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ABSTRACT Artificial neural network technique has gained recognition as a powerful technique in

microwave modeling and design. This paper proposes a novel deep neural network topology for parametric

modeling of microwave components. In the proposed deep neural network, the outputs are S-parameters. The

inputs of the proposed model include geometrical variables and the frequency. We divide the hidden layers in

the proposed deep neural network topology into two parts. Hidden layers in Part I handle both the geometrical

inputs and the frequency inputs while hidden layers in Part II only handle the geometrical inputs. In this way,

more training parameters are utilized to specifically learn the relationship between the S-parameters and the

geometrical variables, which are more complicated than that between the S-parameters and the frequency.

The purpose is to reduce the total number of training parameters in the deep neural network model. New

formulations are derived to calculate the derivatives of the error function with respect to training parameters

in the deep neural network. Taking advantage of the calculated derivatives, we propose an advanced two-stage

training algorithm for the deep neural network. The two-stage training algorithm can determine the number

of hidden layers in both parts during the training process and guarantee that the proposed deep neural network

model can achieve the requiredmodel accuracy. The proposed deep neural network can achieve similarmodel

accuracy with less training parameters compared to the commonly used fully connected neural network. The

proposed technique is demonstrated by two microwave parametric modeling examples.

INDEX TERMS Deep neural network, microwave components, neural network training, parametric

modeling.

I. INTRODUCTION

Parametric modeling of microwave components plays an

important role in the area of electromagnetic (EM)-based

microwave design. Parametric models can be developed from

the relationship between the EM behavior of microwave

components and the geometrical variables. The inputs of

The associate editor coordinating the review of this manuscript and

approving it for publication was Dušan Grujić .

the parametric model include geometrical variables and

the frequency, and the outputs are EM responses (such as

S-parameters) of the microwave component. The developed

parametric models can provide fast and accurate prediction of

the EM responses for different values of geometrical param-

eters and subsequently can be implemented in high-level

circuit and system designs. It can accelerate the EM-based

design process by avoiding repetitive EM simulations, which

are usually time-consuming.
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Different modeling methods, such as neural network

technique [1], [2], polynomial-based surrogate modeling

technique [3], Kriging technique [4], and support vector

machine (SVM) [5], can be used to build parametric mod-

els for microwave components. Polynomial-based surrogate

modeling technique, Kriging technique, and SVM have good

generalization capability for the situation where the training

data are limited [3]. Neural network technique is applicable

to the situation where the size of training data is large. In this

paper we develop a neural network-based method for para-

metric modeling of passive microwave components where

extensive training data are used.

Artificial neural network (ANN) modeling technique is an

efficient parametric modeling technique for EM behaviors

of microwave components. The developed ANN models can

provide fast solutions to the tasks they have learned [6].

ANN technique has been utilized as a powerful technique

for microwave modeling and design optimization [6]–[12].

In [13]–[15], microwave parametric models are developed

by the knowledge-based neural network techniques where

the neural networks are combined with prior knowledge.

In addition, there are applications reported in nonlinear

microwave device modeling [16]–[21], power amplifier

modeling [22]–[24], multiphysics parametric modeling [25],

and microwave component design [26]–[28].

Most of these reported applications utilize shallow neural

networks. In recent years, deep neural network with many

hidden layers has gain recognition in the neural network

community learning complicated relationships in large data

sets [29]–[32]. Outstanding results have been achieved by

deep neural networks in various challenging areas, such as

speech recognition [33], image recognition [34], sentiment

analysis [35], language processing [36], and machine trans-

lation [37]. In [28], the deep neural network technique is

introduced into the microwave modeling field to address the

challenges because of high-dimensional inputs. The applica-

tion examples presented in [28] show the advantages of the

deep neural network over the shallow neural network. The

deep neural network technique in [28] can be trained to learn

the training data in a high-dimensional space. In the area

of parametric modeling of microwave components, there are

situations where the relationship between the model outputs

and the geometrical parameters ismore complex than the rela-

tionship between the model outputs and the frequency. In this

paper, we propose a novel deep neural network topology for

parametric modeling to specifically address this situation.

The proposed technique can represent the input-output rela-

tionship using less training parameters than the commonly

used fully connected neural network.

In this paper, we propose a novel deep neural network

topology specifically to reduce the total number of training

parameters for neural network-based parametric modeling

of microwave components. The inputs of the parametric

model include geometrical variables and the frequency, and

the outputs are S-parameters. In the proposed deep neu-

ral network topology, the inputs are divided into two sets,

i.e., geometrical inputs and the frequency input. We divide

the hidden layers in the proposed deep neural network into

two parts. Hidden layers in Part I handle both the geometrical

inputs and the frequency input while hidden layers in Part II

only handle the geometrical inputs. In this way, more training

parameters (including weights and biases in the proposed

deep neural network) are utilized to specifically learn the

relationship between the S-parameters and the geometrical

variables, which are more complex than that between the

S-parameters and the frequency. The purpose is to reduce

the total number of training parameters in the deep neural

network model while maintain the model accuracy. In order

to train the proposed deep neural network, we propose new

computations of the derivatives of the error function with

respect to training parameters. Taking advantage of the calcu-

lated derivatives, we propose an advanced two-stage training

algorithm for training the deep neural network. By using the

two-stage training algorithm, the number of hidden layers

in both parts can be determined during the training process

and the model accuracy can reach the required threshold after

training. The novel deep neural network topology can achieve

similar model accuracy using less training parameters than

the fully connected neural network.

