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Chronic diseases are one of the biggest threats to human life. It is clinically significant

to predict the chronic disease prior to diagnosis time and take effective therapy as

early as possible. In this work, we use problem transform methods to convert the

chronic diseases prediction into a multi-label classification problem and propose a novel

convolutional neural network (CNN) architecture named GroupNet to solve the multi-label

chronic disease classification problem. Binary Relevance (BR) and Label Powerset (LP)

methods are adopted to transform multiple chronic disease labels. We present the

correlated loss as the loss function used in the GroupNet, which integrates the correlation

coefficient between different diseases. The experiments are conducted on the physical

examination datasets collected from a local medical center. In the experiments, we

compare GroupNet with other methods and models. GroupNet outperforms others and

achieves the best accuracy of 81.13%.

Keywords: multi-label classification, chronic disease, group block, GroupNet, correlated loss

INTRODUCTION

Chronic diseases account for a majority of healthcare costs and they have been the main cause of
mortality in the worldwide (Lehnert et al., 2011; Shanthi et al., 2015). With the development of
preventive medicine, it is very important to predict chronic diseases as early as possible. However,
it is difficult for clinicians to make useful diagnosis in advance, because the pathogeny of chronic
disease is fugacious and complex. In general, clinicians firstly form the diagnostic results of chronic
disease according to the physical examination records based on their expertise and experience.
Nevertheless, with more and more physical examination records produced, clinicians would have
difficulty forming accurate diagnosis in limited time. Artificial intelligence technology has brought
enormous reform in medical domain, and it can help doctor diagnose by forming the diagnostic
results automatically based on the prediction models. In clinical practice, a symptom is always
associated with multiple chronic diseases based on the physical examination records. Hence,
the diagnosis or prediction of multiple chronic diseases could be transformed into a multi-label
classification problem.

Multi-label classification problem is one of the supervised learning problems where an
instancemay be associated withmultiple labels simultaneously. Currently, Multi-label classification
problems have appeared in more and more applications, such as diseases prediction, semantic
analysis, object tracking, and image classification, etc. Many successful multi-label algorithms
have been obtained by the problem transformation methods. Problem transformation methods
firstly convert the multi-label classification problems into several binary classification problems
or a multi-class classification problem, and then apply original machine learning algorithms to
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handle them. The binary relevance (BR) method and label
powerset (LP) method (Zhang and Zhou, 2014) are two
representative label transformation methods. Plenty of
competitive machine learning algorithms have been proposed
based on problem transformation methods in the literatures,
such as support vector machines (SVM) (Gu et al., 2015; Khan
et al., 2018), decision tree (DT) (Hong et al., 2018), random
forest (RF) (Murphy, 2018), etc.

Currently, deep learning technique is applied to various fields
successfully since it provides amore efficient learningmechanism
for classification problems than classical machine learning
methods. For medical data analysis, numerous machine learning
methods have been applied to analyze various medical data.
BPMLL (Zhang and Zhou, 2006) is a back-propagation neural
network for multi-label functional genomics classification, and it
addresses correctly predicted labels that should be ranked higher
than those mistakenly predicted labels by modifying the loss
function. Lipton et al. (2015) utilized the LSTM to analyze time-
series clinical data to diagnose 128 different diseases. In order to
reduce over-fitting and improve the classification performance
of the LSTM architecture, label replication and auxiliary outputs
strategies were applied in their work. Maxwell et al. (2017)
used a 2-layer deep neural network to classify three chronic
diseases based on physical examination records and found
combine deep learning algorithms with RAkEL (Tsoumakas
and Vlahavas, 2007) method that could improve multi-label
classification performance. Miotto et al. (2016) combined a
3-layer autoencoder (AE) and logistic regression classifiers to
predict ICD 9-based disease diagnosis using a prediction window.
Liang et al. (2014) used a Deep Belief Network (DBN) to generate
patient vectors, and then applied a support vector machine
(SVM) to classify these generated patient vectors for general
disease diagnoses. Jin et al. (2018) made hospital mortality
prediction with medical named entities and multimodal learning
based on the Long Short-Term Memory (LSTM) architecture,
and they outperformed the benchmark by 2% AUC. However,
applying deep learning technique to the medical data is still
challenging because medical data are sparse, heterogeneous
and unstructured.

