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This paper presents a sensor fusion method for the Ultra-Tightly Coupled (UTC) Global

Positioning System (GPS)/Inertial Navigation System (INS) integrated navigation. The UTC

structure, also known as the deep integration, exhibits many advantages, e.g., disturbance and

multipath rejection capability, improved tracking capability for dynamic scenarios and weak

signals, and reduction of acquisition time. This architecture involves the integration of I (in-

phase) and Q (quadrature) components from the correlator of a GPS receiver with the INS

data. The Particle Filter (PF) exhibits superior performance as compared to an Extended

Kalman Filter (EKF) and Unscented Kalman Filter (UKF) in state estimation for the

nonlinear, non-Gaussian system. To handle the problem of heavy-tailed probability distri-

bution, one of the strategies is to incorporate the UKF into the PF as the proposal

distribution, leading to the Unscented Particle Filter (UPF). The combination of an adaptive

UPF and Fuzzy Logic Adaptive System (FLAS) is adopted for reducing the number of

particles with sufficiently good results. The GPS tracking loops may lose lock due to the

signals being weak, subjected to excessive dynamics or completely blocked. One of the

principal advantages of the UTC structure is that a Doppler frequency derived from the INS

is integrated with the tracking loops to improve the receiver tracking capability. The Doppler

frequency shift is calculated and fed to the GPS tracking loops for elimination of the effect of

stochastic errors caused by the Doppler frequency. In this paper, several nonlinear filtering

approaches, including EKF, UKF, UPF and ‘FLAS assisted UPF’ (FUPF), are adopted for

performance comparison for ultra-tight integration of GPS and INS. It is assumed that no

outage occurs such that the inertial sensor errors can be properly corrected and accordingly

the aiding information is working well. Two examples are provided for performance

assessment for the various data fusion methods. The FUPF algorithm with Doppler velocity

aiding demonstrates remarkable improvement, especially in the high dynamic environments,

in navigation estimation accuracy with reduction of number of particles.
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1. INTRODUCTION. The Global Positioning System (GPS) and Inertial

Navigation System (INS) have complementary operational characteristics and the

THE JOURNAL OF NAVIGATION (2012), 65, 717–747. © The Royal Institute of Navigation 2012
doi:10.1017/S0373463312000161

https://doi.org/10.1017/S0373463312000161 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463312000161


synergy of both systems has been widely explored (Brown and Hwang, 1997; Farrell

and Barth, 1999). The GPS/INS integrated navigation system is the adequate solution

to provide a navigation system that has superior performance in comparison with

either GPS or INS stand-alone system. Traditional GPS/INS integration designs use a

loosely or a tightly coupled architecture. The loosely coupled integration uses the GPS

derived position and velocity as the measurements. This architecture is sub-optimal

from the standpoint of preventing GPS outages (i.e., with less than four available

satellites). A tightly coupled GPS/INS navigation filter blends the GPS pseudorange

and inertial measurements and obtains the vehicle navigation solution. The ultra-

tightly coupled architecture combines the I (in-phase) and Q (quadrature) correlator

components in the receiver signal tracking loops and the INS navigation filter function

into a single integrated filter (Babu and Wang, 2004, 2005, 2009; Yuan and Zhang,

2009).

In the ultra-tightly coupled integration mode, the correlator variables I and Q are

given as measurements to the integration filter. Estimated Doppler offsets can be used

to maintain tracking in the tracking loop, either under high dynamics or GPS signal

outages (Alban et al., 2003, 2004; Babu andWang, 2004, 2005). The inherent property

of this system is the integration of INS derived Doppler feedback to the carrier

tracking loops. This architecture shows an important advantage of this system: as the

INS Doppler aiding removes the vehicle Doppler from the GPS signal, it facilitates a

significant reduction in the carrier tracking loop bandwidth; on a comparative scale the

dynamics on the PseudoRandom Noise (PRN) code is very much less due to its low

frequency nature. The bandwidth reduction improves the anti-jamming performance

of the receiver, and also increases the post correlated signal strength. In addition, due

to lower bandwidths, the accuracy of the raw measurements is also increased.

The Kalman Filter (KF) (Brown and Hwang, 1997; Gelb, 1974) is a well known

sequential data assimilation scheme for solving the Wiener problem. In the current

integration scenarios, the navigation filter is commonly designed by use of a KF or

its nonlinear version, Extended Kalman Filter (EKF) to estimate the vehicle state

variables and suppress the navigation measurement noise. Other alternatives were

proposed for GPS/INS integration. The popular alternatives include the Unscented

Kalman Filter (UKF) (Julier, 2002; Julier et al. 1995, 2000; Julier and Uhlmann,

2002; Wan and van der Merwe, 2000, 2001) and the Particle Filter (PF) (Djuric et al.,

2003; Rubin, 1988; Aggarwal et al., 2009; Doucet et al., 2000; Gordon et al., 2004). In

the ultra-tightly coupled GPS/INS modes, the EKF (Babu andWang, 2009) and UKF

(Yuan and Zhang, 2009) have been employed to implement the ultra-tight navigation

filter.

Proposed by Julier, et al. (1995) to address nonlinear state estimation in the context

of control theory, the UKF is a nonlinear, distribution approximation method that

uses a finite number of carefully chosen sigma points to propagate the probability of

state distribution. The UKF approximates the Gaussian distribution by a set of deter-

ministically selected samples called the sigma points, which are propagated through

the true non-linear models to capture the true mean and covariance of transformed

distribution. The UKF made a Gaussian approximation with a limited number of

sigma points through the Unscented Transform (UT) (Julier, 2002; Julier and

Uhlmann, 2002; Julier et al., 2000). Through the nonlinear dynamics of the system,

the true mean and covariance of the Gaussian Random Variable (GRV) are com-

pletely captured with a minimal set of samples. The basic premise behind the UKF is
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that it is easier to approximate a Gaussian distribution than it is to approximate an

arbitrary nonlinear function. The posterior mean and covariance can be captured

accurately to the second order of Taylor series expansion for any nonlinear system.