This paper is organized as follows. In Section II, we first

describe the structure of the proposed deep neural network

topology. The feedforward computations from model inputs

to outputs are derived for the proposed deep neural network.

The computations of the derivatives of the error function

with respect to training parameters are derived for the train-

ing algorithm. An advanced two-stage training algorithm

is proposed to train the novel deep neural network model.

The proposed deep neural network technique is applied

to two parametric modeling examples of microwave filters

in Section III. Finally, Section IV concludes the paper.

II. PROPOSED DEEP NEURAL NETWORK TOPOLOGY FOR

PARAMETRIC MODELING OF MICROWAVE COMPONENTS

A. THE PROPOSED DEEP NEURAL NETWORK TOPOLOGY

We propose a novel deep neural network topology to develop

parametric models for microwave components more effi-

ciently. Parametric models of microwave components can

be developed from the information of EM responses as

functions of geometrical parameters and the frequency. The

inputs of the parametric model are the geometrical parame-

ters of microwave components and the frequency. The out-

puts of the parametric model are the EM responses such as

the scattering parameters. The relationship between the EM

responses and the geometrical parameters is usually more

complex while the relationship between the EM responses

and the frequency is less complex. In order to represent the

relationship between the EM responses and the geometrical

parameters and the frequency more efficiently, we propose to

use more hidden layers to learn the relationship between the

EM responses and the geometrical parameters and use less

hidden layers to learn that between the EM responses and the

frequency.
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FIGURE 1. The proposed deep neural network topology. Sigmoid function
is used as activation function in the neuron with σ , and linear activation
function is used in the neuron without σ .

Figure 1 shows the proposed deep neural network topol-

ogy. In the novel deep neural network topology for para-

metric modeling of microwave components, the inputs are

divided into geometrical inputs and the frequency input. Let

x = [x1 x2 x3 . . . xn]
T represent a vector of the geometrical

inputs of the proposed deep neural network model, where n is

the number of the geometrical inputs. x contains the physical

geometrical variables of a microwave component, such as the

length and the width of the EM structure. Let f represent the

frequency input of the proposed deep neural network. Let

y = [y1 y2 y3 . . . ym]
T represent a vector of the model

outputs, where m is the number of the outputs. The vec-

tor y contains the S-parameters of a microwave component.

As shown in Figure 1, we divide the hidden layers in the deep

neural network into two parts. Sigmoid function is utilized as

the activation function for hidden neurons in both parts. We

intend to feed the frequency input directly into the first layer

in Part I. To make the topology of the proposed deep neural

network tidier, we add a hidden neuron that can achieve a

unit mapping from its input to its output. Let p be the number

of hidden layers in Part I. The vector containing the weights

in Part I is defined as u. Let q be the number of hidden layers

in Part II. The vector containing the weights in Part II is

defined as v. The proposed deep neural network model can

be defined as

y = g(x, f ,u, v) (1)

where g is the function representing the input-output relation-

ship of the proposed deep neural network model. The output

of the developed model is a function of geometrical vari-

ables x and the frequency variable f . The frequency f is only

one input variable for the model. When using the proposed

model to represent the EM behavior of a microwave compo-

nent, the developed model needs to be calculated at multiple

different frequency points by changing the value of f .

B. THE FEEDFORWARD COMPUTATION OF THE

PROPOSED DEEP NEURAL NETWORK MODEL

Let h and l be the indexes of layers in Part I and Part II,

respectively, where h = 1, 2, . . . , p and l = 1, 2, . . . , q.

Let N h
1 and N l

2 represent the number of hidden neurons in

the hth layer in Part I and that in the lth layer in Part II,

respectively. Let z
h,i
1 and z

l,i
2 be the output of the ith hidden

neuron in the hth layer of Part I and in the lth layer of Part II,

respectively. z
h,i
1 and z

l,i
2 can be calculated by the feedforward

process.

We first consider the hidden layers in Part I. Let uhij repre-

sent the weight between the jth neuron in the (h− 1)th layer

and the ith neuron in the hth layer for h = 2, 3, . . . , p,

j = 1, 2, . . . , N h−1
1 , i = 1, 2, . . . , N h

1 . For h = 1, u1ij
represents the weight between the jth input neuron and the ith

neuron in the first layer of Part I.We introduce an extra weight

parameter uhi0 to represent the bias for ith neuron of hth layer.

