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ABSTRACT Breast cancer (BC) is one of the primary causes of cancer death among women. Early

detection of BC allows patients to receive appropriate treatment, thus increasing the possibility of survival.

In this work, a new deep-learning (DL) model based on the transfer-learning (TL) technique is developed

to efficiently assist in the automatic detection and diagnosis of the BC suspected area based on two

techniques namely 80-20 and cross-validation. DL architectures are modeled to be problem-specific. TL

uses the knowledge gained during solving one problem in another relevant problem. In the proposed model,

the features are extracted from the mammographic image analysis- society (MIAS) dataset using a pre-

trained convolutional neural network (CNN) architecture such as Inception V3, ResNet50, Visual Geometry

Group networks (VGG)-19, VGG-16, and Inception-V2 ResNet. Six evaluation metrics for evaluating the

performance of the proposed model in terms of accuracy, sensitivity, specificity, precision, F-score, and

area under the ROC curve (AUC) has been chosen. Experimental results show that the TL of the VGG16

model is powerful for BC diagnosis by classifying the mammogram breast images with overall accuracy,

sensitivity, specificity, precision, F-score, and AUC of 98.96%, 97.83%, 99.13%, 97.35%, 97.66%, and

0.995, respectively for 80-20 method and 98.87%, 97.27%, 98.2%, 98.84%, 98.04%, and 0.993 for 10-fold

cross-validation method.

INDEX TERMS Breast Cancer; Machine Learning, Deep-Learning, Transfer Learning, Image Classifica-

tion, Convolutional Neural Networks.

I. INTRODUCTION

Cancer tumor is related to abnormal cell growth, which

invades the surrounding tissues in the human body. There are

two types of tumor: benign and malignant. A benign tumor

consists of non–cancerous cells that grow only locally and do

not spread in the human body. in contrast, a malignant tumor

consists of cancerous cells, which are capable of multiply-

ing uncontrollably, spreading to various parts of the human

body, and invading the tissues. In the USA, approximately

12% of women are expected to be diagnosed with BC over

their lifetime. On average, one woman every two minutes is

diagnosed with BC in the USA [1], [2]. This makes BC the

most common type of cancer in women [3]. BC is a disease in

which breast cells grow uncontrollably. The BC type depends

on the cells that become cancerous. BC can start in various

parts of the breast. Breast consists of three main parts: lobes,

ducts, and connective tissue. Most BCs start in the ducts

or lobules. Therefore, early BC detection is significant in

increasing patient survival rates. The high morbidity and

considerable cost of healthcare-associated with cancer have

instigated researchers to implement more precise models for

cancer detection. Mammography and biopsy are the two most

common methodologies for BC detection. In mammography,

radiologist uses a specific type of breast images to detect
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early symptoms of cancer in women. Studies have shown that

