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ABSTRACT The health condition of a wheelset bearing, the key component of a railway bogie, has

a considerable impact on the safety of a train. Traditional bearing fault diagnosis techniques generally

extract signals manually and then diagnose the bearing health conditions through the classifier. However,

high-speed trains (HSTs) are usually faced with variable loads, variable speeds, and strong environmental

noise, which pose a huge challenge to the application of the traditional bearing fault diagnosis methods

in wheelset bearing fault diagnosis. Therefore, this paper proposes a 1D residual block, and based on

the block, a novel deeper 1D convolutional neural network (Der-1DCNN) is proposed. The framework

includes the idea of residual learning and can effectively learn high-level and abstract features while

effectively alleviating the problem of training difficulty and the performance degradation of a deeper

network. Additionally, for the first time, we fully use the wide convolution kernel and dropout technology

to improve the model’s ability to learn low-frequency signal features related to the fault components and to

enhance the network’s generalization performance. By constructing a deep residual learning network, Der-

1DCNN can adaptively learn the deep fault features of the original vibration signal. This method not only

achieves very high diagnostic accuracy for the fault diagnosis task of wheelset bearings in HSTs under strong

noise environment, but also its performance is quite superior when the train’s working load changes without

any domain adaptation algorithm processing. The proposed Der-1DCNN is evaluated on the dataset of the

multi-operating conditions of the wheelset bearings of HSTs. Experiments show that this method shows

a better diagnostic performance compared with the state-of-the-art deep learning methods of bearing fault

diagnosis, which proves the method’s effectiveness and superiority.

INDEX TERMS High-speed trains, wheelset bearings fault diagnosis, deep learning, one-dimensional

residual block, wide convolutional kernel.

I. INTRODUCTION

Recently, high-speed trains (HSTs) have experienced a rapid

development throughout the world. However, maintaining

the safety and reliability of HSTs is challenging with the

increasing speed. The health condition of a wheelset bearing,

the core component of a railway bogie, has a considerable

impact on the safety of trains. Once the bearing fails, it may

endanger the normal machine operation and cause significant

economic losses. Sometimes it even results in a serious safety

accident. Consequently, condition monitoring and the fault

diagnoses of wheelset bearings are valuable and meaningful

for maintaining the normal operation and safety of HSTs.

However, due to the complexity and variability of the work-

ing environments of HSTs, the vibration signals collected

from wheelset bearings are susceptible to noise and other

components. Therefore, the fault diagnoses of these types

of bearings are more challenging when comparing with the

bearings in common industrial equipment.

Traditional intelligent fault diagnosis methods mainly

include three steps: data acquisition, feature extraction and
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fault identification. It is worth noting that feature extraction

and fault identification are two important steps for bear-

ing fault diagnosis, directly affecting the accuracy of fault

classification. Generally, time domain features (kurtosis [1],

entropy [2] and so forth) and time-frequency domain features

(wavelet packet [3], Hilbert spectrum [4] and so forth) are

manually extracted. Then, these statistical parameters are fed

into machine learning algorithms, such as a support vector

machine (SVM) [4], [5], k-Nearest neighbor (kNN) [1] and

artificial neural network (ANN) [2]. For the fault diagnosis of

HSTs, Cao et al. [6] applied the empirical wavelet transform

(EWT) for wheelset bearing fault diagnosis and obtained

good performance in the detection of outer race faults, roller

faults and the compound fault of outer race and roller.

Wang et al. [7] proposed ensemble empirical mode decom-

position (EEMD) and then extracted the kurtosis features

of each component to diagnose the wheelset bearing fault.

Qin et al. [8] introduced fuzzy entropy and EEMD to analyze

the fault features of HSTs. In [9], the feature selection of HST

bogie fault signals was performed with wavelet entropy, and

then, an SVM was used as the model of fault recognition.

Liu et al. [10] employed the SVM framework as the fault clas-

sifier of the braking systems of HSTs and obtained relatively

high accuracy.

However, the intelligent fault diagnosis methods men-

tioned above still have some drawbacks: 1) the diagnosis

performances rely heavily on the design of feature extrac-

tion methods, which often require experts who have strong

domain knowledge and rich practical experiences. For every

specific fault diagnosis task, feature extraction methods must

be redesigned, so it is time consuming and labor inten-

sive. 2) Extracting features using domain knowledge cannot

guarantee that the statistical parameters can fully represent

the complex dynamic characteristics. This is mainly due to

the following three aspects. First, compared with the bear-

ing vibration signals of general equipment, those collected

fromwheelset bearings are nonlinear and non-stationary with

stronger noise. Second, the working conditions are changing

during the equipment’s operation, so the fault features are

variable and complex. Third, the feature distribution of data

samples under various working conditions are generally dif-

ferent, typically different load conditions. 3) These machine

learning classifiers, for example, an SVM, kNN and ANN,

employ shallow networks, so it is difficult to learn adequate

features. In addition, the nonlinear relationship of fault sig-

nals may not be effectively learned, thus causing one to make

misjudgments.

Based on the above discussions, deep learning techniques

with their powerful automatic feature learning ability are

expected to provide an effective solution for the intelligent

fault diagnosis of wheelset bearings in HSTs. The core

of deep learning is feature learning [11], whose aim is to

obtain hierarchical feature information through a hierarchical

network, thus solving an important problem that required

features to be manually extracted in the past. A convolu-

tional neural network (CNN) [12] is a powerful deep learning

method that has been successfully applied in various fields,

such as computer vision [13], speech recognition [14], natu-

ral language processing [15] and one-dimensional (1D) sig-

nal processing [16]. Generally, the CNN is a hierarchical

model that uses raw data as input and extracts high-level

features layer by layer from the original data through con-

volution operations, pooling operations, nonlinear activation

function mapping, and so on. Compared with the traditional

fully connected neural network, a CNN can learn more robust

features and has better generalization performance. Mean-

while, it can also save on training costs through weight

sharing and pooling operations. Therefore, this paper’s aim

is to develop an end-to-end wheelset bearing fault diagno-

sis method based on CNNs, and to the best of our knowl-

edge, CNN technology is first used in the fault diagnosis of

wheelset bearings in HSTs in this paper.

First, as mentioned before, the fault features of wheelset

bearings are highly coupled with noise, and the feature dis-

tribution under various working loads are quite different,

which significantly increases the difficulty of fault feature

extraction from simple shallow CNN models. To effectively

extract fault-related features from vibration signals with com-

plex interference, the network should learn higher-level and

more abstract signal features so as to filter fault-related fea-

tures from complex signal features. CNNs naturally integrate

low/mid/high-level features and classifiers in an end-to-end

multilayer fashion, and the ‘‘levels’’ of features can be

enriched by the number of stacked layers [17], so a deeper

network can learn richer and higher-level signal features.

