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A novel defined pyroptosis-related gene signature
for predicting the prognosis of ovarian cancer
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Abstract

Ovarian cancer (OC) is a highly malignant gynaecological tumour that has a very poor prognosis. Pyroptosis has been

demonstrated in recent years to be an inflammatory form of programmed cell death. However, the expression of

pyroptosis-related genes in OC and their correlations with prognosis remain unclear. In this study, we identified 31

pyroptosis regulators that were differentially expressed between OC and normal ovarian tissues. Based on these

differentially expressed genes (DEGs), all OC cases could be divided into two subtypes. The prognostic value of each

pyroptosis-related gene for survival was evaluated to construct a multigene signature using The Cancer Genome Atlas

(TCGA) cohort. By applying the least absolute shrinkage and selection operator (LASSO) Cox regression method, a 7-

gene signature was built and classified all OC patients in the TCGA cohort into a low- or high-risk group. OC patients in

the low-risk group showed significantly higher survival possibilities than those in the high-risk group (P < 0.001).

Utilizing the median risk score from the TCGA cohort, OC patients from a Gene Expression Omnibus (GEO) cohort were

divided into two risk subgroups, and the low-risk group had increased overall survival (OS) time (P= 0.014). Combined

with the clinical characteristics, the risk score was found to be an independent factor for predicting the OS of OC

patients. Gene ontology (GO) and Kyoto Encylopedia of Genes and Genomes (KEGG) analyses indicated that immune-

related genes were enriched and that the immune status was decreased in the high-risk group. In conclusion,

pyroptosis-related genes play important roles in tumour immunity and can be used to predict the prognosis of OCs.

Introduction

Ovarian cancer (OC) is a common malignancy of the

female reproductive system, second only to cervical cancer

and uterine corpus cancer in terms of incidence. OC has

extremely high recurrence and mortality rates, which ser-

iously threaten women’s health. In the United States,

~22,530 new OC cases were diagnosed, and OC caused

13,980 deaths in 20191. Due to the lack of effective screening

tools and difficulties in early diagnosis, 80% of OC patients

are already at an advanced stage when diagnosed, and

50–70% of patients will experience recurrence within 2 years

after treatment, with a poor 5-year survival rate of 30%2,3.

The current main treatments for OC are surgery and

platinum-based chemotherapies. Despite recent improve-

ments in treatments, the 5-year survival rate has been slow

to improve4. Considering the limitations of OC treatments,

new therapeutic targets are needed to improve the clinical

outcome of OC; thus, reliable novel prognostic models are

urgently required to make targeted therapies more feasible.

Pyroptosis, also known as cellular inflammatory necro-

sis, is a novel form of programmed cell death5. Pyroptotic

cells are characterized by cellular swelling and many

bubble-like protrusions. Under an electron microscope,

pyroptotic cells can be seen to first form a large number of

vesicles. After these vesicles form, pores form on the cell

membrane, which ruptures and the contents flow out6.

The gasdermin family is the main executor of pyroptosis

and includes gasdermin-A to gasdermin-E and pejvakin

(PJVK or DFNB59)7. Gasdermin family proteins can be

sheared and multimerized, which leads to cleavage of the

N-terminal and C-terminal junctional structural domains
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and release of activated N-terminal regions; these regions

bind to membrane lipids, phosphatidylinositol, and car-

diolipin and localize into the pores in the cell mem-

brane8,9. Cellular gasdermin family proteins form 10 to

20 nm pores in the cell membrane, and cell contents are

slowly released through the membrane pores and trigger

amplified inflammatory responses. Cells gradually flatten,

producing 1–5 μm apoptotic vesicle-like protrusions

(scorched vesicles), and cells gradually swell until the

plasma membrane ruptures, with features such as nuclear

condensation and chromatin DNA breakage10,11. Pyr-

optosis was initially found to be a key mechanism for

combating infection, and a growing number of studies

suggest that it also plays an important role in the devel-

opment of tumours. It has been reported that inflamma-

tory vesicles, gasdermin proteins, and proinflammatory

cytokines, which are key components of pyroptosis, are

associated with tumourigenesis, invasion, and metas-

tasis12. Dupaul-Chicoine et al.13 knocked out inflamma-

tory vesicle-related genes (NLRP3 and CASP1) in

transgenic mice and found that they were more likely to

develop colon cancers than mice with wild-type versions

of the genes. In addition, unlike apoptosis, when pyr-

optosis occurs, a variety of danger-associated signalling

molecules and cytokines are activated and released,

accompanied by a strong inflammatory response and

activation of the immune system14. A few studies have

suggested that the potent proinflammatory effect of pyr-

optosis is connected to the regulation of the tumour

immune microenvironment. Defective GSDMD expres-

sion was found to be accompanied by a significant

decrease in the number and activity of CD8+ T lympho-

cytes15. A recent study also confirmed the critical role of

pyroptosis in the antitumour function of NK cells16.