Thus, the vector u for Part I include uhij, h = 1, 2, . . . , p,

j = 0, 1, . . . , N h−1
1 , i = 1, 2, . . . , N h

1 . By using the

feedforward computation, z
h,i
1 of Part I can be calculated as

z
h,i
1 =



























σ (

n
∑

j=1

uhijxj + uhi0) if h = 1

σ (

N h−1
1

∑

j=1

uhijz
h−1,j
1 + uhi0) if h = 2, . . . , p

(2)

where σ (·) is the activation function used in the hidden neu-

rons of Part I, i.e., the sigmoid function.

Then we proceed to Part II. Since the first layer in Part II

connect to both the pth layer of Part I and the single hidden

neuron connectingwith the frequency input, we add the single

hidden neuron into the pth layer of Part I for the description

convenience. The outputs of the neurons in the extended pth

layer of Part I becomes

z
p,i
1 =



















σ (

N
p−1
1

∑

j=1

u
p
ijz
p−1,j
1 + u

p
i0) if i = 1, 2, . . . , N

p
1

f if i = N
p
2 + 1

(3)
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The number of neurons in the extended pth layer of Part I

becomes N
p
1 + 1.

Let vlij represent the weight between the jth neuron in

the (l − 1)th layer and the ith neuron in the lth layer for

l = 2, 3, . . . , q, j = 1, 2 . . . , N l−1
2 , i = 1, 2, . . . , N l

2. For

l = 1, v1ij represents the weight between the jth neuron in the

extended pth layer of Part I and the ith neuron in the first layer

of Part II. We also introduce an extra weight parameter vli0
to represent the bias for the ith neuron of lth layer. Thus,

the vector v for Part II include vlij, l = 1, 2, . . . , q,

j = 0, 1, . . . , N l−1
2 , i = 1, 2, . . . , N l

2. By using the

feedforward computation, z
l,i
2 of Part II can be calculated as

z
l,i
2 =































σ (

N
p
1 +1
∑

j=1

vlijz
p,j
1 + vli0) if l = 1

σ (

N l−1
2

∑

j=1

vlijz
l−1,j
2 + vli0) if l = 2, . . . , q

(4)

where z
p,j
1 , j = 1, 2, . . . , N

p
1 + 1 is calculated

in Equation (3).

To represent the weights between the qth layer of Part II

and the output layer, the definition of vlij is extend to the

output layer, i.e., vlij, l = q+1 represents the weight between

the jth neuron in the qth layer of Part II and the ith neuron

in the output layer. After the feedforward computation, we

can extract the outputs of the proposed deep neural network

model from the output layer as

yi =

N
q
2

∑

j=1

v
q+1
ij z

q,j
2 , i = 1, . . . , m (5)

Then we need to train the proposed deep neural network

model with the training data by adjusting values of the train-

ing parameters.

C. PROPOSED TRAINING ALGORITHM FOR THE

NEW DEEP NEURAL NETWORK

The deep neural network model need to be trained with the

training data. Let dkt be defined as the desired model outputs

corresponding to inputs [xTk , ft ]
T . The training data can be

presented as pairs of ([xTk , ft ]
T ,dkt ), k = 1, 2, . . . , Ng,

t = 1, 2, . . . , Nf , where Ng represents the total number

of geometric samples and Nf represents the total number of

frequency samples in the frequency band of interest. Specif-

ically, for microwave parametric modeling, xk is a set of

geometrical parameters of the microwave component, ft is a

frequency in the designed frequency band, and dkt should be

the S-parameters corresponding to xk at the frequency ft . The

standard error function is used to evaluate the performance

of the proposed deep neural network model in the training

process [38]. The error function is defined as

E(u, v) =
1

2mNgNf

Ng
∑

k=1

Nf
∑

t=1

m
∑

j=1

(yj(xk , ft ,u, v) − d
j
kt )

2 (6)

where yj(xk , ft ,u, v) is the jth output of the proposed deep

neural network model corresponding to xk and ft , and d
j
kt is

the jth element of dkt .

Gradient-based training method is one of the most efficient

methods to train a neural network model [6]. When train-

ing the deep neural network model with the gradient-based

training method, the weights are adjusted according to the

derivatives of the error function formulated in Equation (6)

with respect to the weights. We propose a method to calcu-

late the derivatives by extending the back propagation (BP)

concept for multilayer perceptron (MLP) to our novel deep

neural network structure [38]. New formulations are proposed

to compute the derivatives of the error function with respect

to the training parameters. The derivatives can guide the

gradient-based training for the proposed deep neural network

structure.