However, the deeper CNN has its own defects in addition to

its powerful feature learning ability. First, backpropagation

calculates the gradient through the chain rule, which easily

leads to an exponential decrease/increase of the gradient

as the layer increases. Therefore, the deeper CNN often

encounters the vanishing or exploding gradient problem, and

its training becomes more difficult [18]. Second, network

degradation is another major problem, which leads to an

increase of the training error of training samples [17]. These

two problems greatly limit the deeper CNN’s development in

the field of fault diagnosis.

Therefore, this paper proposes the 1D residual learning

block, which is a further improvement and application of

Resnet’s [17] take on 1D vibration signals. Based on this

block, a novel deeper 1D CNN (Der-1DCNN) is constructed.

The framework can extract higher-level signal features from

raw vibration signals via a deep network architecture and has

better fault discrimination abilities. Moreover, a Der-1DCNN

can not only effectively alleviate the problem of training

difficulty for 1D deeper CNNs but also dynamically adapt

to datasets of various sizes by adjusting the number of 1D

residual blocks.

Additionally, when the wheelset bearings of HSTs fail,

low-frequency impact components and modulation com-

ponents are introduced. These fault features are easily

overwhelmed by strong noises and inherent high-frequency

vibration signals with dominant amplitudes. Therefore, how
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to improve the CNN architecture so that it can effectively

learn low-frequency fault-related features is another chal-

lenge for the fault diagnosis of wheelset bearings. In the

convolutional layer of a CNN, the maximum range of input

signals that each convolution operation can perceive is closely

related to the size of the convolution kernel. Generally, a wide

convolution kernel can better learn the global low-frequency

trend features of vibration signals without local interference

features misleading it.

Therefore, we first propose fully using wide convolu-

tion kernels of various sizes in the convolutional layer

of a 1D CNN, instead of the narrow convolution kernels

(1×3) used in traditional CNNs, to enhance the learning of

low-frequency features and global features. In addition, as the

network depth and the size of the convolution kernel increase,

the network parameters inevitably increase, so overfitting is

inevitable. To prevent overfitting, we introduce the dropout

technique [19], which is commonly used in the fully con-

nected layer, into the convolutional layer. Its key idea is to

randomly drop out the convolutional kernel during training,

which prevents parameters from co-adapting too much and

makes the model learn more robust features. The introduc-

tion of dropout is equivalent to training multiple ‘‘thinned’’

networks and then using the idea of model integration to

effectively prevent the problem of overfitting and to improve

the network’s generalization performance.

The key contributions of this paper are summarized as fol-

lows. 1) First, we propose a 1D residual block by introducing

the idea of residual learning into the traditional 1DCNN. This

block can effectively solve the problem of training difficulty

and performance degradation for the deeper CNN. Addi-

tionally, the introduction of a wide convolutional kernel and

dropout further enhances the feature learning ability of the

deeper CNN in a noisy environment. 2) This paper constructs

a novel Der-1DCNN framework based on a 1D residual block

and develops an end-to-end bearing intelligent fault diagnosis

method. This system regards the raw vibration signal as input,

which can automatically learn the high-level features and

classify various health conditions simultaneously. It does not

require any additional signal processing or expert knowl-

edge, thus effectively improving the applicability of intelli-

gent fault diagnosis systems. 3) The proposed Der-1DCNN

is evaluated through experiments on the wheelset bearing

test rig of HSTs with a comprehensive performance eval-

uation. Compared with state-of-the-art deep learning meth-

ods applied to bearing fault diagnosis, a Der-1DCNN can

significantly improve the diagnostic performance of bearing

fault diagnosis in HSTs in a strong noise environment and

has strong domain adaptation ability under changing load

conditions.

The rest of this paper is structured as follows.

Section 2 describes related works. In Section 3, the proposed

Der-1DCNN is detailed. In Section 4, the wheelset bearing

datasets are employed to demonstrate the effectiveness and

superiority of the proposed method. Additionally, the validity

of a Der-1DCNN is investigated and discussed in Section 5.

Finally, conclusions are drawn and future works are discussed

in Section 6.

II. RELATED WORKS

The related works described in this section contain intelligent

fault diagnosis methods for HSTs and CNNs for the fault

diagnosis of rotating machinery.

A. INTELLIGENT FAULT DIAGNOSIS METHODS

FOR HIGH SPEED TRAINS

In the field of the intelligent fault diagnosis of HSTs,

Zhao et al. [20] introduced empirical mode decomposi-

tion (EMD) and fuzzy entropy to extract the signal fea-

tures of HSTs, and a back propagation (BP) neural network

was applied as the model for fault diagnosis. However, this

method leads to the wrong state recognition in some working

conditions. Xie et al. [21] adopted fast Fourier transform

(FFT) to extract the signal features of bogie HSTs, and

k-DBNs based on kNNs and deep belief networks (DBNs) are

proposed to classify faults, but recognition accuracy is about

54% in a real environment. Pang et al. [22] used the denoising

autoencoder (DAE) and BP neural network to recognize the

bogie faults of HSTs after signal preprocessing using the

discrete Fourier transform (DFT), but it has poor performance

in an actual running environment. Guo et al. [23] proposed a

novel DBN for the fault analysis of an HST under a single

failure condition, whose input is the FFT signal. However,

the FFT technique can be used to process only stationary

signals, whereas the time-domain signals of bogies are non-

stationary. Yin and Zhao [24] developed a DBN model to

provide for the real-time monitoring and diagnosis of vehicle

on-board equipment. We can clearly see that up to now,

few studies have been done on the wheelset bearing fault

diagnosis using deep learning techniques. Even though some

scholars have studied the fault diagnosis of key components

of the HSTs of bogies, several problems still exist. For

example, the diagnosis accuracy is low, and the method’s

performance is poor under complex conditions. Therefore,

it is valuable to study wheelset bearing fault diagnosis under

complex working conditions.

B. CNN FOR FAULT DIAGNOSIS OF ROTATING MACHINERY

Recently, CNNs have been widely used in rotating machinery

fault diagnosis due to excellent feature learning ability. In

2015, Chen et al. [25] applied a CNN for the fault diagnosis

of gearboxes. However, manual feature extraction was still

needed. Janssens et al. [26] proposed a three-layer CNN

model for bearing fault recognition, in which the input of

a CNN is a DFT signal. Guo et al. [27] proposed a hier-

archical adaptive deep CNN for bearing fault diagnosis.