Given the existing findings, we know that pyroptosis

plays an important role in the development of tumours

and antitumour processes; however, its specific functions

in OC have been less studied. Thus, we performed a

systematic study to determine the expression levels of

pyroptosis-related genes between normal ovarian and OC

tissues, explore the prognostic value of these genes, and

study the correlations between pyroptosis and the tumour

immune microenvironment.

Results

Identification of DEGs between normal and tumour tissues

The 33 pyroptosis-related gene expression levels were

compared in the pooled Genotype-Tissue Expression

(GTEx) and The Cancer Genome Atlas (TCGA) data

from 88 normal and 379 tumour tissues, and we identified

31 differentially expressed genes (DEGs) (all P < 0.01).

Among them, 13 genes (PRKACA, GSDMB, SCAF11,

PJVK, CASP9, NOD1, PLCG1, NLRP1, GSDME, ELANE,

TIRAP, CASP4, and GSDMD) were downregulated while

18 other genes (GPX4, NLRP7, NLRP2, CASP3, CASP6,

TNF, IL1B, IL18, CASP8, NLRP6, GSDMA, GSDMC,

PYCARD, CASP5, AIM2, NOD2, NLRC4, and NLRP3)

were enriched in the tumour group. The RNA levels of

these genes are presented as heatmaps in Fig. 1A (green:

low expression level; red: high expression level). To fur-

ther explore the interactions of these pyroptosis-related

genes, we conducted a protein–protein interaction (PPI)

analysis, and the results are shown in Fig. 1B. The mini-

mum required interaction score for the PPI analysis was

set at 0.9 (the highest confidence), and we determined that

CASP1, PYCARD, NLRC4, NLRP1, CASP5, NLRP3,

CASP8, and AIM2 were hub genes. Among them, except

for CASP1, other genes were all the DEGs between nor-

mal and tumour tissues. The correlation network con-

taining all pyroptosis-related genes is presented in Fig. 1C

(red: positive correlations; blue: negative correlations).

Tumour classification based on the DEGs

To explore the connections between the expression of

the 31 pyroptosis-related DEGs and OC subtypes, we

performed a consensus clustering analysis with all 379 OC

patients in the TCGA cohort. By increasing the clustering

variable (k) from 2 to 10, we found that when k= 2, the

intragroup correlations were the highest and the inter-

group correlations were low, indicating that the 379 OC

patients could be well divided into two clusters based on

the 31 DEGs (Fig. 2A). The gene expression profile and

the clinical features including the degree of tumour dif-

ferentiation (G1-G3), age (≤60 or >60 years) and survival

status (alive or dead) are presented in a heatmap, but we

found there’s little differences in clinical features between

the two clusters (Fig. 2B). The overall survival (OS) time

was also compared between the two clusters, but no

obvious differences were found (P= 0.841, Fig. 2C).

Development of a prognostic gene model in the TCGA

cohort

A total of 374 OC samples were matched with the

corresponding patients who had complete survival infor-

mation. Univariate Cox regression analysis was used for

primary screening of the survival-related genes. The 7

genes (AIM2, PLCG1, ELANE, PJVK, CASP3, CASP6, and

GSDMA) that met the criteria of P < 0.2 were retained for

further analysis, and among them, 3 genes (PLCG1,

ELANE, and GSDMA) were associated with increased risk

with HRs >1, while the other 4 genes (AIM2, PJVK,

CASP3, and CASP6) were protective genes with HRs <1

(Fig. 3A). By performing the least absolute shrinkage and

selection operator (LASSO) Cox regression analysis, a 7-

gene signature was constructed according to the optimum

λ value (Fig. 3B, C). The risk score was calculated as

follows: risk score= (−0.187*AIM2 exp.) + (0.068*PLCG1

exp.) + (0.097*ELANE exp.) + (−0.143*PJVK exp.) +

Ye et al. Cell Death Discovery            (2021) 7:71 Page 2 of 11

Official journal of the Cell Death Differentiation Association



(−0.086*CASP3 exp.) + (−0.033*CASP6 exp.) +

(0.130*GSDMA exp.). Based on the median score calcu-

lated by the risk score formula, 374 patients were equally

divided into low- and high-risk subgroups (Fig. 3D). The

principal component analysis (PCA) showed that patients

with different risks were well separated into two clusters

(Fig. 3E). Patients in the high-risk group had more deaths

and a shorter survival time than those in the low-risk

group (Fig. 3F, on the right side of the dotted line). A

notable difference in OS time was detected between the

low- and high-risk groups (P < 0.001, Fig. 3G). Time-

dependent receiver operating characteristic (ROC) ana-

lysis was applied to evaluate the sensitivity and specificity

of the prognostic model, and we found that the area under

the ROC curve (AUC) was 0.628 for 1-year, 0.662 for 2-

year, and 0.607 for 3-year survival (Fig. 3H).