mammography has led to a reduction in death rates caused

by BC. A biopsy is another efficient diagnostic methodology

for BC detection. Automatic identification and localization of

cancer cells are the main challenges in BC images due to their

variance in size, shape, and location. Other abnormalities,

such as mastitis, adenopathy, and granuloma, may also be

found in breast images [4]. Machine learning (ML) tech-

niques have found its wide applications in many fields such as

prediction problems in educational field [5]–[9], bankruptcy

prediction [10]–[16], pattern recognition [17]–[28], image

editing [29]–[39], feature reduction [40]–[44], fault diagnosis

[45]–[50], face recognition and micro-expression recogni-

tion [51]–[57], natural language processing [58], [59] and

medical diagnosis [60]–[74]. Especially, it has found its

great potential in BC diagnosis. In recent decades, various

solutions for automatic cell classification in BC detection

have been suggested by many researchers. In this context,

some researchers have worked on nucleus analysis by ex-

tracting nucleus features that represent useful information

in classifying cells into benign or malignant [75]. Simi-

larly, grouping-based algorithms using the circular Hough-

transform and various statistical features have also been ex-

ploited for nuclei segmentation and classification. However,

due to the complex nature of classic ML techniques, such

as preprocessing, segmentation, feature extraction, and other,

the system’s performance degrades in terms of efficiency and

accuracy. Traditional ML challenges can be overcome by the

DL method, which has emerged recently. This method is ca-

pable of achieving outstanding feature representation to solve

image-classification and object-localization tasks. The most

popular of the DL algorithms proposed in the literature are

the CNNs. The CNN architecture is specially modified with

the 2D input-image structure [76], [77]. A CNN-training task

requires a large amount of data, which lack in the medical

domain, especially in BC. A solution to this problem is to

use the TL technique from a natural-images dataset, such as

ImageNet, and implement a fine-tuning technique, as shown

in Fig. 1. The TL concept can be exploited to enhance the

performance of individual CNN architectures by combining

their knowledge [78]. The major advantage of TL is the

enhancement of classification accuracy and the speed-up of

the training process. An appropriate TL method is a model

transfer; first, the network parameters are pre-trained using

the source data, then these parameters are applied in the target

domain, and finally the network parameters are adjusted for

better performance [79]. In this context, a framework for

multi-class BC detection and classification based on TL is

proposed and implemented. The proposed model consists of

two main components. The first component consists of six

main phases (noise removal, histogram equalization, mor-

phological analysis, segmentation, image resizing, data split-

ting, and data augmentation), which are applied to improve

the breast images. Then, a pre-trained CNN such as, the

Inception V3, VGG19, VGG16, ResNet50, and Inception-

V2 ResNet, are used to transfer their learned parameters

to the BC-classification task. The major objectives of this

work are the automatic extraction of the affected patch using

segmentation, reduction in training time, and improvement in

classification performance.

This paper has the following contributions:

1) Reducing training time by extracting only the affected

regions from breast images.

2) Using noise reduction, histogram equalization, and mor-

phological analysis methods to improve the affected areas

detection.

3) Improving the classification performance by changing the

pre-trained networks classifier.

4) Solving the problem of overfitting.

Other contributions of this paper as follows:

• DL is introduced to help in BC automatic diagnosis.

• Compared between many pre-trained CNN such as

Inception V3, ResNet50, VGG-16, VGG-19, and

Inception-V2 ResNet results.

• Six different measures are used as accuracy, sensitivity,

specifity, precision, AUC, and F-score.

This paper is organized as follows. In Section II, the related

work is discussed, whereas a description of the proposed

model for BC detection and classification using TL tech-

niques is presented in Section III. The experimental results

compared with real data are presented in Section IV. Finally,

the paper is concluded in Section V.

II. RELATED WORK

Ting et al. [80] implemented a deep CNN for BC-lesion clas-

sification. This network consisted of 1 input layer, 28 hidden

layer, and 1 output layer. Overfitting was avoided using the

feature-wise-data augmentation (FWDA) algorithm. Their

proposed method sequentially achieved 89.47%, 90.50%, and

90.71% for sensitivity, accuracy, and specificity, respectively.

Toğaçar et al. [81] proposed the BreastNet, which consisted

of convolutional, pooling, residual, and dense blocks, and

it was capable of extracting the most effective features

from breast images. BreastNet achieved better results than

AlexNet, VGG-16, and VGG-19 models as its accuracy

approached 98.80%. Abbas [82] presented a multi-layer DL

architecture for classifying benign and malignant regions in

breast images. This network consisted of four phases for

extracting invariant features, which were transformed into

deep-invariant features, and learning features for making

the final decision. In [82], the MIAS dataset was used and

achieved a 92%, 84.2%, 91.5%, and 0.91 for sensitivity,

specificity, accuracy, and AUC, respectively. Using the same

dataset, Sha et al. [83] presented a method for automatic

detection and classification of the cancerous region in breast

images. Their proposed method was based on CNNs and the

grasshopper optimization algorithm. The results showed that

this proposed method was capable of achieving 96%, 93%,

and 92% for sensitivity, specificity, and accuracy, respec-

tively. Charan et al. [84] trained a CNN for BC detection.