The error function in Equation (6) is the average of the

errors of the model for all geometric samples at all sampled

frequencies. For the kth geometric sample at the tth sampled

frequency, the total error of all outputs of the model can be

computed by [38]

Ekt =
1

2

m
∑

j=1

(yj(xk , ft ,u, v) − d
j
kt )

2 (7)

Let γ
h,i
1 , h = 1, 2, . . . , p and γ

l,i
2 , l = 1, 2, . . . , q represent

the total input to the ith neuron in hth layer of Part I and that

to the ith neuron in lth layer of Part II, respectively. For the

description convenience, the definition of γ
l,i
2 is extended to

the output layer, i.e., γ
q+1,i
2 represents the total input to the ith

neuron of output layer. Let δ
h,i
1 and δ

l,i
2 be the local derivative

of Ekt with respect to γ
h,i
1 and γ

l,i
2 , respectively, i.e., δ

h,i
1 =

∂Ekt

∂γ
h,i
1

, h = 1, 2, . . . , p and δ
l,i
2 =

∂Ekt

∂γ
l,i
2

, l = 1, 2, . . . , q + 1.

Starting from δ
l,i
2 , l = q + 1 at the output layer of the deep

neural network model, the BP algorithm will propagate this

local derivative backward through the hidden layers to the

input layer. Since neurons in the output layer utilize linear

activation functions, the δ
l,i
2 , l = q+1 at the output layer can

be calculated as

δ
l,i
2 = (yi(xk , ft ,u, v) − d ikt ), l = q+ 1 (8)

Subsequently, this local derivative of the output layer will be

propagated backward to the hidden layers in Part II by the

BP algorithm. The local derivative δ
l,i
2 in these hidden layers

in Part II can be derived as

δ
l,i
2 = (

N l+1
2

∑

j=1

δ
l+1,j
2 vl+1

ji )z
l,i
2 (1−z

l,i
2 ), l = q, q−1, . . . , 2, 1

(9)

Then, the local derivative will be propagated back-

ward from hidden layers in Part II to those in Part I

by the BP algorithm. For the pth hidden layer in

Part I that is directly connected to the first hidden layer
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in Part II, the local derivative δ
h,i
1 , h = p can be

derived as

δ
h,i
1 = (

N 1
2

∑

j=1

δ
1,j
2 v1ji)z

h,i
1 (1 − z

h,i
1 ), h = p (10)

For the other hidden layers in Part I (i.e., h = p − 1,

p − 2, . . . , 1), the local derivative δ
h,i
1 is calculated using

similar method as the standard back propagation [38]

δ
h,i
1 = (

N h+1
1

∑

j=1

δ
h+1,j
1 uh+1

ji )z
h,i
1 (1 − z

h,i
1 ), h=p− 1, . . . , 2, 1

(11)

Once we obtain the local derivatives for all layers in the

proposed deep neural network, we can compute the deriva-

tives of Ekt with respect to the weight parameters by

∂Ekt

∂vlij
=

{

δ
l,i
2 z

l−1,j
2 , l = q+ 1, q, q− 1, . . . , 2

δ
l,i
2 z

p,j
1 , l = 1

(12)

∂Ekt

∂uhij
=

{

δ
h,i
1 z

h−1,j
1 , h = p, p− 1, . . . , 3, 2

δ
h,i
1 xj, h = 1

(13)

where δ
h,i
1 and δ

l,i
2 are calculated using Equations (8)-(11);

z
l−1,j
2 , z

p,j
1 , and z

h−1,j
1 are calculated using Equations (2)-(4).

With the proposed Equations (8)-(13), we can compute the

derivative of the error function with respect to each weight

parameter. Then the weight parameters are updated based on

the calculated derivatives [6].

We propose a two-stage training algorithm for the proposed

deep neural network. The derivative information is used to

guide the gradient-based training process. To simplify the

training algorithm, we predetermine the number of hidden

neurons per layer in Part I and Part II according to experience

before the training process. Usually, if the geometrical input

dimension is relatively high and/or the variation ranges of

the model inputs are relatively large, we choose larger num-

ber of hidden neurons. If the geometrical input dimension

is relatively low and/or the variation ranges of the model

inputs are relatively small, we choose smaller number of

hidden neurons [28]. Using the proposed two-stage training

algorithm, the number of hidden layers in Part I and Part II

can be determined during the training process.

In Stage I, the number of layers in Part II is set to be one,

i.e., q = 1. In this stage, we determine the number of layers

in Part I, i.e., the value of p by changing the value of p in

the training process. Usually we start from p = 1. A deep

neural network with one hidden layer in Part II and p hidden

layers in Part I is trained to reduce the training error as much

as possible. After training, we check the model accuracy.

If the model accuracy can satisfy the requirement, we stop

the training process and do not need Stages II. If the model

accuracy cannot satisfy the requirement, a new hidden layer

is added to Part I again and again. We stop adding new layers

to Part I until the model accuracy can satisfy the requirement

or until the training error cannot be reduced even if a new

layer is added in Part I. After each layer is added in Part I,

we train the deep neural network model and compute the

training error. We define Ebe and Etr as the training errors

of the deep neural network model before and after adding the

recently added layer in Part I, respectively. Let Ere represent

the required error threshold of the model. If Etr < Ebe and

Etr > Ere, it means that adding a layer in Part I can reduce the

training error. However, the reduced training error still cannot

reach the required error threshold. In this case, the deep neural

network model is in underlearning state. A new hidden layer

need to be added to Part I again. If Etr ≥ Ebe even after many

training iterations, it means that adding more layers in Part I

cannot reduce the training error anymore. In this case, the last

added layer in Part I is deleted and the total number of hidden

layers in Part I is determined as p. After determining the value

of p, we proceed to Stage II.

