forwarded to SN via fp under the constraints of
Possway, Engway, and Eblway to obtain reliability and energy efficiency, with the absolute
maximum minimum cost method.

wusnx.energy > engcst (wusnx) £ fp × Vpath (14)

fpPossway (wusnx, wusnx+1) ≥ fp ×Wway (15)

wusnx, wusn x+1 £ fp ×Wway (16)

fpCway (wusnx, wusnx+1) = 1 (17)

avg (fpPossway) ≥ thsdap (18)

6. Experimental Results and Discussion

The design and evaluation of the proposed WUSN have been carried out with the
Qualnet Simulator. Methods such as ECCAR, EHOR, non-cooperative, and DER are used
to evaluate the performance of the WUSN environment. A group of 25 sensor nodes in a
WUSN is scattered in an area covering 100 m × 100 m. It is also assumed that a pair of
sensor nodes can communicate between them if the radius is 25 m.

• The maximum path loss can be computed using the highest transmission rate and
the shortest reception strength measurements [43]. It is understood that the path loss
is affected by the distance between the source and the destination. The operating
frequency is set at 900 MHz.

• Based on the energy equation to fix the energy of the underground sensors to 100 J
and the packet size to 125 bits [44].

• The ratios for power consumption and the dynamic routing factor are chosen to
highlight the equal priority of electricity usage and load balancing factor. The path
probability is chosen to ensure the reliability of the transmission pathways [27].

The proposed system was evaluated with a specific number of cooperative nodes in
Cooperative communication using a DL-based routing model and the quantity of energy
consumed was also compared.

Figure 3 presents a comparison of EHOR non-Cooperative routing and Dynamic DER
methods. In Figure 3, the X axis represents the number of nodes, and the Y axis represents
the Total Energy Consumption (kJ). It is suggested that the ECCAR is effectively used for
various numbers of Cooperative nodes to calculate the overall energy utilization. It has
also been seen that as the number of Cooperative nodes grows, so does the energy usage of
the four routing algorithms. If the number of cooperating nodes increases, then the number
of qualifying forwarding nodes impacts the increased energy utilization for transmitting,
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receiving, and sometimes even sleeping modes. The suggested ECCAR routing technique
improves previous EHOR, non-Cooperative routing, and DER routing mechanisms. Thus,
it is more suitable to find a network that works together. Routing problems use less energy.
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The effectiveness of the four different methods in terms of packet delivery ratio of
Cooperative communication nodes is analyzed in Figure 4. In this Figure 4, X axis represents
the number of nodes and Y axis represents the Packet Delivery Ratio (%). It has been studied
that as the intensity increases, the packet delivery ratio starts improving proportionally [45].
This is due to the fact that while Cooperative communication network nodes rise, additional
networks have the possibility of being identified as acceptable Cooperative nodes, resulting
in a greater packet delivery ratio. When the scalability increases, EHOR, DER, and non-
cooperative routing methods can attain higher packet delivery ratios. The ECCAR packet
delivery ratio is heavily influenced by the subsurface channeling diameter and the position
accuracy underground of the wireless sensor platform. In addition to that, the number
of sensor nodes in the underground is affected by the passive movement of cooperative
nodes in the WUSN, thus reducing the ECCAR packet delivery ratio. Hence, in the channel
selection process, the detecting and recovering modes are employed to increase the packet
delivery ratio in ECCAR to produce great results in the WSU networks.

The influence of node density on the average packet delay of the methods is depicted
in Figure 5. In Figure 5, the X axis represents the number of nodes, and the Y axis represents
the Average packet delay (s). The average packet delay of the techniques decreases as the
number of sensor nodes increases, due to the ability to discover more qualifying nodes
in their region to relay packets [46]. It is also found that the ECCAR has a longer average
packet delay than the other methods. Hence, the packets in ECCAR are only transported
within the route underground constructed from transmitter to receiver. On the other hand,
the underground nodes may not be as close to the upper sink as the surface nodes, which
make the average packet delay longer.