Their proposed CNN consisted of six convolution layers,

four average-pooling layers, and three fully-connected layers

2 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3079204, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Image
Net

Conv1C 1

Conv2C 2

PoolingP li

Conv3C 3

FC1FC1

FC2

Conv1

FC2

Softmax

Source Labels

C 1

Conv2C 2

PoolingP li

Conv3C 3

FC1

Target Labels
Fr
o
ze
n

Fi
n
e
Tu
n
e
d

Transfer

Features

FIGURE 1: Transfer learning method

(FCLs). They used a size of 224 x 224 for the input image and

the Softmax (SM) function to apply the classification results.

The overall accuracy of this network was 65%, which was

obtained using the MIAS database. In [85], Wahab et al. ex-

ploited a pre-trained CNN and transferred its learned param-

eters to another CNN for mitoses classification. Their pro-

posed method achieved 0.50, 0.80, and 0.621 for precision,

recall, and F-measure, respectively. In addition, for multi-

class BC-classification purposes, Lotter et al. [75] proposed

a model in which the features were extracted using a pre-

trained ResNet50 network. Their model was capable of clas-

sifying lesions into five classes: mass, calcifications, focal

asymmetry, architectural distortion, or no lesion. Their model

achieved 96.2, 90.9, and 0.94 for sensitivity, specificity, and

AUC, respectively. Jiang et al. [86] achieved better BC-

classification accuracy in the case of TL from a pre-trained

network in building networks from scratch. The accuracy

approached 0.88 using GoogleNet and 0.83 using AlexNet on

the film mammography number 3 (BCDR-F03) dataset. Khan

et al. [87] implemented a model in which the breast-image

features were extracted using pre-trained CNN architectures,

namely, GoogleNet, VGGNet, and ResNet. The model’s ac-

curacy, which approached 97.525%, was evaluated using a

standard benchmark dataset. Cao et al. [88] improved the

performance of TL for BC-classification without any fine-

tuning on the source network layers (ResNet-125). Instead,

they used random forest dissimilarity for combining various

feature groups. The “ICIAR 2018” dataset was used, and the

classification accuracy was improved to 82.90%. Deniz et

al. [89] fine-tuned the last three layers in the AlexNet and

VGG16 models to classify breast tumors on the BreaKHis

dataset. Their model achieved better accuracy than five other
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methods as it approached 91.37%. In the same dataset, Celik

et al. [90] pre-trained the DenseNet-161 model and achieved

92.38% and 91.57% for the F-score and accuracy, respec-

tively.

III. MATERIALS AND METHODS

The proposed method for BC detection and classification

consists of two main components. The first component is

used for data preprocessing and the second for transferring

the CNN parameters, as shown in Figs. 2 and 3.

A. DATA PREPROCESSING

Image preprocessing is very important to remove the limits

of observing abnormalities without undue influence from a

mammogram. In this work, the tumor regions are automat-

ically extracted using segmentation techniques before the

learning process to reduce computation time. Image quality

can be improved and the segmentation results can become

more accurate using noise removal, histogram equalization,

and morphological analysis before segmentation. As shown

in Fig. 2, data preprocessing consists of seven phases.

1) Noise removal

A 2D median filter of a 3 x 3 size is applied to remove the

digitization noise from the mammogram image.

2) Histogram equalization

Classical histogram equalization is applied to improve the

contrast for all levels of the original image. This is accom-

plished by effectively distributing the most frequent gray

level of the image that is, stretching the intensity range of

the image. In mammogram images, histogram equalization is

applied to make contrast adjustment so that image anomalies

become more visible.

3) Morphological analysis

The morphological analysis is an important process for re-

moving non-breast regions before segmentation so that the

results are not affected. In morphological operations, the

relevant structures are extracted from the input image after

applying the structuring element (SE). The output image of

this operation has the size of the input. The value of each

pixel depends on the corresponding pixel in the input and

its neighbors. The operations described in Fig. 4 can be

estimated as follows [91]:

• Image Opening (IO)

IO = Inp ⊖ SE ⊕ SE (1)

• Image Closing (IC)

IC = Inp ⊕ SE ⊖ SE (2)

• White Top-hat (WTH)

WTH = Inp − IO (3)

• Black Top-hat (BTH)

BTH = IC − Inp (4)

• Mathematical Morphological (MM)

MM = Inp + WTH − BTH (5)

where ⊕ and ⊖ refer to the dilation and erosion operations,

respectively.