In Stage II, in order to further reduce the training error

of the deep neural network, we begin to add hidden layers

in Part II. We add one new hidden layer to Part II again

and again until the model accuracy can achieve the accuracy

requirement. After training of Stage II, the number of hidden

layers in Part II can be determined as q. The final deep neural

network has p hidden layers in Part I and q hidden layers

in Part II. It can represent the input-output relationships of

parametric models of microwave components accurately.

D. PROCESS OF DEVELOPING THE DEEP NEURAL

NETWORK PARAMETRIC MODEL

We summarize the development process of the deep neu-

ral network parametric model of microwave components as

follows.

Step 1) Perform EM simulation to generate training and test

data using random sampling method. Fix the number

of hidden neurons in each layer of Part I and Part II.

Initialize p = 1, q = 1.

Step 2) Train the neural network with p hidden layers in Part

I and q hidden layers in Part II. Calculate the training

error Etr and the test error Ete. If p = 1, go to Step

4); else, go to Setp 3).

Step 3) Compare the values of Etr and Ebe. If Etr < Ebe, go

to Step 4); else, go to Step 7).

Step 4) Compare the values of Etr and Ere. If Etr ≤ Ere, go

to Step 5); else if Etr > Ere, set Ebe = Etr , add

one hidden layer to Part I, i.e., p = p + 1, and go

to Step 2).

Step 5) Compare the value of Ete and Ete. If Ete > Ere, go to

Step 6); else if Ete ≤ Ere, stop the training process of

the deep neural network model.

Step 6) Train the deep neural networkmodel withmore train-

ing data, calculate the training error Etr and the test

error Ete, and go to Step 4).

Step 7) Delete the last added layer in Part I, i.e., p = p − 1,

and train the deep neural network model with one

hidden layer in Part II and p hidden layers in Part I to

VOLUME 8, 2020 82277
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FIGURE 2. The flow diagram of overall development process of the proposed deep neural network parametric model.

reduce the training error as much as possible. Add

one hidden layer in Part II to the trained model,

i.e., q = q+ 1.

Step 8) Train the neural network with p hidden layers

in Part I and q hidden layers in Part II. Calculate the

training error Etr and the test error Ete.

Step 9) Compare the values of Etr and Ere. If Etr ≤ Ere, go

to Step 10); else if Etr > Ere, add one hidden layer

in Part II, i.e., q = q+ 1, and go to Step 8).

Step 10) Compare the value of Ete and Ete. If Ete > Ere,

add more training data and go to Step 8); else if

Ete ≤ Ere, stop the training process.

The flow diagram of overall development process of the

proposed deep neural network parametric model is shown

in Figure 2. According to the two-stage training algorithm,

Stage I consists of Steps 2) to 6), and Stage II consists of

Steps 7) to 10).

E. DISCUSSION

In addition to the sigmoid function, other activation functions,

such as tanh function, the rectified linear unit (ReLU), and so

on, can also be adopted in the proposed deep neural network

structure. If another activation function is used, the model

structure and training algorithm of the proposed technique

will not be changed. Only the calculation of model outputs

and the derivatives of the error function with respect to the

weights need to be revised accordingly. The idea of deriving

the calculations of model outputs and derivatives is similar

to what we have presented in Section II. In this paper, we

choose sigmoid function as the activation function for the

hidden neurons because it is one of the most commonly used

activation functions for neural network [38].

In the two-stage training, it is necessary to check the test

errors in both stages and adjust the training data accordingly.

This is because in Stage II, the new layers are added to the

neural network trained from Stage I. We keep the trained

layers and weights from Stage I and further train the whole

neural network after adding new layers in Stage II. The

trained weights from Stage I provide a good starting point

for Stage II. During the training process, we need to check

the test errors in both stages. If we do not check the test

error in Stage I, the neural network trained from Stage I may

be in the overlearning state. In this case, the weights trained

from Stage I cannot provide a good starting point for Stage II.

It will make the training of Stage II harder. Therefore, we need

to check the test errors in both stages and adjust the training

data accordingly.

The number of hidden neurons is changed during the train-

ing process since the number of hidden layers is changed.

In our proposed two-stage training algorithm, to make the

training process simpler, we predetermine the number of

neurons per layer and adjust the total number of training
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parameters by changing the number of layers in the training

process. If the randomly initializedweights are close to a local

minimum, and the local minimum cannot satisfy the required

error threshold, we will add a new layer with random weights

and train the neural network with the newly added layer. The

added layer makes it possible for the neural network to get

out of the current local minimum and achieve a better result.

The neural network topology proposed in this paper is

meant to reduce the number of training parameters in the

neural network model while maintain the model accuracy.