External validation of the risk signature

A total of 380 OC patients from a Gene Expression

Omnibus (GEO) cohort (GSE140082) were utilized as the

validation set. Before further analysis, the gene expression

data were normalized by the “Scale” function. Based on

the median risk score in the TCGA cohort, 203 patients in

the GEO cohort were classified into the low-risk group,

while the other 177 patients were classified into the high-

risk group (Fig. 4A). The PCA showed satisfactory

separation between the two subgroups (Fig. 4B). Patients

in the low-risk subgroup (Fig. 4C, on the left side of the

dotted line) were found to have longer survival times and

lower death rates than those in the high-risk subgroup. In

addition, Kaplan–Meier analysis also indicated a sig-

nificant difference in the survival rate between the low-

and high-risk groups (P= 0.014, Fig. 4D). ROC curve

analysis of the GEO cohort showed that our model had

good predictive efficacy (AUC= 0.766 for 1-year, 0.655

for 2-year, and 0.584 for 3-year survival) (Fig. 4E).

Independent prognostic value of the risk model

We used univariate and multivariable Cox regression

analyses to evaluate whether the risk score derived from

the gene signature model could serve as an independent

prognostic factor. The univariate Cox regression analysis

indicated that the risk score was an independent factor

predicting poor survival in both the TCGA and GEO

cohorts (HR= 3.285, 95% CI: 1.973–5.467 and HR: 2.613,

95% CI: 1.319–5.175, Fig. 5A, C). The multivariate analysis

also implied that, after adjusting for other confounding

factors, the risk score was a prognostic factor (HR= 3.059,

Fig. 1 Expressions of the 33 pyroptosis-related genes and the interactions among them. A Heatmap (green: low expression level; red: high

expression level) of the pyroptosis-related genes between the normal (N, brilliant blue) and the tumour tissues (T, red). P values were showed as: **P

< 0.01; ***P < 0.001. B PPI network showing the interactions of the pyroptosis-related genes (interaction score= 0.9). C The correlation network of the

pyroptosis-related genes (red line: positive correlation; blue line: negative correlation. The depth of the colours reflects the strength of the relevance).
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95% CI: 1.836–5.095 and HR: 2.770, 95% CI: 1.374–5.583,

Fig. 5B, D) for patients with OC in both cohorts. In

addition, we generated a heatmap of clinical features for

the TCGA cohort (Fig. 5E) and found that the age of

patients and the survival status were diversely distributed

between the low- and high-risk subgroups (P < 0.05).

Functional analyses based on the risk model

To further explore the differences in the gene functions

and pathways between the subgroups categorized by the

risk model, we utilized the “limma” R package to extract the

DEGs by applying the criteria FDR < 0.05 and |log2FC | ≥ 1.

In total, 115 DEGs between the low- and high-risk groups

in the TCGA cohort were identified. Among them, 66 genes

were upregulated in the high-risk group, while the other 49

genes were downregulated (the data are shown in Table S3).

Gene ontology (GO) enrichment analysis and Kyoto

Encyclopaedia of Genes and Genomes (KEGG) pathway

analysis were then performed based on these DEGs. The

results indicated that the DEGs were mainly correlated with

the immune response, chemokine-mediated signalling

pathways, and inflammatory cell chemotaxis (Fig. 6A, B).

Comparison of the immune activity between subgroups

Based on the functional analyses, we further compared

the enrichment scores of 16 types of immune cells and the

activity of 13 immune-related pathways between the low-

and high-risk groups in both the TCGA and GEO cohorts

by employing the single-sample gene set enrichment

analysis (ssGSEA). In the TCGA cohort (Fig. 7A), the

high-risk subgroup generally had lower levels of infiltra-

tion of immune cells, especially of CD8+ T cells, neu-

trophils, natural killer (NK) cells, T helper (Th) cells (Tfh,

Th1, and Th2 cells), tumour-infiltrating lymphocytes

(TILs) and regulatory T (Treg) cells, than the low-risk

subgroup. Except for the type-2 IFN response pathway,

the other 12 immune pathways showed lower activity in

the high-risk group than in the low-risk group in the

TCGA cohort (Fig. 7B). When assessing the immune

status in the GEO cohort, similar conclusions were drawn.

In addition, we discovered that dendritic cells (DCs),

induced dendritic cells (iDCs), and macrophages were

enriched while type-2 IFN responses were downregulated

in the low-risk group compared with the high-risk group

(Fig. 7C, D).

Discussion

In this study, we first studied the mRNA levels of 33

currently known pyroptosis-related genes in OC and

normal tissues and found that most of them were differ-

entially expressed. However, the two clusters produced by

the consensus clustering analysis based on the DEGs did

Fig. 2 Tumour classification based on the pyroptosis-related DEGs. A 379 OC patients were grouped into two clusters according to the consensus

clustering matrix (k= 2). B Heatmap and the clinicopathologic characters of the two clusters classified by these DEGs (G1, G2, and G3 are the degree of

tumour differentiation. G1: High differentiated; G2: Moderate differentiated; G3: Poor differentiated). C Kaplan–Meier OS curves for the two clusters.
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not show any significant differences in clinical char-

acteristics. To further assess the prognostic value of these

pyroptosis-related regulators, we constructed a 7-gene

risk signature via Cox univariate analysis and LASSO Cox

regression analysis, which was then validated to perform

well in an external dataset. The functional analyses indi-

cated that the DEGs between the low- and high-risk

groups were related to immune-related pathways. The

immune cell infiltration and activated pathways in the

low- and high-risk groups were compared, and we found

that the high-risk group had universally decreased levels

of infiltrating immune cells and decreased activity of

immune-related pathways compared with the low-

risk group.