4) Segmentation

The computation time can be reduced, and the analysis can

be focused on the region mostly affected by cancer using

a threshold-based segmentation method for automatic patch

extraction [92].

5) Image resizing

The breast images are resized and converted into three chan-

nels: red green, and blue (RGB) to match the input size of the

pretrained CNN architecture.

6) Data splitting

The MIAS dataset is split into “80%” for the training set and

“20%” for the testing set [93]–[95].

In addition, to overcome the problem of over-fitting, the

experiments have been re-performed using a cross-validation

technique with 10-folds. The cross-validation idea is the

partitioning of the dataset to k folds with equal size. After

that, k-1 folds will be used to train the classifier and the

remaining fold will be used to test data to predict each sample

label. The final result is the average of different data rounds

[96].

7) Data augmentation algorithm (DDA)

DL models work better when large datasets are used. Data

augmentation is considered one of the most popular methods

to increase the size of the dataset, which helps overcome

overfitting when training a very small amount of data. In

this work, the training data can be augmented using a set

of transformations. DAA is implemented to increase the

input data. First, the segmented images are rotated clockwise

to 90º, 180º, 270º, and 360º. Then, every rotated image is

flipped vertically. In this way, an input image will produce

eight images. The detailed algorithm for data augmentation

is shown in Alg. 1.

B. DEEP-CNN TRAINING BASED ON TL

In this work, the Inception V3, ResNet50, VGG19, VGG16,

and Inception-V2 ResNet networks are used for feature

extraction. These networks are trained using the ImageNet

dataset. The filters in the network layers are used to recognize

the input features such as colors, vertical, and horizontal

lines. Subsequently, trivial shapes and small parts can be

recognized. From the generated output, the class in which

the input image belongs (i.e. cats, birds, and other) can be

determined. Next, the pre-trained network for classifying
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FIGURE 2: Data pre-processing

FIGURE 3: Transferring CNN parameters

different objects in a new dataset is applied (in this work

for BC-classification to perform TL). The trained parameters

from the source task, except for the last three (FCL, SM,

and classification) layers are frozen and transferred to the

target task, as shown in Fig. 3. Then, the extracted patches

from the segmentation process during preprocessing are used

to continue the network training. Hence, the newly-trained

dense layers are few. Furthermore, the already-trained layers

in the pre-trained network are combined with these layers for

a new class classification. Thus, the training process can be

created very quickly and very few training data are needed

compared with the CNN training from scratch. The extracted

features are then used to train support vector machine (SVM)

and SM classifiers for applying classification task. Fine-

tuning is conducted using the stochastic gradient-descent

(SGD) method with momentum (SGDM), which is actually

an improved version of SGD with the learning parameters

shown in Table 1. SGDM’ goal is to increase velocity in

all dimensions, even in those with consistent gradient. Due

to SGDM jittering, gradient high-velocity dimensions are

reduced, whereas past gradients that have some momentum

are reduced due to a saddle point when the current gradient is

approximately zero [97] [98]. Here, the same hyperparameter

setting is used in all experiments (before & after preprocess-

ing). The ResNet50 network was proposed by the Microsoft

research team [99], where 50 represented the number of deep

layers. It contains 48-convolution, 1 average-pooling, and 1

max-pooling layer with a 224 x 224-input size. The residual

block is a concatenation for three convolution layers. The

overall architecture is shown in Fig. 5. The Inception-V2

VOLUME 4, 2016 5
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FIGURE 4: Mathematical morphological operation