It is specifically designed to address the situation where the

relationship between the outputs and geometrical parame-

ters is more complex than the relationship between the out-

puts and the frequency. For the application situations where

the relationship between the model outputs and geometrical

parameters is less complex than the relationship between the

model outputs and the frequency, the proposed techniquemay

not be that effective. The developed neural network model is

accurate within the training range, and is unreliable if it is

used outside the training range. An extrapolation technique

to guide the neural network outside the training range is

reported in [39] to address this issue. The proposed deep

neural network method is for parametric modeling of passive

microwave components. The parametric modeling of non-

linear components can be a very interesting future direction.

III. EXAMPLES

A. PARAMETRIC MODELING OF A THREE-POLE

H-PLANE FILTER

In this example, we develop a parametric model for a three-

pole H-plane filter [40], whose structure is shown in Figure 3,

using the proposed deep neural network topology. The cross

section of the waveguide where the filter is constructed is

19.05 mm × 9.525 mm (WR-75). For this filter, the relation-

ship between the S-parameters and the geometrical param-

eters is more complex than the relationship between the

S-parameters and the frequency. The proposed deep neural

network structure is suitable for developing the parametric

model of this filter. Four geometrical variables are used as

geometrical inputs to the model of this example, i.e., x =

[L1,L2,W1,W2]
T , and the real and imaginary parts of S21

are used as model outputs, i.e., y = [Re(S21), Im(S21)]
T .

FIGURE 3. Structure of the three-pole H-plane filter. The four geometrical
parameters of this filter are x = [L1, L2, W1, W2]T , with a = 19.05 mm,
b = 9.525 mm, and t = 2.0 mm.

When developing parametric models for the microwave

components, the outputs are S-parameters of the com-

ponents. In this filter example, we choose one of the

S-parameters (S21) as the model output to demonstrate the

proposed technique. The proposed modeling method is also

suitable when other S-parameters besides S21 are used as

model outputs. The model is developed in similar modeling

procedure when using other S-parameters as model outputs.

We apply the novel deep neural network topology to two

different cases as defined in Table 1. In Case 1, the geomet-

rical parameters change in a narrower range, while in Case 2

the geometrical parameters change in a wider range. For both

cases of this example, the frequency range is from 11.5 GHz

to 12.5 GHz. For both cases, we perform EM simulations to

generate the training and test data using random sampling

method. SupposeNtr andNte are the total numbers of training

and test data needed for developing the parametricmodel. The

value of Ntr changes in the training process according to the

two-stage training algorithm. In order to generate the training

and test data, we first generate Ntr and Nte sets of randomly

distributed geometrical samples in the variation range of

geometrical parameters. For each set of geometrical param-

eters, we perform full-wave EM simulation using HFSS to

simulate the filter at all chosen frequency samples. Suppose

we have Nf frequency samples, where Nf equals to 101 for

this example. We will getNf sets of training/test data for each

set of geometrical parameters. Each set of training/test data is

composed of the geometrical parameters, one frequency, and

the S-parameters at the specific frequency. After simulations

at all the geometrical samples and frequencies, we will get

Ntr × Nf sets of training data and Nte × Nf sets of test data.

TABLE 1. Definition of training and testing data for the three-pole
H-plane filter example.

We develop the parametric models in both cases for the

three pole H-Plane filter using the proposed deep neural net-

work technique. The training and test error threshold for this

example is set to be 2%. The training and test error threshold

is a user-defined parameter. It is defined according to the

accuracy requirement of the developed model for different

application examples. Smaller error threshold means higher

model accuracy. We defined the error threshold to be 2%

because it is accurate enough for this filter example.
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TABLE 2. Model accuracy comparisons of the proposed deep neural network and conventional 3-layer MLP for the three-pole H-plane filter example.

In Case 1, the number of hidden neurons in Part I and Part II

are determined to be 5 and 15, respectively. We start from one

hidden layer in each part and change the number of hidden

layers based on the training algorithm. When the training

process is finished, the final structure is composed of two

layers with 5 hidden neurons per layer in Part I and two layers

with 15 hidden neurons per layer in Part II. The total num-

ber of training parameters, including weight parameters and

biases, is 432. We start from using 20200 training data and

gradually add the training data. When the number of training

data reaches 80800, the training and test errors achieve the

required threshold. The average training error and test error

of the proposed deep neural network parametric model are

1.93% and 1.94%, respectively. Two different geometrical

samples in Case 1 are used to test the modeling results

as shown in Figure 4. The two test samples are randomly

chosen from all test data. From Figure 4, we can see that the

S-parameters provided by the deep neural network model can

match the desired S-parameters very well. For comparison

purpose, we also develop a parametric model for this example

in Case 1 using the fully connected 3-layer MLP [6]. The

comparison of the modeling results are shown in Table 2.