In this work, we apply the convolutional neural network
(CNN) to handle the classification of multiple chronic diseases
based on the physical examination records. Because the
CNN is the most widely used deep learning method, and
it usually gets the desirable classification performance in
various classification problems (such as medical image analysis,
medical text analysis, and disease prediction). For multiple
chronic diseases label transformation, we use two common
problem transformation methods: binary relevance (BR) and
label powerset (LP) methods in the data preprocessing phase,
in order to get expected performance. BR converts multiple
chronic disease classification problem into several binary
chronic disease classification problems while LP transforms
multiple chronic disease classification in a single-label multi-class
classification problem.

The main contributions of this work can be summarized
as following. Firstly, we devise the convolution block named
group block, which both decreases the number of convolution

parameter and enhances the overall classification performance.
Secondly, a novel CNN architecture named GroupNet using
group block is proposed for the classification of multiple chronic
diseases based on the physical examination dataset. Thirdly,
we devise the correlated loss (CL) to improve the classification
performance used in the proposed GroupNet. The proposed
GroupNet achieves the best accuracy of 81.13% and increases
the overall classification results by at least 2.57% than any other
state-of-art deep learning and machine learning methods.

The rest of this work is organized as follows. Section
Dataset and Data Preprocessing introduces dataset and data
preprocessing. Section Problem Formulation provides definition
of the multi-label chronic disease prediction problem. The
group convolution strategy, group block and GroupNet
architecture are presented in Section Methods. Correlation
loss and optimization strategies are elucidated in Section Loss
Function and Optimization. Section Experiments and Evaluation
describes experiment setup and evaluation measures. Results and
Discussion are illuminated in Section Results and Discussion.
Finally, Conclusions concludes this work along with future work.

DATASET AND DATA PREPROCESSING

In the work, we mainly focus on multiple chronic disease
classification. It can be formulated into amulti-label classification
problem. There are three common chronic diseases are selected
from the physical examination records: hypertension (H),
diabetes (D), and fatty liver (FL).

In the experiments, the physical examination datasets are
collected from a local medical center, which contain 110,300
physical examination records from about 80,000 anonymous
patients (Li et al., 2017a,b). Sixty-two feature items are selected
from over 100 examination items based on medical expert
experience and related literature in every physical examination
record. These feature items contain 4 basic physical examination
items, 26 blood routine items, 12 urine routine items, and 20
items from liver function.

Two multi-label transformation methods consisting of binary
relevance (BR) and label powerset (LP) method are used in
this work. For BR method, the diagnosis of a given patient
can be one of three possible results: all three chronic diseases,
different combination of the chronic diseases, or no signs of any
three chronic diseases, which means that there are totally eight
different sets of diagnoses {000, 100, 010, 001, 110, 101, 011, 111}.
Based on Label Powerset (LP) method, we get eight different
prediction labels and can be represented by {0, 1, 2, 3, 4, 5, 6, 7}.