ResNet network contains 148 deep layers, and it is capable

of classifying 1000 classes. This network was developed by

the Google research team. The network has an input-image

size of 244 x 244, as shown in Fig. 5. A detailed description

of the Inception-V2 ResNet, stem, and reduction blocks was

discussed in [100]. The Inception V3 is a CNN developed

by the Google research team. It contains 48 layers with an

input-image size of 299 x 299. The Inception V3 network

is trained using the ImageNet database, which contains one

million training images in 1,000 categories. The Inception

V3 has a decreased set of parameters due to factoring larger

convolution layers into smaller ones and using different other

means. A set of changes to the basic structure of the Inception

V3 leads to a faster and more accurate architecture, which

also works for smaller datasets as discussed in [101]. The

RMSProp Optimizer is added to the Inception V3 network

in addition to factorized 7x7 convolutions. The basic archi-

tecture of the Inception V3 network is presented in Fig. 6.

The VGG19 is a CNN developed by the Visual Geometry

Group at Oxford’s and thus, the name VGG. The VGG19 is

a variant of VGG models trained over the ImageNet database

and contains 19 deep layers (16 convolution and 3 max-

pooling layers) with an input-image size of 244 x 244. The

kernel size used in the VGG19 is 3 x 3 with 1 stride size,

whereas max-pooling is performed in a 2 x 2-pixel window

with a stride size equal to 2. There are different variants of the

VGG such as VGG16 and others. The major disadvantage

of this CNN is its large size in terms of the number of

6 VOLUME 4, 2016
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Algorithm 1 Data augmentation algorithm (DDA)

Input:

Benign B, Malignant M, Normal N segmented mammogram image.

Processing:

Step1: ∀ B, rotate to 0°, 90°, 180°, 270°

Step2: Perform flip on all step1.

Step3: ∀ M, rotate to 0°, 90°, 180°, 270°

Step4: Perform flip on all step3

Step5: ∀ N, rotate to 0°, 90°, 180°, 270°

Step6: Perform flip on all step5

Repeat for all training data

Output:

Save steps1,2,3,4,5,6

parameters to be trained. The VGG19 CNN is bigger than

the VGG16. However, since the VGG19 performs almost as

well as the VGG16, many people use the VGG16 [102]. The

basic VGG19 architecture is presented in Fig. 6. The VGG16

is trained over the ImageNet database. Its architecture is

deep and very simple. As shown in Fig. 6, it consists of 13

convolution layers and 5 max-pooling layers, followed by

three FCLs and an SM classifier. The input is a 224 x 244-

RGB image. The applied filters are 3 x 3 with a stride equal

1, whereas max-pooling is a 2 x 2-pixel window with a stride

equal to 2 [102].

IV. RESULTS

A. DATASET DESCRIPTION

As shown in Fig. 7, the digital database for screening mam-

mography (DDSM), MIAS, and private datasets are the most

popular databases used for BC-classification models based

on the statistics discussed on [103]. In this work, the applied

mammogram database was provided by MIAS. Every image

has a 1024 x 1024 size in portable gray map (PGM) format.

The MIAS includes 322 images in three classes, 61 images

for the benign case, 52 images for the malignant case, and

209 for the normal case. Data details are shown in Table

2. It provides details for ground-truth information on the

mammogram images such as background tissue, abnormality

present class, tumor type, abnormality center coordinates,

and approximate radius for enclosing the abnormality circle.

The abnormality class is presented by six forms; calcifica-

tion (CALC), well-defined circumscribed masses (CIRC),

spiculated masses (SPIC), other ill-defined masses (MISC),

architectural distortion (ARCH), and asymmetry. A tumor

region in the mammogram images is presented in Fig. 8.

B. EXPERIMENTAL ANALYSIS

In this section, several experiments conducted for investigat-

ing the performance of the proposed model on the MIAS

dataset are presented. Here, TL is applied to five DL models

(Inception V3, Inception-V2 ResNet, VGG16, VGG19, and

TABLE 1: Parameter settings.

Sr. no Parameter Value

1 Minimum batch size 10
2 Maximum Epochs 20
3 Learn-rate drop factor 0.5
4 Initial-learn rate 1e-4
5 Learn-rate drop period 5

TABLE 2: MIAS data description.