Pyroptosis, a novel form of programmed cell death, was

found to play a dual-role in tumour development and

therapeutic mechanisms in recent years. On the one hand,

normal cells are stimulated by a large number of inflam-

matory factors released by pyroptosis, leading to their

transformation into tumour cells17. On the other hand,

the promotion of tumour cell pyroptosis could be a new

therapeutic target18. In OC, how pyroptosis-related genes

interact and whether they are related to the survival time

of patients remain unknown. Our study generated a

signature featuring 7 pyroptosis-related genes (AIM2,

PLCG1, ELANE, PJVK, CASP3, CASP6, and GSDMA) and

found that it could predict OS in OC patients. Absent in

melanoma 2 (AIM2) was initially identified in melanoma,

in which it showed decreased expression19. AIM2 consists

of a HIN structural domain at the C-terminus and a PYD

domain at the N-terminus and can identify double-strand

DNA (dsDNA) of microbes or the host20. AIM2 activates

CASP-1 through ASC-mediated junctional proteins to

promote the maturation and release of IL-1β and IL-18

and to promote pyroptosis21. AIM2 was originally regar-

ded as a tumour suppressor because its inactivation or

mutation was found in a variety of tumours, including

endometrial, gastric, and colon cancers, but it was found

to be overexpressed in oral, nasopharyngeal, and non-

small-cell lung cancer22. Therefore, AIM2 may play a

unique role in different cancer types. Interestingly, in our

study, AIM2 seemed to be a cancer-promoting gene, as it

was upregulated threefold in tumour tissues; however, it

also contributed to prolonged patient survival because it

was enriched in the low-risk group. Given the limited data

from OC and the often conflicting results in different

tumours, our results regarding AIM2 provide some

insights for further studies. Phospholipase C gamma 1

Fig. 3 Construction of risk signature in the TCGA cohort. A Univariate cox regression analysis of OS for each pyroptosis-related gene, and 7 genes

with P < 0.2. B LASSO regression of the 7 OS-related genes. C Cross-validation for tuning the parameter selection in the LASSO regression.

D Distribution of patients based on the risk score. E PCA plot for OCs based on the risk score. F The survival status for each patient (low-risk

population: on the left side of the dotted line; high-risk population: on the right side of the dotted line). G Kaplan–Meier curves for the OS of patients

in the high- and low-risk groups. H ROC curves demonstrated the predictive efficiency of the risk score.
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Fig. 4 Validation of the risk model in the GEO cohort. A Distribution of patients in the GEO cohort based on the median risk score in the TCGA

cohort. B PCA plot for OCs. C The survival status for each patient (low-risk population: on the left side of the dotted line; high-risk population: on the

right side of the dotted line). D Kaplan–Meier curves for comparison of the OS between low- and high-risk groups. E Time-dependent ROC curves

for OCs.

Fig. 5 Univariate and multivariate Cox regression analyses for the risk score. A Univariate analysis for the TCGA cohort (grade: the degree of

tumour differentiation, G1 to G3). B Multivariate analysis for the TCGA cohort. C Univariate analysis for the GEO cohort (FIGO stage: I to IV). D

Multivariate analysis for the GEO cohort. E Heatmap (green: low expression; red: high expression) for the connections between clinicopathologic

features and the risk groups (*P < 0.05).
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Fig. 6 Functional analysis based on the DEGs between the two-risk groups in the TCGA cohort. A Bubble graph for GO enrichment (the bigger

bubble means the more genes enriched, and the increasing depth of red means the differences were more obvious; q-value: the adjusted p-value).

B Barplot graph for KEGG pathways (the longer bar means the more genes enriched, and the increasing depth of red means the differences were

more obvious).

Fig. 7 Comparison of the ssGSEA scores for immune cells and immune pathways. A, B Comparison of the enrichment scores of 16 types of

immune cells and 13 immune-related pathways between low- (green box) and high-risk (red box) group in the TCGA cohort. C, D Comparison of the

tumour immunity between low- (blue box) and high-risk (red box) group in the GEO cohort. P values were showed as: ns not significant; *P < 0.05;

**P < 0.01; ***P < 0.001.
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(PLCG1) is involved in the receptor tyrosine kinase

(RTK)-mediated signal transduction pathway, thus

affecting cell growth, differentiation, and apoptosis23.