In order to understand dataset better and receive expected
results, we do some data analysis in the stage of data
preprocessing as shown in Figure 1. Figure 1A presents the
multi-label distribution of chronic diseases, and single-label
distribution of three chronic diseases is shown in Figure 1B. The
results demonstrate that the multi-label distribution of chronic
diseases is highly skewed, 62.5% of physical examination records
is occupied by normal and HFL, and while independent diabetes
(D) only hold 1% of physical examination records according
to Figure 1A. The single label distribution of fatty liver is
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FIGURE 1 | (A) Distribution of multiple chronic diseases; (B) Distribution of single-label of three chronic diseases dependencies; (C) Correlation coefficient matrix of

three types of chronic diseases (hypertension, diabetes, and fatty liver), and they are computed by Pearson product-moment correlation coefficient.

a balanced proportion, while the single label distributions of
hypertension and diabetes are both imbalanced as you can see
from Figure 1B. The correlation coefficient analysis can indicate
the label dependencies, and it can be calculated by Pearson
product-moment correlation coefficient (PMMC) (Mohamad
Asri et al., 2018; Weber and Immink, 2018). Figure 1C shows
that the correlation coefficient value between hypertension and
flatty liver is maximum among three chronic disease pairs, but
the correlation coefficient value is only 0.24. According to the
theory of correlation coefficient, we can infer that the correlation
between three chronic diseases are not strong.

We firstly use simple data augmentation method to handle
label imbalance problem. However, this method does not work
as we expected likely due to the fact that correlation coefficient
value among diseases is small as you can see in Figure 1C.
Focal loss (Lin et al., 2017) strategy is utilized to relieve

label imbalance problem in this work. Furthermore, a cost-
sensitive loss learning algorithm called correlated loss (CL)
would be described in Group Convolution Strategy in detail
and correlation coefficient values between chronic diseases is
used as hyper-parameters in the correlated loss. The correlation
loss is mainly proposed for improving overall classification
performance. Physical examination data are split into two parts,
70% of the data for training and 30% of the data for testing in
the experiments.

PROBLEM FORMULATION

In medicine filed, the goal of multiple chronic diseases prediction
is to predict onset of chronic diseases in advance based on disease
prediction model. To this end, we solve multiple chronic diseases
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prediction problem based on the physical examination dataset.
It can be formulated into a multi-label classification problem in
computer science. Firstly, we use problem transform methods
to transform multiple chronic disease classification problem into
multi-label problem classification. Secondly we construct CNN
architectures to resolve the multi-label classification.

METHODS

Group Convolution Strategy
To improve the performance of a convolutional neural network
(CNN) architecture. It is easy to be adopted that we increase the
number of convolution kernel in every convolution layer simply.
However, it would increase the number of convolution parameter
and weaken the classification results. Some well-known and
successful convolutional neural network architectures have been
proposed to handle this problem, such as IGCNets (Zhang et al.,
2017; Sun et al., 2018; Xie et al., 2018), and ShuffleNet (Ma
et al., 2018). One common ground for these CNN architectures is
that they are implemented based on group convolution strategy
(Krizhevsky et al., 2012).

In the implementation of the group convolution strategy,
there are being two continuous convolution layers at least. The
number of convolution kernel in every convolution layer is
split into several independent group convolution partitions. An
example of group convolution strategy is shown in Figure 2. A
CNN model consists of two continuous convolution layers, in
which m and n convolution kernels are set respectively. By the
group convolution strategy, we split every convolution layer into
two partition convolution units and the number of convolution
kernels is the half. The reduction of convolution parameters is
shown in Equation 1.

2× m
2 ×

n
2 × 1× 3

m× n× 1× 3
=

1

2
(1)

Group Block
Inspired by group convolution strategy, we propose the group
block in this work. Group block consists of two parts, which are
group convolution and cluster convolution. The architecture of
group block is shown in Figure 3.

In the group convolution part, it splits one convolution unit
to multiple partition convolution units. The number of partition
convolution units can be set randomly for different convolution
layers L. For example, it can be set to split M or N convolution
units. In cluster convolution part, a 1 × 1 convolution layer is
designed after the group convolution part. It is implemented to
cluster the correlated feature maps and enhances discriminability
for local patches within the receptive field.

The parameters of group block are described
by (L, Ni (i = 1, . . . m), j). Here L denotes the number of
continuous convolution layers. Ni (i = 1, . . . m) shows the
number of partition convolution units in the ith convolutional
layer. j is the number of cluster convolution layers.