Ince et al. [28] established a 1D-CNN model for motor

fault detection from raw time series data, which success-

fully avoids the time-consuming feature extraction process.

Considering multi-sensor data information, Xia et al. [29]

designed the 1D-CNN model to diagnose faults of rotat-

ing machinery, and it proved that the diagnosis result of
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FIGURE 1. Architecture of the proposed Der-1DCNN framework.

multi-sensor data is better than that of the single sensor.

Zhang et al. [30] proposed a WDCNN model from the raw

signals for the bearing fault diagnosis. In 2018, he also

proposed the TICNNmodel with training interference, which

can work on raw noisy data and under different working loads

for bearing fault diagnosis [31]. Recently, Jiang et al. [32]

proposed multiscale CNNs for fault diagnosis of wind tur-

bine gearbox by combining multi-scale learning with deep

learning techniques, and it achieved high accuracy. Through

converting signals into two-dimensional (2D) images,

Wen et al. [33] designed a CNN based on LeNet-5 and

applied it in a motor bearing dataset. It can be found that

the above networks all adopt shallow-layer CNNs (<10).

The vibration signals of wheelset bearings are complex,

and the fault signals are highly coupled with other irrelevant

signals. Therefore, it is very promising to design a much

deeper network to learn higher-layer and more abstract fault-

related features.

III. PROPOSED Der-1DCNN-BASED FAULT

DIAGNOSIS METHOD

In this section, the proposed Der-1DCNN-based fault diag-

nosis method is detailed, and its overall architecture is pre-

sented in Figure 1. To extract effective fault-related features,

a Der-1DCNN constructs a much deeper 1D CNN to learn

features of different levels from the raw signal. Specifically,

a Der-1DCNN uses two wide convolutional layers and a deep

residual module to learn low-level and high-level features,

respectively. Second, this paper introduces a wide convo-

lutional kernel and dropout into the proposed Der-1DCNN

framework to improve the model’s anti-noise ability. Finally,

the extracted high-level features are put into a global average

pooling [34] layer and a fully connected layer with softmax

to obtain the classification result, thereby completing the fault

diagnoses of wheelset bearings.

A. HIGH-LEVEL FEATURES LEARNING WITH STACKED

1D RESIDUAL BLOCKS

1) RESIDUAL LEARNING

The nonlinear layer composed of multiple stacked convolu-

tional layers and activation layers can fit very complex non-

linear functions, which is one of the reasons that CNNs have

powerful performance. Therefore, we attempt to construct

a much deeper 1D CNN to diagnose the wheelset bearing

fault of HSTs under complex working conditions. Never-

theless, the problems of training difficulty and performance

degradation of the deeper CNN indicate that a deeper net-

work cannot exert powerful learning ability. To address this

problem, residual learning [17] is proposed. Its key idea is to

convert complex function L(x) fitted by multiple nonlinear

layers into residual function (R(x) = L(x) − x), where x

is the input to these layers. In addition, an input-to-output

identitymapping is constructed through shortcut connections.

Through the shortcut connections, the network enables the

flow of information across layers without the attenuation

that would stem from multiple stacked non-linear transfor-

mations, thereby improving the network’s training speed.

Obviously, it is easier to learn the residual function than

to learn a new complex function. This can effectively exert

the powerful learning ability of the deeper CNN and solve

the problem of performance degradation. Based on residual

learning, we will introduce the 1D residual block proposed in

this paper and the Der-1DCNN architecture in the following

section.
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2) 1D RESIDUAL BLOCK

As shown in Figure 2, the 1D residual block has two branches.

One is to fit the residual function via two 1D weight layers,

and the other is to complete the identity mapping of the

input signal through shortcut connections. The corresponding

elements of two branches are added together, and then pass

through the ReLU [35] nonlinear activation function to form

the entire 1D residual block.

FIGURE 2. 1D residual block.

The input signal of the first weight layer (W1) is output

feature signal x = {x1, x2, . . . , xl} of the previous layer, and

the signal length is l. In this weighting layer, we slide the

convolutional kernel with the size of 1×k and a stride of s on

the input feature signal, and we obtain output feature signal

Y1 accordingly. Output yi of the ith node in feature signal Y1
is defined as (1).

yi = wTxi:i+k−1 + b1, (1)

where w is the convolutional kernel vector; b1 denotes the

bias term of the first weight layer; and xi:i+k−1 is a k-length

sub-signal of input signal x starting from the i-node.

Then, nonlinear output y′i is obtained through ReLU non-

linear activation function f shown as (2).

y′i = f (wTxi:i+k−1 + b1), (2)

where ReLU nonlinear activation function f is defined as (3).

f (z) =

{

z z > 0

0 z ≤ 0
(3)

Therefore, final output feature vector Y ′
1 is defined as (4).

Y ′
1 = {y′1, y

′
2, · · · , y′m}, (4)

where m denotes the length of Y ′
1. When s = 1, m = l, and

when s ≥ 2, m = l/s. After the first weight layer and the

nonlinear activation function, we obtain output feature signal

Y ′
1, which is regarded as the input of the second weight layer

(W2). Repeat the above (1) operation, and obtain Y2. Next, Y2
is added to identity mapping h(x) and then passes through the

ReLU nonlinear activation function to obtain final output Y

of the residual block shown in Eq. (5).

Y = f (Y2 + h(x)) = f (W2Y
′
1 + b2 + h(x)) (5)

Therefore, we assume that function R(x) represents the

residual function learned by the stacked weight layers. The

following (6) and (7) are the definition of the 1D residual

block.

R(x) = W2f (W1x + b1) + b2 (6)

L(x) = f (h(x) + R(x)) (7)

Obviously, data stream x can flow in the network without

attenuation, and it is easier to learn residual functionR(x) than

to learn the new complex function L(x). Therefore, the 1D

residual block can effectively exert the powerful learning abil-

ity of the deeper CNN and solve the problem of performance

degradation.

FIGURE 3. Architecture of 1D residual block. (a) Identity-block. (b)
Down-block.

Figure 3 is the architecture of the 1D residual block.

Specially, 1D residual block ‘‘Identity-block’’ includes two

convolution operations, where the wide convolutional kernel

has the size of 1×k and a stride of 1. Batch normalization

(BN) [36] and dropout [19] are used to improve the perfor-

mance of the 1D residual block, as shown in Figure 3(a).