Recently, Kang et al.24 demonstrated that knockdown of

PLCG1 inhibited GSDMD-N-induced cell death and

indicated that PLCG1 could mediate the activity of

GSDMD and pyroptosis. However, the relationships

between PLCG1-mediated pyroptosis and tumour devel-

opment remain largely unknown. We found that high

PLCG1 expression was connected with poor survival

outcomes, which may be a result of its negative regulation

of pyroptosis. ELANE is one of the major serine proteases

secreted by neutrophils, and it activates proinflammatory

cytokines such as TNF-α, IL-1β, and IL-1825,26, which are

known to be pyroptosis promoters. Kambara et al.27

proved that GSDMD could be cleaved and activated by

ELANE and induce neutrophils to undergo pyroptosis.

The expression of ELANE was significantly higher while

the neutrophil infiltration score was much lower in the

high-risk group than in the low-risk group (in both the

TCGA and GEO cohorts); these results may be because

ELANE activates pyroptosis in neutrophils. PJVK, also

known as DFNB59, is the only member of the gasdermin

family that lacks the C-terminal domain, and it is not clear

whether this protein can induce membrane perforation

and execute pyroptosis28. As it is a member of the gas-

dermin family and has a complete N-terminal domain, we

treated it as a “potential” pyroptosis-related gene. PJVK

has been demonstrated to be associated with deafness,

while its role in tumours has been little explored29. We

found that PJVK was downregulated in tumour tissues,

and its low expression predicted poor survival rates,

indicating that it functioned as a tumour suppressor gene

in this study. Further studies may focus on whether/how

PJVK participates in pyroptosis and tumour suppression.

CASP3 exists as a non-activated zymogen in its normal

state, but upon activation, it produces active executors

that cleave structural and regulatory proteins in the

nucleus and cytoplasm of cells, thereby regulating cell

death, and it is recognized as a marker of apoptosis30. In

2017, Wang et al.31 discovered that GSDME was specifi-

cally cleaved by chemotherapeutic drug-activated CASP3

to produce a membrane-penetrating GSDME-N fragment,

which induced pyroptosis. CASP3 was upregulated in

patients with increased survival times in our analysis, and

CASP3 may be related to increased sensitivity to

chemotherapeutic-drug induced pyroptosis. CASP6 has

been proven to modulate inflammasome activation

(including activation of NLRP3, ASC, and CASP1) to

promote GSDMD-induced pyroptosis32. In addition,

CASP6 also plays an important role in promoting apop-

tosis and necroptosis33, but the specific mechanisms by

which it improves the survival rate of OC patients still

need further exploration. GSDMA has a two-domain

structure that can be self-inhibited, namely, the N-

terminal structural domain can be inhibited by the C-

terminal structural domain. The N-terminal domain can

bind membrane lipids, phosphatidylinositol, and cardio-

lipin, forming pores in the cell membrane to trigger

pyroptosis8. GSDMA acted as a cancer-promoting gene in

our study due to its overexpression in OC tissues and its

negative correlation with survival time. In summary, 5

genes (CASP3, CASP6, AIM2, PLCG1, and ELANE) in the

prognostic model were proven to be pyroptosis pro-

moters, and 2 genes (PJVK and GSDMA) were identified

as possible pyroptosis executors. However, these pro-

moters and executors were not all associated with better

OC prognosis in our study. How these genes interact with

each other during pyroptosis remains to be further

investigated.

Until now, pyroptosis has not been fully studied, although

certain similarities to apoptosis, as well as some crossovers

in mechanisms, have been found. As tumours develop,

multiple modes of cell death may coexist and interact with

each other34. For example, 3 genes (CASP3, CASP6, and

PLCG1) in our model are also known as key regulators in

apoptotic pathways. Generally, apoptosis features an intact

cell plasma membrane and no release of contents and does

not directly cause inflammatory responses, while pyroptosis

shows the opposite characteristics35. We analysed the DEGs

between different risk groups and found that the DEGs

were mainly involved in immune responses and inflam-

matory cell chemotaxis, indicating that dying cells induce

intense inflammatory responses. Based on the results of our

GO and KEGG analyses, it is reasonable to speculate that

pyroptosis can regulate the composition of the tumour

immune microenvironment.

The levels of key antitumour infiltrating immune cells

were low, indicating an overall impairment of immune

functions in the high-risk group in the TCGA cohort, and

this conclusion was verified in the GEO cohort. Surpris-

ingly, Treg cells were found in higher proportions in a

low-risk group than in the high-risk group in our study,

while they have been reported to suppress antitumour

immunity and to be correlated with poor clinical out-

comes in previous studies36,37. A possible reason for this

discrepancy may be that Treg cells are essential in the

tumour microenvironment to regulate the overactive

inflammatory reactions caused by pyroptosis. In addition,

in colon cancers, two main subtypes of Treg cells that

have opposite roles in the regulation of the tumour

microenvironment have been reported38; therefore, it is

worth identifying the subtypes of Treg cells in OC. Except

for the type II IFN response pathway, other immune

pathways were poorly activated in the high-risk group in

the two cohorts. Based on these findings, the poor survival

outcome of high-risk OCs may be caused by decreased

levels of antitumour immunity.
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There is little current research on pyroptosis, especially

on its mechanism in OC. Our study identified 2 genes in

the gasdermin family that may be the executors of pyr-

optosis in OC and 5 genes that have the ability to regulate

pyroptosis. We preliminarily studied the prognostic value

of these pyroptosis-related genes and provided theoretical

support for future research. However, due to a lack of

data, we could not confirm whether these regulators

(which have been reported in prior studies) also play

corresponding roles in pyroptosis pathways in OC, and

this question deserves further in-depth studies.