FIGURE 2 | Group convolution strategy.

GroupNet Architecture
In this work, we construct the CNN architecture based on the
proposed group block named the GroupNet, shown in Figure 4.
The proposed group block is the core part of the GroupNet,
which is a variant of group convolution. The main difference
between the proposed group block and the traditional group
convolution is that we add a cluster convolution part after
group convolution part in group block. Hence, the GroupNet
architecture built on the group block improves the classification
performance efficiently when comparing to several advanced
CNN architectures.

The GroupNet architecture contains six layers: input layer,
group block, max-pooling layer, dropout layer, fully-connected
layer and softmax layer. The detail parameters of GroupNet
architecture is listed in Figure 5. Small convolution kernels
always are used to reduce the computation burden and improve
the classification performance (Huang et al., 2016; Iandola et al.,
2016; Sandler et al., 2018). In this work, we use 1 × 3 as
the convolution kernel size. Because convolution kernel size
1 × 3 achieves better performance than other convolution
kernel sizes in the experiments. Because physical examination
data are one-dimensional. Hence, one-dimensional convolution
kernel is adopted. Furthermore, softmax function is used as
classifier, because it is standard to use the softmax as classifier
in deep learning.

Well-known dropout (Srivastava et al., 2014; Bouthillier et al.,
2015) technique is available to alleviate over-fitting for CNN. In
this work, we set a dropout layer between the max-pooling layer
and the fully-connected layer and the drop rate is 0.5 which is
set experimentally.

In this work, LP and BP are adopted to resolve the multi-
label classification, respectively. LP method is to transform
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FIGURE 3 | The paradigm of Group Block. For L continuous convolution layers, M and N denotes the number of independent partition convolution units.

FIGURE 4 | GroupNet Architecture.

multiple chronic disease classification into the single-label multi-
class classification, while BR method converts the multi-label
chronic disease classification into three binary classifications.
Correspondingly, LP-GroupNet and BR-GroupNet are named
in experiments.

LOSS FUNCTION AND OPTIMIZATION

Correlated Loss
Focal loss (FL) (Lin et al., 2017) is a variant
of standard cross entropy loss, and it alleviates
loss of correctly classified examples domain the

gradient in the training and can be computed
as following.

FL(p) = −(1− p)γ log p (2)

Here p is the probability for predicted label. (1− p)γ is
modulating factor and γ is a focusing parameter. γ is set
manually. When γ = 0, focal loss is equal to standard
cross entropy loss. The cross entropy loss is described
as following.

CE(p, q) = −q log p (3)

CE (p, q) is a cross entropy loss, p and
q represent the expected output and actual
output, respectively.

In the BR-GroupNet architecture, each binary classifier is
independent of each other, in order to enhance connection
between independent classifiers and each classifier can learn
useful information from each other. Hence, we propose a
cost-sensitive learning algorithm named correlated loss (CL)
for the BR-GroupNet to enhance classification performance
by learning loss information from each other. In the BR-
GroupNet architecture, the correlated loss of each binary
classifier consists of two parts: main loss and auxiliary loss. Main
loss can be computed by the classifier itself and auxiliary loss
is the sum of product associated classifier loss and correlation
coefficient value. In this work, correlation coefficient value
between two chronic diseases is chosen as a hyper parameter
in auxiliary loss, because correlation coefficient value between
two diseases is small and it also indicates disease dependencies
between two diseases. Therefore, correlated loss (CL) of an
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FIGURE 5 | (A) LP-GroupNet, (B) LP-GroupNet-3, (C) LP-GroupNet-4.

independent binary classifier in BR-GroupNet can be computed
as follows.