However, the input and output data streams of ‘‘Identity-

block’’ must have the same dimensions; otherwise, the addi-

tion operation of two data streams cannot be done. If this

is not the case, 1D residual block ‘‘Down-block’’ shown

in Figure 3(b) is adopted, where the linear projection of the

input data stream is performed via a convolution operation

with a 1×1 convolutional kernel and a stride of 2 on the

shortcut connections to match the dimensions.

3) THE DEEP RESIDUAL MODULE OF DER-1DCNN

In this section, we introduce the deep residual module of

a Der-1DCNN, which is composed of stacked 1D residual

blocks for high-level fault feature extraction. To effectively

learn fault features from the raw signals measured under vari-

able loads, variable speeds and a strong noise environment,

the key idea of this module is to construct a much deeper

1D network to learn and abstract the signal features layer by

layer. Finally, the high-level feature information is extracted.

Therefore, we build a deep residual module via stacked 1D

residual blocks. The module has the following three advan-

tages: 1) powerful learning ability: it can effectively exert the

powerful feature learning ability of the much deeper network.
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FIGURE 4. Deep residual module with stacked 1D residual blocks.

2) Convenience: by simply stacking the 1D residual blocks,

we can obtain a deeper network with a powerful feature

learning ability. 3) Adaptability: the deep residual module

is universal and flexible. It may have different depths and

different convolutional kernel sizes. For example, we can

construct 30-layer, 50-layer or even much deeper 1D CNNs

based on different signal lengths and dataset sizes.

Figure 4 shows an architecture of a 24-layer Der-1DCNN

with 10 stacked 1D residual blocks, where two shallow con-

volutional layers are not shown. It can be seen that building

the Der-1DCNN framework follows the following simple

design rules: 1) the network depth is adjusted by the number

of 1D residual blocks. 2) For the same output feature signal

length, the convolutional layers have the same number of con-

volutional kernels. 3) If the input feature signal length of the

convolutional layers is halved, the number of convolutional

kernels is doubled, while the size of the wide convolutional

kernels is halved. 4) Down-sampling is performed in ‘‘Down-

block’’ directly via convolutional layers with a stride of 2.

As shown in Figure 4, S2 represents a stride of 2. 5) The

residual learning network ends with a global average pooling

layer and a fully connected layer with softmax. It is worth

noting that the parameter settings of the network are not

fixed and can be adjusted according to actual working condi-

tions. For example, to better extract the features of complex

signals, the number of network layers or the size of wide

convolutional kernel can be increased, but the overall design

principles of the Der-1DCNN framework need to follow the

above rules.

B. CONVOLUTIONAL LAYER WITH WIDE

CONVOLUTIONAL KERNEL

The convolutional layer is the core of a CNN, consisting of

multiple convolutional kernels. It performs the convolution

operation on the input signal to produce an output to the next

layer. Suppose that w is a convolutional kernel vector with

size 1×k , and x is the discrete vibration signal. Let X ·W be

the result of 1D discrete convolution. The ith element of the

result is given by (8).

(X ·W )[i] =

k
∑

n=1

wk−n+1 · xi+n−1 (8)

It can be seen that, for different convolutional kernels,

the convolution operation is capable of extracting different

insightful information from the raw signal. If the 1×3 nar-

row convolutional kernel used in the traditional 1D-CNN is

adopted, each output feature value can obtain only the feature

relationship among the adjacent three values of the input

signal, which will greatly limit the network’s ability to learn

low-frequency signal features. However, the introduction of

a wide convolutional kernel allows one convolution opera-

tion to obtain the feature relationship in a longer sequence.

Through the learning of multi-layer convolutions, the net-

work can extract better low-frequency fault-related features

and suppress the noise interference. However, a wide con-

volutional kernel increases network parameters, which is not

beneficial for making the network deeper. Hence, we adopt

the 1×48 wide convolutional kernel in the first convolutional

layer, and for the subsequent convolutional layer, the width

of the convolutional kernel is gradually reduced.

Another advantage of a wide convolutional kernel is that

the network has fewer parameters and computations when

the receptive field is same. In a 1D-CNN, the receptive field

refers to the length of the region where the signal point of the

feature signal in each layer is mapped on the original signal.

The calculation formula is in (9),

RFi = (RFi+1 − 1) × si + ki, (9)

where RFi is the receptive field of the ith convolutional

layer; RFi+1 is the receptive field of the (i + 1)th layer; s

is the stride of the convolution operation; and k is the size of

the convolutional kernel. For a 2D-CNN, three stacked 3×3

convolutional layers can use only 27 weighting parameters to
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obtain the same receptive field as a 7×7 convolutional layer.

However, for a 1D-CNN, five stacked 1×3 convolutional lay-

ers use 15 weighting parameters to obtain the same receptive

field as a 1×11 convolutional layer. Therefore, it is unwise

for the 1D signals processing to use a narrow convolutional

kernel. In this paper, we adopt a wide convolutional kernel

to learn signal feature, and we adjust the size of the convolu-

tional kernel according to the specific task.

C. 1D RESIDUAL BLOCK WITH DROPOUT

In this paper, the dropout is introduced into the first layer

convolution operation of the proposed 1D residual block.

It means that the convolutional kernel is randomly dropped

out via probability p during training. To ensure the validity

of the wide convolutional kernel of each layer, dropout rate p

decreases as the size of awide convolutional kernel decreases.

Applying dropout to a neural network amounts to sampling

a ‘‘thinned’’ network from it. A neural net with R units

can be seen as a collection of 2R possible thinned neural

networks [19]. Thus, the dropout applied to a wide convolu-

tional kernel can trainmany ‘‘thinned’’ networks, and through

the integration of these ‘‘thinned’’ models, the network can

learn more robust fault features. Therefore, we adopt wide

convolutional kernels to further make dropout more effi-

cient. Additionally, the introduction of dropout is equivalent

to adding random noise to the input feature signal, which

will improve the network’s anti-noise ability. The dropout is

expressed in (10) and (11).

yi = r · wT xi:i+k−1 + b1, (10)

y′i = f (yi), (11)

where r follows Bernoulli distribution as shown in Eq.(12),

which is used to decide whether the convolutional kernel is

dropped out. Therefore, residual function R(x) is expressed

by Eq. (13).

r ∼ Bernoulli(p) (12)

R(x) = W2f (r ·W1x + b1) + b2 (13)

D. CLASSIFICATION

1) GLOBAL AVERAGE POOLING

In the Der-1DCNN model, global average pooling is adopted

to replace the traditional fully connected layers in a CNN.