Figure 6 displays the effects on the average network overhead of the four techniques
at various node concentrations. In Figure 6, the X axis represents the number of nodes, and
the Y axis represents the Average Network overhead (bps) [47,48]. When compared to other
approaches, it can be seen that ECCAR has a lower average network overhead. The reason
for this is that in ECCAR, a large number of Cooperative nodes collaborate on the packet
transmission procedure using an efficient duplicate packet attenuation approach. However,
for the reason that it can discover a solution, the average overhead is lower than with other
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approaches. Therefore, the suggested method has less average network overhead than the
other methods.
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Figure 7 illustrates the Q value of DL for various Cooperative nodes, as well as various
routing strategies. In Figure 7, the X axis represents the number of nodes, and the Y axis
represents the Q Value (DB). Investigations have been conducted to compare EHOR, DER,
and ECCAR with different quantities of Cooperative nodes on a platform with DL-Q value.
It was found that a Cooperative communication node with the lowest Q value helps the
system to choose the cognitive node with the lowest power level.
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Figure 8 illustrates the data packet arrival rate, which is directly proportional to the
throughput. In Figure 8, the X axis represents the data packet arrival rate (packet/s) and
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the Y axis represents the data packet throughput (Mbps). As a result, ECCAR has some
superiority over other methods in achieving better throughput optimization.
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From Figure 9, it is inferred that as the data packet arrival demand rises, the network’s
average number of packet losses tends to increase as well. In Figure 9, the X axis represents
the data packet arrival rate (packet/sec) and the Y axis represents the average number of
system packet losses (packet/sec). The number of bytes delivered by the network per unit
time grows as the arrival rate of the data packet increases [25,49]. Figures 3–9 have been
compared individually between them and it is inferred that since the network is prone to
failure, the higher the quantity of data messages have been delivered with the greater the
percentage of packets lost. Hence, it is concluded that the efficiency of ECCAR has the
lowest average number of packet network instability.
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7. Summary of Contribution

As DL is a group of ML algorithms that provide a model with high-level substitutions
in data with architectures comprising more nonlinear changes, the proposed DL Coopera-
tive communication model relies on artificial neural networks to ensure the best decision
making at appropriate times. The DL-based model proposed has firmly undergone proper
training to enhance the reliability of the training processes to handle larger amounts of
data efficiently. In the first phase of training, the Deep ML process begins by labeling
huge quantities of data before finding out their functionalities. The proposed model also
permits the use of more difficult groups of features as it is capable of producing convenient
solutions with layers of neurons. Because the DL-based Cooperative communication model
is highly intelligent, the WUSN could be used for surveillance in any hostile environment.

8. Conclusions

A DL-based Cooperative communication channel model for WUSNs has been pre-
sented. The use of DL has been proven to be effective in terms of accuracy when trained
with an enormous quantity of information to construct smart assessments in underground
wireless environments. The proposed ECCAR, EHOR, non-Cooperative, and DER methods
have been used to investigate the performance of WUSN to evaluate the QoS parameters
such as transmission time, throughput, and packet loss. From the results, it is understand-
able that DL has been working well with the larger amounts of data on hand in terms of
scalability. Its efficiency also increases as the datasets increase. Furthermore, comparison
of the proposed model with the existing work is also made. From the simulation, it is
also inferred that the unnecessary energy consumption by individual nodes is reduced
as a result of the proper utilization of the Cooperative sensor nodes. The proposed Deep
Learning-based Cooperative communication channel model for WUSNs is unique as it
manages data inputs constantly to determine transparent decisions in the sharing of re-
sources. Future work will focus on issues such as the Min-Max problem of the required
Quality of Service (QoS) metrics, estimation of multi-hop routes using mobile relays, and
the development of deterministic channel state models using DL-based WUSN.
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