In summary, our study demonstrated that pyroptosis is

closely connected to OC because most of the pyroptosis-

related genes between normal and OC tissues were dif-

ferently expressed. Moreover, the score generated from

our risk signature based on 7 pyroptosis-related genes was

an independent risk factor for predicting OS in both the

TCGA and GEO cohorts. The DEGs between the low-

and high-risk groups were associated with tumour

immunity. Our study provides a novel gene signature for

predicting the prognosis of OC patients and offers a sig-

nificant basis for future studies of the relationships

between pyroptosis-related genes and immunity in OC.

Materials and methods

Datasets

We obtained the RNA sequencing (RNA-seq) data of

379 OC patients and the corresponding clinical features

from TCGA database on 30 November 2020 (https://

portal.gdc.cancer.gov/repository). The RNA-seq data of

88 normal human ovarian samples were downloaded

from the GTEx database (https://xenabrowser.net/

datapages/). The RNA-seq data and clinical informa-

tion of the external validation cohort were downloaded

from the GEO database (https://www.ncbi.nlm.nih.gov/

geo/, ID: GSE140082). The follow-up time of each

participant in the GSE140082 cohort was up to 4 years,

which was shorter than that in the TCGA cohort.

Identification of differentially expressed pyroptosis-related

genes

We extracted 33 pyroptosis-related genes from prior

reviews17–20, and they are presented in Table S1. Due to

the lack of normal ovarian tissue data in the TCGA

cohort, we also considered GTEx data from 88 normal

ovarian samples to identify the DEGs between normal and

tumour tissues. The expression data in both datasets were

normalized to fragment per kilobase million (FPKM)

values before comparison. The “limma” package was used

to identify DEGs with a P value <0.05. The DEGs are

notated as follows: * if P < 0.05, ** if P < 0.01, and *** if P <

0.001. A PPI network for the DEGs was constructed with

Search Tool for the Retrieval of Interacting Genes

(STRING), version 11.0 (https://string-db.org/).

Development and validation of the pyroptosis-related

gene prognostic model

To assess the prognostic value of the pyroptosis-related

genes, we further employed Cox regression analysis to

evaluate the correlations between each gene and survival

status in the TCGA cohort. To prevent omissions, we set

0.2 as the cut-off P-value, and 7 survival-related genes

were identified for further analysis. The LASSO Cox

regression model (R package “glmnet”) was then utilized to

narrow down the candidate genes and to develop the

prognostic model. Ultimately, the seven genes and their

coefficients were retained, and the penalty parameter (λ)

was decided by the minimum criteria. The risk score was

calculated after centralization and standardization (apply-

ing the “scale” function in R) of the TCGA expression data,

and the risk score formula was as follows: Risk Score=P7
i Xi´Yi (X: coefficients, Y: gene expression level). The

TCGA OC patients were divided into low- and high-risk

subgroups according to the median risk score, and the OS

time was compared between the two subgroups via

Kaplan–Meier analysis. PCA based on the 7-gene sig-

nature was performed by the “prcomp” function in the

“stats” R package. The “survival”, “survminer” and “time-

ROC” R packages were employed to perform a 3-year ROC

curve analysis. For the validation studies, an OC cohort

from the GEO database (GSE140082) was employed. The

expression of each pyroptosis-related gene was also nor-

malized by the “scale” function, and the risk score was then

calculated by the same formula used for the TCGA cohort.

By applying the median risk score from the TCGA cohort,

the patients in the GSE140082 cohort were also divided

into low- or high-risk subgroups, and these groups were

then compared to validate the gene model.

Independent prognostic analysis of the risk score

We extracted the clinical information (age and grade) of

patients in the TCGA cohort and the age and Interna-

tional Federation of Gynaecology and Obstetrics (FIGO)

stage data of patients in the GEO cohort. These variables

were analysed in combination with the risk score in our

regression model. Univariate and multivariable Cox

regression models were employed for the analysis.

Functional enrichment analysis of the DEGs between the

low- and high-risk groups

OC patients in the TCGA cohort were stratified into

two subgroups according to the median risk score. The

DEGs between the low- and high-risk groups were filtered

according to specific criteria (|log2FC| ≥ 1 and FDR

< 0.05). Based on these DEGs, GO and KEGG analyses

were performed by applying the “clusterProfiler” package.