It can effectively avoid the overfitting problem that eas-

ily occurs in the fully connected layers, and thus improve

the network’s generalization ability. It takes the average of

each feature signal, and the resulting vector is fed directly

into the softmax layer. Compared with the fully connected

layer, global average pooling is more native to the convolu-

tion structure by enforcing correspondences between feature

signals and categories. Moreover, there is no parameter to

optimize in the global average pooling; thus, overfitting is

avoided in this layer.

2) SOFTMAX AND LOSS FUNCTION

Obviously, the wheelset bearing fault diagnosis is a multi-

classification task, so the softmax activation function is

applied. It maps the output of multiple neurons to the range of

(0, 1) and sums up to 1, so it is generally used as the classifier

to estimate the probability distribution belonging to different

classes. We assume that K is the total number of different

health conditions (12 in this paper). The softmax function is

expressed in (14).

Qj(z) =
ezj

∑K
k=1 e

zj
, (14)

where zj is the jth input feature of the softmax activation

function, and Qj(z) is the estimated probability distribution

of observation z belonging to the jth class.

Then, cross-entropy loss function [37] is adopted to eval-

uate the error of the estimated softmax output probability

distribution and the target class probability distribution. Sup-

pose that P(z) is the target distribution and that Q(z) is the

estimated distribution; the cross-entropy between P(z) and

Q(z) is expressed as (15).

Loss = E(P(z),Q(z)) = −

K
∑

j=1

Pj(z)log(Qj(z)) (15)

Finally, the Adam [38] optimization algorithm is used to

reduce the value of the cross-entropy loss function during

training, so the estimated distribution and the target distribu-

tion draw closer and closer, thereby gradually improving the

model’s prediction accuracy.

E. THE FAULT DIAGNOSIS METHOD BASED

ON Der-1DCNN

In this section, an end-to-end wheelset bearing fault diag-

nosis method of HSTs based on the proposed Der-1DCNN

framework is presented. The flow chart of the fault diagnosis

method is shown in Figure 5, and its general operation pro-

cesses are summarized as follows.

a) First, the vibration signals of bearings under various

working conditions and different faults are collected through

multiple acceleration sensors installed on the axle box of an

HST. Then, each vibration signal is segmented into small

segments by the data expansion method, thereby obtaining

training samples and testing samples of the model.

b) According to the size of the sample, select the appropri-

ate network depth to avoid the problem of wasting computing

resources.

c) The raw vibration signals of training samples are

regarded as the input of the Der-1DCNN model. In addition,

the Adam [38] algorithm is employed to optimize all network

parameters to complete high-level feature extraction and fault

classification, so the end-to-end wheelset bearing fault diag-

nosis model based on a Der-1DCNN is obtained.

d) Input the testing samples to the well-trained fault diag-

nosis method to automatically extract high-level features and

10284 VOLUME 7, 2019



D. Peng et al.: Novel Der-1DCNN With Residual Learning for Fault Diagnosis of Wheelset Bearings in HSTs

FIGURE 5. The flow chart of the wheelset bearing fault diagnosis system.

directly diagnose the health conditions of wheelset bearings

in HSTs.

IV. EXPERIMENTAL VERIFICATION OF

PROPOSED Der-1DCNN

In the real operation of HSTs, the working conditions of

wheelset bearings vary greatly. First, the generation of ran-

dom noise is inevitable, and the fault-related signal is easily

overwhelmed by high-intension environment noise. There-

fore, it is very important and challenging to have the ability

to perform high-precision fault diagnosis in a noise envi-

ronment. Second, the working load may constantly change,

and the signal features change accordingly. However, it is

unrealistic to collect and label enough training samples. If the

fault diagnosis method has the ability to classify samples of

other loads by learning training samples under the existing

load, it can greatly improve the efficiency and applicability

of the diagnosis method. In this section, we verify the merits

of the proposed model from these two aspects of the HST

test rig.

A. DATA DESCRIPTION

The experimental data come from the wheelset bearing test

rigs of HSTs located in the Qingdao Sifang Institute. The

vibration signals are collected via different accelerometers

mounted on the axle boxes of HSTs. As shown in Figure 6,

the wheelset bearing test rig is mainly composed of a drive

motor, a belt transmission system, a vertical loading set,

a lateral loading set, two fan motors and a control system.

The vertical and lateral loading sets are designed to mimic

two-dimensional loads in real train operation. The fan motor

can generate wind that is opposite of the train’s running direc-

tion. An axle and its two supporting bearings are assembled

to the test rig. Vibration signals sampled at 5120 Hz are

collected via two accelerometers that ensure that horizontal

and vertical movements aremeasured in the wheelset bearing.

FIGURE 6. The wheelset bearing test rig.

For the sake of verifying the merits of the proposed Der-

1DCNN model, 12 different health conditions of wheelset

bearings are set in consideration of multiple and mixed fault

patterns. The fault information with respect to the test bear-

ings is listed in Table 1, where the labels are C1, C2, C3,

. . . and C12, respectively. To simulate the complex and chang-

ing working conditions of HSTs during their operation as

much as possible, under each health condition, five running

speeds are designed: 60, 90, 120, 150 and 180 km/h, and

four different vertical loads are conducted: 56, 146, 236 and

272 kN, and also two lateral loads: 0 and 20 kN are set.

Therefore, each health condition includes 40 kinds of work-

ing conditions. After the raw signal is extended through the

data augmentation technique, there is a total of 329,752 sam-

ples. The samples are randomly divided into training samples

and testing samples. A total of 284,260 samples are training

samples, and 45,492 samples are testing samples.

B. EXPERIMENTAL SETUP

1) DATA AUGMENTATION

Fault diagnosis based on deep learning often requires a large

number of data samples, so the data augmentation technique

is very meaningful for the training of deeper CNNs. We next
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TABLE 1. Description of twelve health conditions.

introduce a sliding segmentation approach to expand the

original data. Suppose that we have a collected vibration

sequence x[n] with n sample points. Then, we define another

three parameters: Loverlap = the length of sample overlap for

two neighbor segments; Lseg = the length of each segment;

and N = the number of segments. Their relationships are

defined in (16). Once the aforementioned four parameters

(n, Loverlap, Lseg, N ) are specified, the whole signal x[n] can

be split into N segmentation signal {x1[n], x2[n], ..., xN [n]}

shown in Figure 7. In this paper, Loverlap and Lseg are typically

defined as 1920 and 2048, respectively, which can guarantee

that each segmentation signal contains at least one period of

vibration. For example, a vibration signal with 51,200 sample

points can obtain 385 training samples.

n = (N − 1) × (Lseg − Loverlap) + Lseg (16)

FIGURE 7. Data augmentation.