Class Sub-class of abnormality present Number

Benign

CIRC 19
CALC 10
SPIC 11
MISC 7
ARCH 9
ASYM 6

Total = 62

Malignant

CIRC 4
CALC 13
SPIC 8
MISC 7
ARCH 10
ASYM 9

Total = 51

Normal __ 209

ResNet50) and compared in terms of accuracy, precision,

sensitivity, specificity, and AUC. The dataset was divided

into three classes “Benign, Malignant, and Normal.” Then,

it was split to 80% and 20% for the training and testing

tasks, respectively. The efficiency of the proposed models

was measured using the evaluation metrics for three classes,

as shown in Table 3 and Eqs. 6 - 10. The benefits of

preprocessing were investigated by conducting experiments

twice, before and after preprocessing. The classifier perfor-

mance results without preprocessing are presented in Table

4. It can be observed that the Inception-V2 ResNet achieves

the best performance results in terms of accuracy, whereas

the Inception V3 was ranked the second-best in terms of

accuracy. On the other hand, the VGG16 achieves the best

results in terms of sensitivity and specificity with 55.76%

VOLUME 4, 2016 7
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FIGURE 6: The Inception V3, VGG16, and VGG19 architectures

and 69.68%, respectively. Also, the ResNet50 achieves better

results in terms of precision, AUC, and the F-score with

values of 34.84%, 0.55, and 34.00%. The first component

of the proposed model for preprocessing phase results is

described in Fig. 9. The training data to be used as a training

input for the proposed CNN are then augmented using DAA,

as shown in Fig. 10. The results presented in Table 5 confirm

that the VGG16 achieves the best results in the case of TL in

the BC detection mechanism with SM classifier.
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FIGURE 7: Dataset frequency usage for breast-tumor classification

Labeled Data :

F CIRC B 674 443

79

Data Description:

F= Fatty

CIRC = Well-defined/

circumscribed masses

B= Benign

(X,Y) coordinates= (674, 443)

Radius from center = 79

Labeled Data :

G CIRC M 538 681

29

Data Description:

G= Fatty-glandular

CIRC = Well-defined/

circumscribed masses

M = Malignant

(X,Y) coordinates= (538, 681)

Radius from center = 29

FIGURE 8: Tumor description in the mammogram images

TABLE 3: Evaluation metrics for BC-classification.

Predict
Benign Malignant Normal

Actual
Benign PBB (TP) PMB PNB

Malignant PBM PMM (TP) PNM

Normal PBN PMN PNN (TP)
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 Origin Data Origin Data  Tumor Location  Tumor Location STEP 1: Noise RemovalSTEP 1: Noise Removal

STEP 2: Histogram EqualizationSTEP 2: Histogram Equalization STEP 3:Morphological AnalysisSTEP 3:Morphological Analysis STEP 4: Extracted Patch By SegmentationSTEP 4: Extracted Patch By Segmentation

FIGURE 9: MIAS data preprocessing results

TABLE 4: BC-classification performance of various CNNs before preprocessing.

CNN
Classifier Performance

Accuracy (%) Sensitivity (%) Specificity (%) Precision

(%)

AUC F-score (%)

Inception V3 62.50 33 63.7 33.8 0.43 29.70
VGG19 54.69 21.21 63.9 27.67 0.43 24.00
VGG16 59.38 55.76 69.68 32.1 0.49 30.30
ResNet50 54.69 34.77 66.62 34.84 0.55 34.00
Inception-V2 ResNet 64.06 0.22 55.12 32.5 0.51 26.00

Accuracy =
PBB + PMM + PNN

PBB + PMB + PNB + PBM + PMM + PNM + PBN + PMN + PNN

(6)

Sensitivity =
TP

TP + FN
(7)

Precision =
TP

TP + FP
(8)

Specificity =
TN

TN + FP
(9)

F - score =
2 ∗ Percision * Sensitivity

Percision+ Sensitivity
(10)
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DAA

FIGURE 10: Results obtained using the data augmentation algorithm

TABLE 5: BC-classification performance of various CNNs after preprocessing using 80:20 and SM classifier.