The “gsva” package was utilized to conduct the ssGSEA to

calculate the scores of infiltrating immune cells and to

evaluate the activity of immune-related pathways.
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Statistical analysis

Single-factor analysis of variance was applied to com-

pare the gene expression levels between the normal

ovarian and OC tissues, while the Pearson chi‐square test

was used to compare the categorical variables. To com-

pare the OS of patients between subgroups, we employed

the Kaplan–Meier method with a two-sided log-rank test.

To assess the independent prognostic value of the risk

model, we used univariate and multivariate Cox regres-

sion models. When comparing the immune cell infiltra-

tion and immune pathway activation between the two

groups, the Mann–Whitney test was used. All statistical

analyses were accomplished with R software (v4.0.2). The

overall flow diagram is shown in Fig. 8.

Acknowledgements

We would like to acknowledge the TCGA, GTEx and the GEO (GSE140082)

network for providing data.

Author details
1The Department of Obstetrics, The First Affiliated Hospital of Chongqing

Medical University, Chongqing 400016, China. 2State Key Laboratory of

Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical

University, Chongqing 400016, China. 3Guangzhou Women and Children’s

Medical Center, Guangzhou Medical University, Guangzhou 510623,

Guangdong, China

Author contributions

H.Q. performed study concept and design, revised the manuscript and make

final approval of the version. Y.Y. analyzed data and wrote the manuscript. Q.D.

analyzed data, interpretated results and helped to write the manuscript.

Funding

This study was supported by The National Natural Science Foundation of China

(81520108013, 81771613).

Data availability

The data could be download at (https://portal.gdc.cancer.gov/, https://

xenabrowser.net/, and https://www.ncbi.nlm.nih.gov/geo/; GSE140082) and

the code used during the current study are available from the corresponding

author on reasonable request.

Conflict of interest

The authors declare no competing interests.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Supplementary information The online version contains supplementary

material available at https://doi.org/10.1038/s41420-021-00451-x.

Received: 5 January 2021 Revised: 25 February 2021 Accepted: 9 March

2021

References

1. Siegel, R., Miller, K. & Jemal, A. Cancer statistics, 2019. CA 69, 7–34 (2019).

2. Bast, R., Hennessy, B. & Mills, G. The biology of ovarian cancer: new oppor-

tunities for translation. Nat. Rev. Cancer 9, 415–428 (2009).

3. Kuroki, L. & Guntupalli, S. Treatment of epithelial ovarian cancer. BMJ 371,

m3773 (2020).

4. Lee, J. et al. Changes in ovarian cancer survival during the 20 years before the

era of targeted therapy. BMC Cancer 18, 601 (2018).

5. Kovacs, S. & Miao, E. Gasdermins: effectors of Pyroptosis. Trends Cell Biol. 27,

673–684 (2017).

6. Miao, E., Rajan, J. & Aderem, A. Caspase-1-induced pyroptotic cell death.

Immunol. Rev. 243, 206–214 (2011).

7. Broz, P., Pelegrín, P. & Shao, F. The gasdermins, a protein family executing cell

death and inflammation. Nat. Rev. Immunol. 20, 143–157 (2020).

8. Ding, J. et al. Pore-forming activity and structural autoinhibition of the gas-

dermin family. Nature 535, 111–116 (2016).

9. Feng, S., Fox, D. & Man, S. Mechanisms of gasdermin family members in

inflammasome signaling and cell death. J. Mol. Biol. 430, 3068–3080

(2018).

10. Zhang, Y., Chen, X., Gueydan, C. & Han, J. Plasma membrane changes during

programmed cell deaths. Cell Res. 28, 9–21 (2018).

11. Frank, D. & Vince, J. Pyroptosis versus necroptosis: similarities, differences, and

crosstalk. Cell Death Differ. 26, 99–114 (2019).

12. Kolb, R., Liu, G., Janowski, A., Sutterwala, F. & Zhang, W. Inflammasomes in

cancer: a double-edged sword. Protein Cell 5, 12–20 (2014).

13. Dupaul-Chicoine, J. et al. Control of intestinal homeostasis, colitis, and colitis-

associated colorectal cancer by the inflammatory caspases. Immunity 32,

367–378 (2010).

14. Tang, R. et al. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity.

J. Hematol. Oncol. 13, 110 (2020).

15. Xi, G. et al. GSDMD is required for effector CD8 T cell responses to lung cancer

cells. Int. Immunopharmacol. 74, 105713 (2019).

16. Zhang, Z. et al. Gasdermin E suppresses tumour growth by activating anti-

tumour immunity. Nature 579, 415–420 (2020).

17. Karki, R. & Kanneganti, T. Diverging inflammasome signals in tumorigenesis

and potential targeting. Nat. Rev. Cancer 19, 197–214 (2019).

18. Xia, X. et al. The role of pyroptosis in cancer: pro-cancer or pro-“host”? Cell

Death Dis. 10, 650 (2019).

19. Wang, B. & Yin, Q. AIM2 inflammasome activation and regulation: a structural

perspective. J. Struct. Biol. 200, 279–282 (2017).