2) BASELINE SYSTEM

To validate the effectiveness and superiority of the proposed

Der-1DCNN, the following four state-of-the-art methods are

regarded as the benchmark methods.

a) Wen-CNN [33]: Through converting the raw vibration

signals into 2D images, this method designed a new

CNN based on LeNet-5 to diagnose the fault of motor

bearings.

b) MSCNN [32]: The method introduced a new multi-

scale CNN structure for multiscale feature extraction

and classification. In this paper, MSCNN applies three

multi-scale branches.

c) WDCNN [30]: This method proposed a CNN for the

bearing fault diagnosis, and it applied wide convolu-

tional kernels in the first convolutional layer for extract-

ing features and suppressing high-frequency noise.

d) ADCNN [27]: Themethod converted the 1D signal into

two dimensions and then adopted an adaptive deep

CNN to diagnose bearing faults and determine their

severity.

In each experiment, we use the same training samples and

testing samples, and 80 epochs are trained in the same training

strategy for these four benchmark methods and the Der-

1DCNN. Because the data length of each sample is 2048 and

the number of health conditions for the wheelset bearings

is 12, the input and output dimensions of these benchmark

methods have to be modified accordingly.

3) IMPLEMENTATION DETAILS

We implement the proposed Der-1DCNN using the Keras

library and Python 3.5. Network training and testing are

performed on a workstation with an Ubuntu 16.04 operating

system, an Intel Core i7-6850K central processing unit, 32GB

random access memory and a GTX 1080Ti graphics process-

ing unit. To accelerate the convergence speed of the network,

each original signal xo is normalized using the z-score stan-

dardization method, which can be expressed in (17).

x =
xo − µ

σ
, (17)

where µ is the mean of the sample data and σ is the standard

deviation of the sample data. Finally, during the training, we

adopt the cross-entropy loss function and Adam optimization

algorithm with a learn rate of 0.0001 and batch size 96.

4) PERFORMANCE METRICS

In this paper, we adopt the evaluation indicator: accuracy.

It is a commonly comprehensive metric that measures the

performance of classification methods. This metric is defined

in Eq. (18).

accuracy =
TP+ TN

V + T
, (18)

where TP (true positive) is correctly classified as positive

samples, FP (false positive) is misclassified as positive sam-

ples, TN (true negative) is correctly classified as negative

samples, FN (false negative) is misclassified as negative sam-

ples, V is the number of positive samples shown in (19) and

T is the number of negative samples shown in (20) .

V = TP+ FN (19)

T = FP+ TN (20)
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FIGURE 8. Performance of Der-1DCNN and four benchmark methods in noise environment (SNR = −16 dB).

C. CASE STUDY I: ROBUSTNESS AGAINST NOISE

The experimental data are collected under different working

conditions and different health conditions of bearings on the

HST test rig, so the original vibration signal already contains

certain noise. To better simulate the strong noise interference

in the real operation of trains, we add white Gaussian noise to

the original signals with different signal noise ratios (SNRs).

The definition of SNR is shown as (21).

SNR = 10log10

(

Psignal

Pnoise

)

, (21)

where Psignal and Pnoise are the power of signal and noise

respectively, and we assume that Psignal is 0 dBW.

In this experiment, we will verify the effectiveness of the

proposed Der-1DCNN in different noise environments with

the SNRs ranging from −16 dB to 20 dB. The experimental

results are shown in Figure 8. Obviously, the Der-1DCNN is

superior to the other four benchmark methods and achieves

the best diagnostic performance in any noise environment.

Moreover, the model has more than 95% diagnostic perfor-

mance under all noise levels, except for 89.7% accuracy at

−16 dB. When the SNR is large, the Wen-CNN, MSCNN

and WDCNN achieve similar diagnostic performance levels,

and the accuracy does not increase as the SNR increases. This

indicates that the diagnosis error is mainly due to the similar-

ity of the fault feature itself when the noise is small. That is to

say, under different working conditions, some different fault

signals may have similar features, leading to misjudgment.

However, the accuracy of the Der-1DCNN is close to 100%,

which means that the Der-1DCNN has better fault feature

learning ability and recognition ability, and it can extract

the most essential differences among various fault features.

On the other hand, although the performance of all methods

decreased with the increase of noise, the Der-1DCNN still

exhibits excellent anti-noise ability in a strong noise envi-

ronment. Specially, the Der-1DCNN achieves nearly 90%

diagnostic performance at SNR = −16 dB, which is a nearly

10% improvement over theWen-CNN, with the best diagnos-

tic performance in four benchmark methods. Therefore, the

Der-1DCNN has stronger anti-noise ability and fault feature

learning ability than the traditional CNN in a strong noise

environment. Therefore, the Der-1DCNN model is robust to

noise without any additional denoising preprocessing, and it

is more suitable for wheelset bearing fault diagnosis in the

real operation of HSTs.

To clearly present the anti-noise ability of the Der-1DCNN

in a strong noise environment, we use the t-SNE [39] tech-

nique to visualize the feature distributions that these five

methods ultimately learned in a 2D space. The result is shown

in Figure 9, where different colors represent the different

health conditions of wheelset bearings. It can be seen that the

high-level fault features that the Der-1DCNN learned have

the best discrimination, which indicates that the Der-1DCNN

can learn more distinguishable fault features from complex

vibration signals.

D. CASE STUDY II: DOMAIN ADAPTATION OF VARIOUS

WORKING LOADS AND SPEEDS

In this experiment, we first verify the domain adaptation

ability of the Der-1DCNN under different working loads.
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FIGURE 9. Visualization of these five methods in noise environment (SNR = −16 dB).

FIGURE 10. Performance of Der-1DCNN and four benchmark methods
under different working loads.

First, we select the data samples under four vertical loads as a

dataset, including 56, 146, 236 and 272 kN. Then, we take one

kind of load data as a testing sample, and three other load data

as training samples, so we obtain four sets of experimental

data. For example, data with the load of 56 kN is employed

as testing samples, and the data of other load conditions (146,

236 and 272 kN) are regarded as training samples.