A 3-layer MLP with 54 hidden neurons, i.e., MLP: 5-54-2,

is used to learn the learn the input-output relationship of the

parametric model. The total number of training parameters is

similar to the number of those in the proposed deep neural

network model. The average training and test errors of the

3-layer MLP with 54 hidden neurons are 2.36% and 2.39%,

respectively. Then we increase the number of hidden neurons

of the 3-layer MLP to be 150, i.e., MLP: 5-150-2, where there

are 1202 training parameters in total. The average training

and test errors of the 3-layer MLP with 150 hidden neurons

are 1.98% and 2.00%, respectively.

In Case 2, the number of hidden neurons in Part I and

Part II are 10 and 25, respectively. The number of hidden

layers in each part starts from one and changes based on

the training algorithm. When the training process is finished,

the final structure is composed of two layers with 10 hidden

neurons per layer in Part I and two layers with 25 hidden

neurons per layer in Part II. The total number of training

parameters is 1162. For this case, we start from using 101000

training data and gradually add the training data. The final

size of the training data is 303000when the two-stage training

FIGURE 4. Three-pole H-plane filter example in Case 1: modeling results
at two different geometrical samples (a) x = [13.52, 14.62, 9.30, 6.15]T

(mm), (b) x = [13.67, 14.90, 8.81, 6.27]T (mm).

process is finished. After training the deep neural network,

the average training error and test error are 1.78% and 1.88%,

respectively. Themodeling results at two random geometrical

samples in Case 2 are shown in Figure 5. The deep neural

network parametric model can provide accurate S-parameter
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FIGURE 5. Three-pole H-plane filter example in Case 2: modeling results
at two different geometrical samples (a) x = [13.23, 16.33, 9.37, 6.87]T

(mm), (b) x = [13.15, 14.58, 10.51, 6.67]T (mm).

solutions, which match the desired S-parameters very well.

For comparison purpose, we also use the traditional fully

connected neural network to develop parametric models for

this example in Case 2. The comparison of the modeling

results are shown in Table 2. Two 3-layerMLPs with different

number of hidden neurons are used to build the parametric

model for Case 2. The numbers of hidden neurons of these

two neural networks are 145 and 200, respectively. The MLP

with 145 hidden neurons has 1162 training parameters, which

is as same as the number of those in the proposed deep

neural network model. The average training and test errors

of the 3-layer MLP with 145 hidden neurons are 3.47% and

3.43%, respectively. When the number of hidden neurons is

increased to 200, the total number of training parameters in

the neural network increases to 1602. The average training

and test errors are reduced to 3.22% and 3.21%, respectively.

From the test results shown in Figure 4 and Figure 5, the

S-parameters provided by the proposed deep neural network

model can match the desired S-parameters very well for both

cases. According to the comparisons of the modeling results

shown in Table 2, our proposed deep neural network topology

can achieve better training and test errors for both cases

compared to the 3-layer MLPs with the similar number of

training parameters. For the narrower range (Case 1), adding

more hidden neurons in the 3-layer MLP can reduce the

training and test errors to the required error threshold. For the

wider range (Case 2), adding hidden neurons in the 3-layer

MLP can reduce the training and test errors slightly. However,

it is much harder to reduce the training and test errors to

the required error threshold. In other words, for narrower

range, both the proposed deep neural network topology and

the conventional 3-layer MLP can satisfy the model accuracy

requirement. The proposed deep neural network technique is

more efficient than the 3-layer MLP because it needs less

training parameters than the 3-layer MLP to achieve similar

model accuracy. For the wider range, the proposed deep

neural network can achieve the required accuracy efficiently

while the 3-layer MLP cannot reach the required accuracy

even with much more training parameters than the proposed

technique.

B. PARAMETRIC MODELING OF A FIFTH-ORDER

WAVEGUIDE BANDPASS FILTER

Parametric models of a fifth-order waveguide bandpass filter

in two cases are developed using the proposed deep neural

network topology in this example. The structure of the filter

is shown in Figure 6 [15]. d1, d2, and d3 are the distances from

the irises to the waveguide wall. z1, z2, and z3 are the distances

between two adjacent irises. The thicknesses of the irises are

t1, t2, and t3. The parametric model for this example has nine

geometrical inputs, i.e., x = [d1, d2, d3, z1, z2, z3, t1, t2, t3]
T ,

and two outputs, i.e., y = [Re(S21), Im(S21)]
T .

FIGURE 6. Structure of the fifth-order waveguide bandpass filter. The
nine geometrical parameters of this filter are
x = [d1, d2, d3, z1, z2, z3, t1, t2, t3]T .

We apply the novel deep neural network topology to two

different cases as defined in Table 3. The frequency range for

both cases of this example is from 9.5 GHz to 12.5 GHz. Total

151 frequency samples in the range are used for this example.

For both cases, we perform EM simulations to generate the

training and test data using random sampling method.