CNN
Classifier Performance
Accuracy (%) Sensitivity (%) Specificity (%) Precision

(%)

AUC F-score (%)

Inception V3 96.19 92.6 96.7 91.3 0.99 91.8
VGG19 94.35 89.86 94.8 88 0.97 88.3
VGG16 96.77 96 98 91 0.99 93
ResNet50 95.27 92 95.6 90 0.97 91
Inception-V2 ResNet 93.42 90.66 96 82.7 0.978 86

TABLE 6: BC-classification performance of various CNNs per class using 80:20 and SM classifier.

CNN Class
Classifier performance per class

Accuracy

(%)

Sensitivity Specificity Precision AUC F-score

Inception V3 Benign 96.89 0.96 0.97 0.87 0.99 0.91
Malignant 96.02 0.86 0.98 0.89 0.98 0.874
Normal 95.67 0.96 0.95 0.98 0.99 0.97

VGG19 Benign 94.12 0.80 0.982 0.93 0.96 0.86
Malignant 95.5 0.946 0.956 0.76 0.986 0.84
Normal 93.43 0.95 0.905 0.95 0.973 0.95

VGG16 Benign 97.06 0.99 0.97 0.85 0.992 0.914
Malignant 97.4 0.95 0.98 0.88 0.99 0.91
Normal 95.85 0.94 0.99 1.0 0.992 0.97

ResNet50 Benign 94.81 0.89 0.96 0.83 0.95 0.86
Malignant 97.58 0.92 0.99 0.92 0.99 0.92
Normal 93.43 0.94 0.92 0.96 0.97 0.95

Inception-V2 ResNet Benign 92.21 0.89 0.93 0.67 0.965 0.764
Malignant 96.02 0.93 0.97 0.82 0.988 0.87
Normal 92.04 0.90 0.98 0.99 0.98 0.94
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TABLE 7: BC-classification performance of various CNNs after preprocessing using 10-fold cross-validation and SM classifier.

CNN
Classifier Performance

Accuracy (%) Sensitivity (%) Specificity (%) Precision

(%)

AUC F-score (%)

Inception V3 96.41 93.2 97.6 92.1 0.99 92.6
VGG19 94.44 90.62 93.22 89.02 0.98 89.81
VGG16 96.65 95.44 96.92 91.5 0.98 93.42
ResNet50 96.01 91.12 96.5 90.2 0.98 90.65
Inception-V2 ResNet 93.83 91.44 93.2 83.1 0.98 87.07

TABLE 8: BC-classification performance of various CNNs after preprocessing using 80:20 and SVM classifier.

CNN
Classifier Performance
Accuracy (%) Sensitivity (%) Specificity (%) Precision

(%)

AUC F-score (%)

Inception V3 98.15 96.93 98.57 95.4 0.993 96
VGG19 95.84 91.33 96.37 90.66 0.982 91.33
VGG16 98.96 97.83 99.13 97.35 0.995 97.66
ResNet50 97.11 94.73 97.6 93.03 0.978 93.66
Inception-V2 ResNet 94.23 88 94.96 87.2 0.984 87.33

TABLE 9: BC-classification performance of various CNNs per class using 80:20 and SVM classifier.

CNN Class
Classifier performance per class

Accuracy

(%)

Sensitivity Specificity Precision AUC F-score

Inception V3
Benign 98.62 0.99 0.985 0.936 0.997 0.96
Malignant 98.1 0.945 0.9876 0.934 0.99 0.94
Normal 97.75 0.973 0.984 0.992 0.992 0.98

VGG19
Benign 95.67 0.889 0.972 0.881 0.971 0.89
Malignant 96.19 0.888 0.975 0.869 0.99 0.88
Normal 95.67 0.963 0.944 0.97 0.985 0.97

VGG16
Benign 99.31 0.99 0.993 0.97 0.997 0.98
Malignant 98.62 0.956 0.991 0.956 0.992 0.96
Normal 98.96 0.989 0.99 0.99 0.996 0.99

ResNet50
Benign 97.4 0.935 0.982 0.927 0.96 0.93
Malignant 97.23 0.941 0.977 0.88 0.992 0.91
Normal 96.71 0.966 0.969 0.984 0.982 0.97

Inception-V2 ResNet
Benign 94.12 0.872 0.955 0.809 0.975 0.84
Malignant 94.64 0.821 0.971 0.847 0.99 0.83
Normal 93.94 0.947 0.923 0.96 0.989 0.95

TABLE 10: BC-classification performance of various CNNs after preprocessing using 10-fold cross-validation and SVM

classifier.