CL = loss+
∑2

i=1
αilossi (4)

CL1 = CE+

∑2

i=1
αiCEi (5)

CL2 = FL+

∑2

i=1
αiFLi (6)

Here α is a correlation coefficient value between every
two labels, which is calculated by Pearson product-moment
correlation coefficient (PMMC). In this work, we choose three
chronic diseases as multi-label chronic disease prediction
targets and only three independent binary classifiers are

required. For the correlated loss of each independent
classifier, the loss of each classifier itself as main loss,
and the sum of product of two associated classifier losses
and correlation coefficient values as the auxiliary loss.
Hence, we set the range of parameter i from 1 to 2 in
this work.

In this work, we use two different methods to
calculate the correlated loss based on CE and FL,
respectively, and named CL1 and CL2 as seen in
Equations 5, 6. In order to validate whether selecting
correlation coefficient value between two chronic
diseases as hyper parameters of CL can work as we
expected. The GroupNet architecture with correlated loss
named BR-GroupNet-CL.
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Optimization
In the training of CNN models, back-propagation method is
carried out for the gradient. There are many hyper parameters of
CNN models that need to be optimized. It is experimental, time-
consuming and difficult to choose best hyper parameters. To
initialize hyper parameters with less tuning in the training phase,
Adam (Kingma and Ba, 2014; Chen et al., 2018; Reddi et al., 2018)
optimizer is used for the gradient. It is a first-order gradient-
based descent optimizer of stochastic objective function. Adam
is based on adaptive estimates of lower-order moments and
computes individual learning rates for different hyper parameter
from estimates of first and second moments of the gradients.
Comparing to stochastic gradient descent optimization (SGD)
(Orr and Müller, 2003), Adam is more efficient, which requires
less memory and training time.

The proper activation function also improves classification
performance. There are several popular activation functions for
neural networks, such as sigmoid, tanh, rectified linear unit
(ReLU) (Nair and Hinton, 2010), Leaky ReLU (LeakyReLU)
(Maas et al., 2013), Exponential Linear Units (ELU) (Clevert et al.,
2015), Self-Normalizing Linear Units (SELU) (Klambauer et al.,
2017), and so on. In this work, we test and compare all different
activation functions in our datasets and choose the preferable one
in all CNN models.

EXPERIMENTS AND EVALUATION

Experiment Setup
We implement all experiments based on the Scikit-learn library,
WEKA software and Tensorflow platform. Scikit-learn library
and WEKA are used to implement several machine learning
methods, such as SVM, SMO, DT, Multilayer Perceptron
(MLP). Tensorflow platform is used to implement deep learning
methods, such as the proposed GroupNet architectures, IGCNet,
GoogleNet (Szegedy et al., 2015), VGGNet (Simonyan and
Zisserman, 2014), AlexNet, and deep neural network (DNN),
Long Short-Term Memory (LSTM), and Gated Recurrent Unit
(GRU) (Shickel et al., 2018). The experiments run on a machine
with Intel (R) 3.20 GHz CPU (i5-6500) and 8 GB RAM.

Furthermore, several experiments are conducted to select
proper parameters based on the LP-GroupNet, such as batch
size, learning rate, epochs, convolution kernel size, dropout
rate, activation function, and focusing parameter γ in focal
loss. In order to select preferable number of convolution units
of group block for the GroupNet, we deploy three GroupNet
architectures based on three different group blocks. The detail
parameter setting of three different group blocks are {2, 2, 2,
1}, {2, 3, 3, 1} and {2, 4, 4, 1}, and Figure 5 gives concrete
CNN architectures of the three different GroupNet architectures,
namely LP-GroupNet (Figure 5A), LP-GroupNet-3 (Figure 5B),
and LP-GroupNet-4 (Figure 5C).