The training and test error threshold for this example is set

to be 2%. In Case 1, we use 8 hidden neurons per layer in Part I

and 15 hidden neurons per layer in Part II. The number of
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TABLE 3. Definition of training and testing data for the fifth-order
waveguide bandpass filter example.

hidden layers in each part is adjusted according to the training

algorithm. When the training process is finished, the final

structure is composed of two layers with 8 hidden neurons

per layer in Part I and two layers with 15 hidden neurons per

layer in Part II. The initial training data size for Case 1 of this

example is 75500. After the two-stage training process, the

total number of training data used for this case is 302000. The

developed model with 574 training parameters can achieve a

1.72% training error and a 1.75% test error. Training and test

errors are the average errors of all training data and test data,

respectively. Two random geometrical samples in Case 1 are

used to show the modeling results in Figure 7. From Figure 7,

we can see that the S-parameters provided by the deep neural

network model can match the desired S-parameters very well.

The comparison results of the proposed technique and MLPs

with different number of hidden neurons are shown in Table 4.

The MLP (i.e., MLP: 10-44-2) with same number of training

parameters as the proposed technique has a 2.28% training

error and a 2.30% test error.When the total number of training

parameters increases to 1224, the average training and test

errors of the MLP (i.e., MLP: 10-94-2) are reduced to 1.76%

and 1.76%, respectively.

In Case 2, the final structure is composed of two layers

with 10 hidden neurons per layer in Part I and two layers

with 25 hidden neurons per layer in Part II after the two-

stage training. There are 1212 training parameters, including

weight parameters and biases, in the developed model. The

initial training data size for Case 2 of this example is 302000.

After the two-stage training process, the total number of

training data used for this case is 377500. The average

FIGURE 7. Fifth-order waveguide bandpass filter example in Case 1:
modeling results at two different geometrical samples (a) x = [13.70,

11.94, 11.20, 12.22, 13.96, 14.63, 1.29, 3.67, 2.10]T (mm),
(b) x = [14.43, 12.09, 11.83, 11.21, 14.36, 15.15, 2.35, 2.79,

2.27]T (mm).

training error and test error are 1.74% and 1.80%, respec-

tively. Figure 8 shows the modeling results at two random

geometrical samples in Case 2. The S-parameter solutions

from the developed model match the desired S-parameters

very well. The comparison results of the proposed technique

andMLPswith different number of hidden neurons are shown

in Table 4. The 3-layerMLP (i.e., MLP: 10-94-2) with similar

number of training parameters as the proposed technique has

a 2.88% training error and a 2.94% test error. When the total

number of training parameters increases to 1900, the average

training and test errors of the MLP (i.e., MLP: 10-146-2)

are reduced to 2.70% and 2.76%, respectively. Figure 9

shows training errors versus the the number of training

epochs for the proposed neural networkmodel and the 3-layer

MLP with 146 hidden neurons. A 4-layer MLP is used to

develop the parametric model for Case 2 of this example as a

further comparison. The modeling result is shown in Table 4.

82282 VOLUME 8, 2020



J. Jin et al.: Novel Deep Neural Network Topology

TABLE 4. Comparison of model accuracy comparisons of the proposed deep neural network and conventional MLP for the fifth-order waveguide
bandpass filter example.

FIGURE 8. Fifth-order waveguide bandpass filter example in Case 2:
modeling results at two different geometrical samples (a) x = [14.14,

12.14, 11.12, 11.47, 14.76, 15.26, 2.25, 3.11, 1.04]T (mm),
(b) x = [14.76, 12.40, 11.13, 13.06, 14.99, 15.71, 1.13, 2.43,

2.21]T (mm).

There are 35 hidden neurons per layer in the 4-layer MLP

model, and the total number of training parameters is 1717.

After training, the average training and test errors are 1.77%

and 1.84%, respectively.

FIGURE 9. Training errors versus the number of training epochs for the
proposed neural network model and the 3-layer MLP.

According to the comparisons of the modeling results

shown in Table 4, for narrower variation range (Case 1), both

the proposed deep neural network technique and the con-

ventional 3-layer MLP can achieve the required model accu-

racy. The proposed deep neural network technique is more

efficient than the 3-layer MLP because it needs less training

parameters than the 3-layer MLP to achieve similar model

accuracy. For the wider range (Case 2), the proposed deep

neural network technique the required accuracy efficiently

while the 3-layer MLP cannot reach the required accuracy

even with much more training parameters than the proposed

technique. Compared to the 4-layerMLP, the proposed neural

network technique can achieve similar accuracy with fewer

training parameters.

IV. CONCLUSION

This paper has proposed a novel deep neural network topol-

ogy for parametric modeling of microwave components. The

inputs in the proposed deep neural network topology have

been divided into geometrical inputs and the frequency input.

We have divided the hidden layers in the propose deep neural

network into two parts in order to reduce the total number

of training parameters. We have derived the feedforward

computation from the model inputs to the outputs for the pro-

posed deep neural network. New computations of the deriva-

tives of the error function with respect to training parameters
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have been proposed. We have proposed an advanced two-

stage training algorithm to train the deep neural network. The

training algorithm can determine the number of hidden layers

in both parts during the training process and guarantee that the

proposed deep neural networkmodel can achieve the required

model accuracy. The proposed deep neural network topology

can achieve similar model accuracy using less training param-

eters than the fully connected neural network.
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