CNN
Classifier Performance

Accuracy (%) Sensitivity (%) Specificity (%) Precision

(%)

AUC F-score (%)

Inception V3 98.45 97.2 98.9 93.5 0.994 95.31
VGG19 95.92 92.41 95.21 91.96 0.99 92.18
VGG16 98.87 97.27 98.2 98.84 0.993 98.04
ResNet50 96.87 94.24 96.99 95.45 0.97 94.84
Inception-V2 ResNet 94.76 88.86 94.72 88.14 0.987 88.49

TABLE 11: Comparison between the proposed model and existing models.

Method Accuracy (%) Sensitivity (%) Specificity (%) Precision

(%)

AUC F-score (%)

Abbas (2016) 91.5 92 84.2 - 0.91 -
Charan (2018) 65 - - - - -
Ting et al. (2019) 90.50 89.47 90.71 - 0.90 -
Sha et al. (2020) 92 96 93 - - -
Proposed 98.96 97.83 99.13 97.35 0.995 97.66
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The detailed results per class are presented in Table 6. From

this table, it can be observed that: 1) In the benign case, the

VGG16 was ranked first in terms of accuracy, sensitivity,

AUC, and the F-score, whereas the VGG19 was ranked first

in terms of specificity and precision. 2) In the malignant

case, the ResNet50 achieved the best accuracy, specificity,

precision, and the F-score. In the last case (Normal), the

VGG16 was ranked first in terms of accuracy, specificity,

precision, and AUC, whereas the Inception V3 was ranked

first in sensitivity.

The results of 10-fold cross-validation are shown in Table

7. It can be noted that the cross-validation method achieved

better results than the 80-20 technique in all CNNs ex-

cept VGG16. The results obtained from the SVM classifier

achieved better than the results obtained from the SM classi-

fier as presented in details in Tables 8 - 10. The experiments

performed are presented in Table 11, where the performance

is compared with four other existing models. The analysis

results confirm that the proposed model performs better

than other existing models in terms of accuracy, sensitivity,

specificity, and AUC.

V. CONCLUSION

In this paper, a novel deep learning model for improving the

classification results on the MIAS dataset was proposed. The

purpose of this model is to help medical doctors in BC detec-

tion and diagnosis. The MIAS images were divided into three

different classes, benign, malignant, and normal. The original

MIAS dataset was pre-processed for noise removal, improv-

ing contrast in breast images, non-breast region removal,

and determining the cancerous area. The data augmentation

concept was also proposed for increasing the size of a dataset

to enhance the performance of the CNN structure. Then, the

freezing and fine-tuning strategies were used to improve the

mass-lesion classification accuracy of the mentioned dataset.

The VGG16 model achieved the best accuracy, sensitivity,

specificity, AUC, and the F-score compared with four other

models. Finally, it can be concluded that integrating the CNN

using learning transfer in the screening mechanism, a clear

improvement can be achieved compared with other existing

approaches. The results showed 98.96% accuracy, 97.83%

sensitivity, 99.13% specificity, 97.35% precision, 97.66% F-

score, and 0.995 AUC. These results are better than the other

mentioned methods.

In future work, the proposed method can be further used to

diagnosis or prognosis of paraquat-poisoned patients [104]–

[109], identification of poisoning status [110]–[112], diagno-

sis of tuberculous pleural effusion [113], differentiation of

malignant and benign thyroid nodules [114], early diagnosis

of Parkinson’s disease [115]–[119], RNA secondary structure

prediction [120], detection of erythemato-squamous diseases

[121], online recognition of foreign fibers in cotton [122].
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