Evaluation Measures
Since multi-label classification can be converted into single-label
multi-class classification and so the measures to evaluate single-
label multi-class classification also can be used for this work.
We adopt four common evaluation measures: F-score, accuracy,

recall and precision measures to compare the performance of
different methods for multi-label chronic disease classification.
The accuracy is a measure to ensure that ratio of the prediction
of true labels is correct. Precision is a measure system that is
related to reproducibility, or how many predictions are correct.
Recall is the fraction of true labels that were predicted correctly.
F-score (F1) measure is the harmonic mean of precision and
recall, and is a popular evaluation measure in the research area of
data mining. Because the label distribution of chronic disease is
skewed as described in Dataset and Data Preprocessing, weighted
recall, weighted precision, weighted F-score are used to evaluate
the classification performance of different methods. F1 evaluates
the overall performance of the method better than accuracy,
precision and recall according to related works (Tsoumakas and
Katakis, 2007; Zhang and Zhou, 2014). Recall is an important
evaluation measure in clinical. Different to normal F-score, the
value of weighted F-score is not between weighted precision
and weighed recall, instead it is smaller than both weighted
precision and weighed recall. The following equations show how
to calculate these values. TP, TN, FP, and FN are true positive, true
negative, false positive, and false negative, respectively.

Accuracy =

∑l
i=1

TPi+TNi
TPi+FPi+TNi+FNi

l
(7)

Precisionweighted =

∑l

i=1
ki

TPi

TPi + FPi
(8)

Recallweighted =

∑l

i=1
ki

TPi

TPi + FNi
(9)

F1weighted =

∑l

i=1
ki

TPi
TPi+FPi

·
TPi

TPi+FNi

TPi
TPi+FPi

+
TPi

TPi+FNi

=

∑l

i=1
ki

2PrecisioniRecalli

Precisioni + Re calli
(10)

Accuracy, Precisionweighted, Re callweighted, andF1weightedcan be
computed by Equations (7–10). kidenotes the single labels
accounted for the proportion of all labels, lis equal to 8 and i
ranges 1–8.

RESULTS AND DISCUSSION

Hyper Parameter Selection
In this section, we present results of hyper parameter selection in
both Figures 6, 7. Figure 6A shows how accuracy changes with
epochs, and epochs are set 1, 5, 10, 15, 20, 25, 30, 40, 50, and 100,
respectively in experiments.When epochs is above certain epochs
like 20, the performance of the LP-GroupNet actually decreases
drastically due to over-fitting. It is evident that the LP-GroupNet
achieves the best performance when the epochs is 20 as you can
see from Figure 6A.

Figure 6B shows the relationship between accuracy with
learning rate, respectively. We set the learning rate 0.05, 0.03,
0.02, 0.01, 0.005, 0.003, 0.002, 0.001, 0.0005, 0.0003, 0.0002, and
0.0001, respectively in the experiments. It is clear that the LP-
GroupNet obtains the best performance when the learning rate
is 0.002 according to Figure 6B.
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FIGURE 6 | (A) relationship between accuracy and epochs; (B) relationship between accuracy and learning rate; (C) relationship between accuracy and batch size.

FIGURE 7 | (A) Relationship between performance and convolution kernel size; (B) Relationship between performance and dropout rate; (C) Relationship between

performance and activation function; (D) Relationship between performance and focusing parameter γ in focal loss. Blue denotes accuracy and

red denotesF1weighted .

Figure 6C shows how batch size affects the LP-GroupNet
performance, and we set batch size to 16, 32, 48, 50, 64, 80,
100, 128, 150, 180, 200, and 256, respectively. Accuracy changes
with batch size quite significantly as you can see from Figure 6C.
Results from the experiments show that the GroupNet achieves
the best performance when batch size reaches 128.

In Figure 7A, we test 6 different convolution kernel sizes.
The LP-GroupNet achieves best performance when convolution
kernel size is 1 × 3. Furthermore, we also conclude that
smaller convolution kernel works better than larger convolution
kernel in previous works. Figure 7B presents how dropout rates

influence the classification performance. It is shown that the
LP-GroupNet gets the better performance when dropout rate
is 0.5. It is difficult to find considerate dropout rate in the
experiments as you can see from Figure 7B, because there is not
a good way to find the best dropout rate theoretically except
by experiments.