The experimental results are shown in Figure 10. Clearly,

the Der-1DCNN shows the strongest domain adaptation

ability under four load conditions, indicating that the Der-

1DCNN has quite superior diagnostic performance under

the changing working loads without any domain adaptation

algorithm processing. From the trend of performance for each

method under different load conditions, it can be found that

the smaller the load, the worse the diagnosis performance.

The reason for this is that the smaller the load, the weaker

the corresponding fault feature, and the strong fault features

learned under huge load conditions cannot be effectively

adapted to the identification of weak features. Therefore,

the superior performance of the Der-1DCNN under small

load conditions can better reflect the generalization of the

high-level features that the Der-1DCNN extracted. On the

other hand, as the load increases, the noise that the mechani-

cal system itself generates also increases, so the accuracy of

these four benchmark methods decreases when the load is

272 kN. In contrast, the accuracy of the Der-1DCNN does

not decline but rather is closer to 100%. This implies that the

Der-1DCNNmodel is more promising for domain adaptation

diagnosis under changing load conditions and in changing

noise environments.

In addition, we try to apply the proposed method and

comparison methods to the task of wheelset bearing speed

domain adaptation. Similarly, we use the data at a certain

speed as a testing set, and the data at other speeds as a

training set. Table 2 shows the fault diagnosis results of

TABLE 2. The speed domain adaptation results of Der-1DCNN and four
benchmark methods.
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FIGURE 11. Performance of the Der-1DCNN model under different network depths.

each method for the testing dataset at 60, 90 and 120 km/h.

As can be seen, the diagnostic accuracy improves with the

increasing speed. This is because in a certain number of

sampling points, the faster the speed, the more fault impact

components it contains, so the higher the diagnosis accuracy.

Additionally, it is difficult for the existing CNN methods to

get satisfactory results about the speed domain adaptation

task. Relatively speaking, the MSCNN method shows good

domain adaptability, especially at the speed of 120 km/h.

At different speeds, the number of sampled points per signal

period is different, and the fault characteristic frequency is

also different. Therefore, compared with the load domain

adaptation task, the spatial distribution of sample features

varies greatly at different speeds, which makes it difficult

for CNNs to learn the feature correlation between the same

fault samples at different speeds and to classify them into

one category. Because of this, CNNs perform poorly while

the MSCNN achieves better diagnostic accuracy due to its

multi-scale operation that is the sample resampling to reduce

the differences of spatial distribution of sample features

among different speeds. Therefore, we can introduce the idea

of multi-scale learning into our network to further enhance

the model’s performance.

V. DISCUSSIONS

In this section, the validity of the proposed Der-1DCNN

model is discussed and investigated through three exper-

iments. First, we explore the effects of network depth

on network performance to prove that a deeper network

enables higher-level learning and more abstract features.

Then, we evaluate the importance of residual learning in

network performance through the comparison experiments

of the Der-1DCNN and Der-1DCNN without residual learn-

ing. Finally, we compare the Der-1DCNN with the Der-

1DCNN without a wide convolutional kernel and/or dropout

to illustrate the advantages of a wide convolutional kernel and

dropout.

A. DISCUSSIONS ON EFFECTS OF NETWORK DEPTH

The proposed Der-1DCNN model can adjust the network

depth simply by increasing or decreasing the number of 1D

residual blocks. The network depth has a considerable influ-

ence on the feature abstraction level. Moreover, the low-level

features obtained from the original signal may be affected

by the changing speeds or loads and environment noise.

Therefore, the abstraction levels of features can significantly

affect the classification results. In this section, we study the

effect of network depth on the model’s performance. Five

depths of the Der-1DCNN model, namely 6, 12, 24, 36 and

48 layers, are defined, and they are called the Der-1DCNN6,

Der-1DCNN12, Der-1DCNN24, Der-1DCNN36 and Der-

1DCNN48, respectively. The experiment is carried out under

the noise of −16 dB, and the network depth is determined by

the number of 1D residual blocks proposed in this paper.

The testing results of each epoch for these five networks are

shown in Figure 11. Obviously, the diagnostic performance

of the Der-1DCNN increases as the network depth increases.

Among them, the accuracy of the Der-1DCNN24 has a

nearly 10% improvement compared with one of the Der-

1DCNN6. This is because the Der-1DCNN model can learn

and extract more abstract and robust fault features at a higher

level, thus enabling the network to accurately distinguish

fault features and other useless features. Additionally, it can

be seen that the Der-1DCNN36 and Der-1DCNN48 have

similar performance (about 90%) in terms of classification

accuracy, and about 0.5% improvement compared with that

of the Der-1DCNN24. However, the Der-1DCNN36 and Der-

1DCNN48 havemore parameters and consumemore comput-

ing resources. Hence, for the dataset of this paper, we adopt

the 24-layer Der-1DCNN model to diagnose the wheelset

bearing fault of HSTs in this paper.

The above phenomenon indicates that if the number of

training samples is specific, the increase of diagnostic per-

formance will become slower and slower as the network

depth increases. Because the diagnostic performance always

increases, the high-level feature extraction ability of a deeper
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FIGURE 12. Visualization of different layer of the proposed Der-1DCNN.

network also increases, and thus, the phenomenon is not the

result of the feature extraction ability. For the dataset of this

paper, when network parameters reach a certain value as the

network depth increases, these parameters cannot be fully

optimized to better local optimal values, and thus, the phe-

nomenon stems from the limitation of sample size. In sum-

mary, for practical engineering applications, to deal with

more challenging and complex diagnostic tasks, especially

when a larger amount of data is available, the diagnostic

performance can be further improved by building the Der-

1DCNN model.

To more clearly show the effect of depth on diagnostic

performance, we apply the t-SNE [39] technique to provide a

2D representation of the output features at different levels for

the Der-1DCNN24 model adopted in this paper. The results

are shown in Figure 12, where different colors represent dif-

ferent health conditions. As can be seen, the distribution of the

various health conditions of the raw signal is very turbulent,

but as the network layer increases, the feature distribution

of 12 types of health conditions is gradually separated. To be

specific, as the network layer increases, the network can

extract more abstract and higher-level fault features, making

it easier to distinguish between different health conditions.

B. EVALUATION OF RESIDUAL LEARNING

Residual learning completes the identity mapping of input

by using shortcut connections so as to make the stacked

nonlinear layers learn the simple residual function, and then

improve the training speed and accuracy of the deeper CNN.