20. Man, S. & Kanneganti, T. Regulation of inflammasome activation. Immunolo-

gical Rev. 265, 6–21 (2015).

21. Kumari, P., Russo, A., Shivcharan, S. & Rathinam, V. AIM2 in health and disease:

inflammasome and beyond. Immunological Rev. 297, 83–95 (2020).

Fig. 8 Workflow diagram. The specific workflow graph of data

analysis.

Ye et al. Cell Death Discovery            (2021) 7:71 Page 10 of 11

Official journal of the Cell Death Differentiation Association

https://portal.gdc.cancer.gov/
https://xenabrowser.net/
https://xenabrowser.net/
https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.1038/s41420-021-00451-x


22. Choubey, D. Absent in melanoma 2 proteins in the development of cancer.

Cell. Mol. Life Sci. 73, 4383–4395 (2016).

23. Carpenter, G. & Ji, Q. Phospholipase C-gamma as a signal-transducing ele-

ment. Exp. Cell Res. 253, 15–24 (1999).

24. Kang, R. et al. Lipid peroxidation drives gasdermin D-mediated pyroptosis in

lethal polymicrobial sepsis. Cell Host Microbe 24, 97–108.e4 (2018).

25. Mirea, A. et al. Mice deficient in the IL-1β activation genes Prtn3, elane, and

Casp1 are protected against the development of obesity-induced NAFLD.

Inflammation 43, 1054–1064 (2020).

26. Fu, Z., Akula, S., Thorpe, M. & Hellman, L. Potent and broad but not unselective

cleavage of cytokines and chemokines by human neutrophil elastase and

proteinase 3. Int. J. Mol. Sci. 21, 651 https://doi.org/10.3390/ijms21020651

(2020).

27. Kambara, H. et al. Gasdermin D exerts anti-inflammatory effects by promoting

neutrophil death. Cell Rep. 22, 2924–2936 (2018).

28. Shi, P. et al. Loss of conserved Gsdma3 self-regulation causes autophagy and

cell death. Biochem. J. 468, 325–336 (2015).

29. Delmaghani, S. et al. Hypervulnerability to sound exposure through impaired

adaptive proliferation of peroxisomes. Cell 163, 894–906 (2015).

30. Jiang, M., Qi, L., Li, L. & Li, Y. The caspase-3/GSDME signal pathway as a switch

between apoptosis and pyroptosis in cancer. Cell Death Discov. 6, 112 (2020).

31. Wang, Y. et al. Chemotherapy drugs induce pyroptosis through caspase-3

cleavage of a gasdermin. Nature 547, 99–103 (2017).

32. Zheng, M., Karki, R., Vogel, P. & Kanneganti, T. Caspase-6 Is a key regulator of

innate immunity, inflammasome activation, and host defense. Cell 181,

674–87.e13 (2020).

33. Zheng, M. & Kanneganti, T. The regulation of the ZBP1-NLRP3 inflammasome

and its implications in pyroptosis, apoptosis, and necroptosis (PANoptosis).

Immunol. Rev. 297, 26–38 (2020).

34. Fritsch, M. et al. Caspase-8 is the molecular switch for apoptosis, necroptosis

and pyroptosis. Nature 575, 683–687 (2019).

35. Khan, I., Yousif, A., Chesnokov, M., Hong, L. & Chefetz, I. A decade of cell death

studies: breathing new life into necroptosis. Pharmacol. Therapeut. 107717

(2020).

36. Wolf, D. et al. The expression of the regulatory T cell-specific forkhead box

transcription factor FoxP3 is associated with poor prognosis in ovarian cancer.

Clin. Cancer Res. 11, 8326–8331 (2005).

37. Toker, A. et al. Regulatory T cells in ovarian cancer are characterized by a highly

activated phenotype distinct from that in melanoma. Clin. Cancer Res. 24,

5685–5696 (2018).

38. Saito, T. et al. Two FOXP3(+)CD4(+) T cell subpopulations distinctly control

the prognosis of colorectal cancers. Nat. Med. 22, 679–684 (2016).

Ye et al. Cell Death Discovery            (2021) 7:71 Page 11 of 11

Official journal of the Cell Death Differentiation Association

https://doi.org/10.3390/ijms21020651

	A novel defined pyroptosis-related gene signature for predicting the prognosis of ovarian cancer
	Introduction
	Results
	Identification of DEGs between normal and tumour tissues
	Tumour classification based on the DEGs
	Development of a prognostic gene model in the TCGA cohort
	External validation of the risk signature
	Independent prognostic value of the risk model
	Functional analyses based on the risk model
	Comparison of the immune activity between subgroups

	Discussion
	Materials and methods
	Datasets
	Identification of differentially expressed pyroptosis-related genes
	Development and validation of the pyroptosis-related gene prognostic model
	Independent prognostic analysis of the risk score
	Functional enrichment analysis of the DEGs between the low- and high-risk groups
	Statistical analysis

	Acknowledgements