Figure 7C shows a performance comparison among six
different activation functions: tanh, sigmoid, ReLU, LeakyReLU,
ELU, and SELU. The tanh receives the best performance with
79.77% based on the GroupNet, while sigmoid receives the
worst performance with 74.65%. It is noticeable that LeakyReLU
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TABLE 1 | Comparison of Adam and SGD.

Optimizer Accuracy

(%)

Precisionweighted
(%)

Recallweighted
(%)

F1weighted
(%)

SGD 75.09 74.50 75.09 74.50

Adam 79.77 79.84 79.77 79.40

TABLE 2 | Comparison of different number of partition convolution units in

group block.

Model Accuracy

(%)

Precisionweighted
(%)

Recallweighted
(%)

F1weighted
(%)

LP-GroupNet 79.77 79.84 79.77 79.40

GroupNet-3 79.66 79.42 79.66 79.22

GroupNet-4 79.20 78.88 78.20 78.88

TABLE 3 | Hyper-parameter settings of the GroupNet.

Hyper-parameter Setting

Learning rate 0.002

Epochs 20

Batch size 128

Convolution kernel size 1 × 3

Dropout rate 0.5

Activation Function tanh

γ 2

Optimizer Adam

The number of partition convolution units 2

and ELU both get accuracy over 79%. In order to achieve
considerable performance, the tanh function is more adaptive as
activation function than others in this work. Figure 7D shows
how focusing parameter γ in focal loss affects the LP-GroupNet
performance and γ is set 0, 0.2, 0.5, 1.0, 2.0, 3.0, 4.0, and
5.0, respectively. When focusing parameter is 0, focal loss is
equivalent to standard cross entropy loss. It is clear that it results
in the best performance with the accuracy of 79.77% when
focusing parameter γ is 2.

Table 1 gives a comparison between Adam optimizer and
SGD optimizer. It is apparent that Adam optimizer outperforms
SGD optimizer. Furthermore, SGD optimizer requires 160
epochs to achieve the accuracy at 75.09%, while Adam optimizer
uses 20 epochs to achieve the accuracy 79.77%. With trading-off
on training time and accuracy, Adam is selected as optimizer.

Table 2 presents the results for LP-GroupNet, LP-GroupNet-
3, and LP-GroupNet-4. The results illuminate that the LP-
GroupNet gets better performance than LP-GroupNet-3 and
LP-GroupNet-4 models. It confirms that when the number of
partition convolution units is 2 in group block, the GroupNet
is able to handle the data more effectively and achieves the
performance as we expected.

Table 3 lists the final optimal hyper-parameter settings.

TABLE 4 | Comparison of CNN models based on LP method.

Model Accuracy

(%)

Precisionweighted
(%)

Recallweighted
(%)

F1weighted
(%)

GroupNet 79.77 79.84 79.77 79.40

IGCNet 78.08 77.64 78.08 77.65

GoogleNet 78.56 79.02 78.56 78.41

AlexNet 76.28 77.03 76.28 76.10

VGGNet 78.17 77.79 78.17 77.46

TABLE 5 | Comparison of LP-GroupNet and BR-GroupNet.

Model Accuracy

(%)

Precisionweighted
(%)

Recallweighted
(%)

F1weighted
(%)

LP-GroupNet 79.77 79.84 79.77 79.40

BR-GroupNet 80.54 80.70 80.54 80.35

TABLE 6 | Comparison of different loss functions based on the BR-GroupNet.

Loss Accuracy

(%)

Precisionweighted
(%)

Recallweighted
(%)

F1weighted
(%)

CE 79.05 78.77 79.05 78.54

FL 80.54 80.70 80.54 80.35

CL1 79.66 80.59 79.66 79.30

CL2 81.13 81.37 81.13 81.02

TABLE 7 | Comparison of GroupNet model and other comparative methods.