Multiple stacked 1D residual blocks are introduced to con-

struct the much deeper 1D CNN to suppress the problems of

training difficulty and performance degradation. To evaluate

the effect of the residual learning of the Der-1DCNN on

model performance, under noise of −16 dB, we test the

48-layer Der-1DCNN (Der-1DCNN48) and the 48-layer Der-

1DCNN without residual learning (CNN48), and we record

the training accuracy, testing accuracy and training loss of

these two models. It is worth noting that the CNN48 lacks

only the function of residual learning, and to be specific,

it does not have shortcut connections to complete the iden-

tity mapping of the input. For other parameters, such as

convolutional kernel size and number, dropout rate, etc.,

the CNN48 and Der-1DCNN48 are the same.

The training results are shown in Figure 13. From

Figure 13 (a), we can clearly see that the testing accuracy of

the Der-1DCNN48 has increased by an average of 3.5% com-

pared with the CNN48. More importantly, the testing accu-

racy of any epoch of the Der-1DCNN48 is higher than that of

the CNN48. This implies that the network degradation prob-

lem is well solved in the Der-1DCNN48 model. Comparing

Figure 13(b) and Figure 13(a), obviously, the training accu-

racy of these two models is higher than the testing accuracy,

indicating that both networks have the overfitting problem in

a strong noise environment (−16 dB). However, the training
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FIGURE 13. Performance of Der-1DCNN48 (with residual learning) and
CNN48 (without residual learning): (a) Testing accuracy; (b) Training
accuracy; (c) Training loss.

accuracy and testing accuracy of the Der-1DCNN48 are

significantly higher than those of the CNN48. This means

that the Der-1DCNN48 not only extracts high-level fault

features more effectively but also has better generalization.

Figure 13(c) illustrates the change in the training loss of

these two models. It is worth noticing that compared with

the CNN48, the training loss of the Der-1DCNN48 decreases

more rapidly, and the final loss is closer to zero, so the

Der-1DCNN48 converges quickly and well during the train-

ing process. This further proves that residual learning can

effectively solve the problem of training difficulty and per-

formance degradation for a deeper network and enable the

network to find better local optimal solutions.

FIGURE 14. Performance of standard Der-1DCNN and one without wide
convolutional (Conv) kernel, without dropout, and without wide
convolutional kernel and dropout.

TABLE 3. Testing time of a sample for these five methods.

C. DISCUSSIONS ON EFFECTS OF NETWORK DEPTH

To evaluate the influence of a wide convolutional kernel and

dropout on the performance of the Der-1DCNNmodel, we do

the comparison experiments of the standard Der-1DCNN,

a Der-1DCNN without a wide convolutional kernel, a Der-

1DCNN without dropout and a Der-1DCNN without a wide

convolutional kernel and dropout under noise of −16 dB.

The diagnosis results are recorded during the entire training

process and are shown in Figure 14. It can be seen that in the

case of the absence of a wide convolutional kernel, the accu-

racy is far lower than that of the standard Der-1DCNN,

and the final diagnostic result is about 10% lower than that

of the standard Der-1DCNN. Therefore, in a strong noise

environment, the introduction of a wide convolutional kernel

can make the network effectively learn the low-frequency

fault-related features. In addition, the final diagnostic result

of the standard Der-1DCNN is about 4% higher than that

of a Der-1DCNN without dropout, which indicates that the

application of dropout to the convolutional layer can also

effectively improve the model’s performance in a complex

noise environment. Finally, in the case of the absence of

dropout and a wide convolutional kernel, the model exhibits

theworst performance, demonstrating that the combination of

a wide convolutional kernel and dropout can further improve

the model’s performance.

D. DISCUSSIONS ON THE MODEL’S STABILITY AND

COMPLEXITY

The model’s stability and complexity are very important

evaluation indicators in practical engineering applications.

Therefore, in this section, we further evaluate the model’s

stability by repeatingmany experiments, and we also evaluate
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FIGURE 15. The stability evaluation of the Der-1DCNN model under
SNR = −16 dB.

the model’s complexity by comparing the testing time of the

Der-1DCNNC with other CNN methods.

First, we perform five repeated experiments for the Der-

1DCNN method under the strong noise environment (SNR=

−16 dB). The diagnosis results are recorded during the entire

training process and are shown in Figure 15. As can be seen,

the Der-1DCNN model can obtain about 90% accuracy in

these five repeated experiments, and the final testing results

of these five experiments have a variance of ±0.0015. This

shows that the proposed Der-1DCNN model has very good

testing stability.

Then, we separately record the average time to diag-

nose a testing sample when comparison methods and the

Der-1DCNN model perform parallel operations on the work-

bench. As shown in Table 3, the Der-1DCNN model con-

sumes more time than other CNNmethods in terms of testing

time, which is easy to understand. Because the Der-1DCNN

model has a deeper network structure and more parameters,

it will inevitably consume more time when processing testing

data. However, it can be seen that the average diagnostic

time of the proposed model for a testing sample is only 1ms,

which is fully acceptable in practical engineering applica-

tions. Therefore, the proposed Der-1DCNN method is also

suitable for real-time monitoring and fault diagnosis.

VI. CONCLUSIONS AND FUTURE WORKS

Targeting the original vibration signals collected from the

complex working conditions of variable loads, variable

speeds and strong noise, this paper proposes a novel Der-

1DCNN framework to learn high-level fault features, which

are applied to the intelligent fault diagnosis of wheelset

bearings in HSTs. The key contribution of this paper is to

propose 1D residual blocks and to develop a novel Der-

1DCNN model. The model can effectively exert the power-

ful learning abilities of deeper networks and automatically

learn the most essential high-level fault features from raw

signals.Meanwhile, we introduce awide convolutional kernel

and dropout into the proposed model to further enhance the

anti-noise ability.

In this paper, the Der-1DCNN model is evaluated on

the wheelset bearing test rigs of HSTs. The experimental

results show that the Der-1DCNN has the most excellent

performance and most powerful feature learning ability than

four comparison methods applied to bearing fault diagnosis

in a strong noise environment. Moreover, the Der-1DCNN

model has superior domain adaptation ability without any

pre-processing. This indicates that the proposed model is

promising in the intelligent fault diagnosis of HSTs. Addi-

tionally, it provides a novel fault diagnoses method for the

field of fault diagnosis, and it can be applied to the fault

diagnosis tasks of other mechanical or industrial systems

without any processing.

In our future work, first, we consider introducing trans-

fer learning and multi-scale learning to further improve the

network’s domain adaptation ability. Second, because the

number of normal samples is far greater than the fault samples

in the real operation of HSTs, we will further study the

intelligent fault diagnoses of HSTs in the case of unbalanced

samples.
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