Model Accuracy

(%)

Precisionweighted
(%)

Recallweighted
(%)

F1weighted
(%)

BR-

GroupNet-CL

81.13 81.37 81.13 81.02

IGCNet 78.08 77.64 78.08 77.65

GoogleNet 78.56 79.02 78.56 78.41

AlexNet 76.28 77.03 76.28 76.10

VGGNet 78.17 77.79 78.17 77.46

DNN 71.10 75.70 71.12 72.61

LSTM 75.83 75.31 75.83 75.24

GRU 76.35 76.34 76.35 75.58

DT 77.26 77.12 77.34 77.12

MLP 74.94 74.40 74.95 74.40

SVM 48.89 42.2 49.91 41.6

SMO 70.12 67.60 70.12 67.42

ML-KNN 51.03 60.21 53.02 50.47

BPMLL 76.65 76.72 76.65 76.32

Comparison of Different Methods
Table 4 presents comparison results of the GroupNet and other
CNN models based on LP method. The GroupNet achieves the
best performance and increases 1.21% at least than other four
CNN models on all evaluation measures.
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It is observed that the BR-GroupNet model provides the
accuracy with 80.54% in Table 5. It increases over 0.77%
than LP-GroupNet on all evaluation measures and F1weighted
receives the best improvement with 0.95%, which demonstrates
that BR-GroupNet model is more suitable for this work
than LP-GroupNet.

Table 6 presents a comparison among correlated loss and
other loss functions based on the BR-GroupNet architecture. For
convenience, cross entropy loss is named as CE in short, focal
loss as FL, correlated loss based on cross entropy loss as CL1, and
correlated loss based on focal loss as CL2.

It is obvious that CL2 gets the best accuracy with 81.13%.
The results also demonstrate that CL works better than FL
and CE based on the BR-GroupNet in this work, which
increases approximately 0.6% on all metrics. The results
from CL1 and CL2 demonstrate that correlation coefficient
value between two chronic diseases is selected as hyper
parameter of CL can work as we expected. Furthermore, FL
achieves better performance than CE, which confirms that
FL can improve classification performance by reducing the
proportion of correctly classified instance loss in all loss in the
training phase.

Table 7 presents the results for the BR-GroupNet-CL, four
state-of-art CNN architectures, two RNN architectures (LSTM
and GRU) and seven classical machine learning methods.
According to these results, deep learning methods get better
performance than classic machine learning methods generally,
which show deep learning methods have great potentials
in disease prediction. It is apparent that the BR-GroupNet-
CL architecture provides the best performance among all
of them on all metrics, while the SVM receives the worst
performance. IGCNet, GoogleNet, AlexNet, VGGNet, LSTM,
GRU, and BPMLL show similar performance and they all
receive over 75% on all evaluation measures. According to the
Table 7, BR-GroupNet-CL gets the best accuracy and F1weighted
with 81.13 and 81.02%, respectively, and it increases 2.61%
than other comparative methods which confirms that the
proposed BR-GroupNet-CL is more able to receive considerable
performance for multi-label chronic disease classification.
Particularly, BR-GroupNet-CL model achieves Re callweighted
with 81.13% and increases at least 2.57% comparing to other
methods, which is a considerable improvement for disease
classification clinically.

CONCLUSIONS

We propose a novel group block inspired by group convolution
strategy to reduce the number of convolution parameters and
improve the classification performance. Furthermore, we develop
the GroupNet based on group block, then combine GroupNet
with BR and LP methods for multi-label classification of chronic
diseases, respectively. We present a cost sensitive learning
algorithm named correlated loss to improve the performance.
The results indicate that the proposed GroupNet gets the best
accuracy with 81.13%, which is nearly 2.6% higher than all other
comparison methods.

In the future work, we will focus on enhancing the learning
ability of the CNN model and reduce over-fitting in the training.
The transfer learning and adversarial learning methods will be
applied to the model.
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