For certain problems, a Gaussian assumption cannot be applied with confidence.

To overcome these problems, the probability-based estimator PF was proposed to

approximate the posterior distribution for highly nonlinear systems. The Bayesian

estimation is the foundation for particle filters. As a non-parametric filter, the PF can

easily deal with nonlinear and/or non-Gaussian noises. A large number of particles are

required to obtain reasonable accuracy as the latest measurement is totally ignored.

Henceforth, many variants of these filters are suggested by a number of researchers.

One such method to incorporate the most current measurement into the state vector

estimation is through the local linearization, where the EKF or UKF can be used to

generate the true mean and covariance of the proposal distribution. For the Unscented

Particle Filter (UPF) (van der Merwe et al., 2000), the UKF is incorporated to

generate the proposal distribution for acquiring a maximum a posteriori probability

estimate of the nonlinear system, and the importance density function can approxi-

mate the true posterior density distribution. The use of the importance proposal

distribution integrates the latest observation into system state transition density, so as

to properly match the a posteriori density.

The uncertainty of the process noise and measurement noise degrades the

performance when implementing the filter. In various circumstances where there are

uncertainties in the system model and noise description, and the assumptions on the

statistics of disturbances are violated due to the fact that in a number of practical

situations, the availability of a precisely known model is unrealistic. One way to take

them into account is to consider a nominal model affected by uncertainty. The process

model of the filter is dependent on the dynamical characteristics of the vehicle. Poorly

designed mathematical models may lead to the divergence. The statistical properties of

error in the system cannot be treated as unchanged, which thus results in filtering per-

formance degradation or even divergence. An adaptive mechanism which dynamically

identifies uncertainties or modelling errors can be adopted. The Adaptive Kalman

Filter (AKF) approach (Ding et al., 2007; Hide et al., 2003; Mehra, 1970, 1972;

Mohamed and Schwarz, 1999) has been one of the promising strategies and has been

widely explored for dynamically adjusting the parameters and overcoming the

divergence problem. Many efforts have been made to improve the estimation of the

covariance matrices based on the innovation-based estimation approach, resulting in

the Innovation Adaptive Estimation (IAE).

Fuzzy logic was first developed by Zadeh in the mid-1960s for representing

uncertain and imprecise knowledge. It provides an approximate but effective means of

describing the behaviour of systems that are too complex, ill-defined, or not easily

analysed mathematically. One of the approaches is to employ the Fuzzy Logic

Adaptive System (FLAS) (Jwo and Wang, 2007; Sasiadek et al., 2000) to adapt the

gain and therefore prevent the filter from divergence. A FLAS mechanism can be

incorporated for determining the factor, resulting in the Fuzzy Unscented Particle

Filter (FUPF). The characteristics of the fuzzy adaptive system depend on the fuzzy

rules and the effectiveness of the rules directly influences its performance. The FLAS is

employed to make the necessary trade-off between accuracy and computational

burden due to the increased number of particles. When the FLAS is employed, the

reduced number of particles becomes accessible without significantly compromising
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accuracy. Two examples are provided for performance evaluation among the various

data fusion methods: EKF, UKF and FLAS assisted UPF (FUPF).

The remainder of this paper is organized as follows. In Section 2, the ultra-tightly

coupled GPS/INS integration is introduced. The navigation integration filter

algorithm is proposed in Section 3. In Section 4, numerical experiments based on

two scenarios on navigation processing are conducted to evaluate the performance for

various approaches. Conclusions are given in Section 5.

2. THE ULTRA-TIGHT GPS/INS INTEGRATION. The ultra-tightly

coupled GPS/INS integration architecture is shown in Figure 1. The signals from the

receiver correlator, I and Q components, form the measurements of the filters. These I

and Q measurements from channels {1,2, . . .N} are integrated with the position,

velocity and attitude of the INS in a complementary filter. The code phase and

Doppler shift calculated from the INS and satellite ephemeris are used to control both

the code Numerically Controlled Oscillator (NCO) and carrier NCO. The number of

measurement is twice of the number of satellites being used for navigation.

The received satellite signal can be presented as:

y(t) = A · CA(t) ·D(t) cos(2πf0(t− τ) + θ0) + η (1)

where:

A is the signal amplitude.

CA(t) is the C/A code sequence.

D(t) is the navigation data.

τ is the propagation delay between the satellite and the receiver.

f0 is the carrier frequency.
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Figure 1. Illustration of the I and Q components as the measurements of the ultra-tightly coupled

GPS/INS integration with Doppler velocity aiding.
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θ0 is the initial carrier phase.

η is the Gaussian noise.

Ignoring atmospheric and oscillator effects, the propagation delay, τ, can be

expanded as

τ =
|Ps(ts) − Pr(tr)|

c
(2)

where:

Ps(ts) is the satellite position at transmit time.

Pr(tr) is the receiver position at receive time.

tr= ts+ τ where τ is the propagation delay.

c is the velocity of light.

Considering the motion of both the satellite and the receiver, the numerator of

Equation (2) can be expanded using a Taylor’s series into

|Ps(ts) − Pr(tr)| ≈ |Ps(t0 − τ) − Pr(t0)| +
d

dt
|Ps(t0 − τ) − Pr(t0)|(t− t0) (3)

where t0 is the time at a reference point. Substituting (2) and (3) into (1) yields:

y(t) = A · CA(t) ·D(t) cos 2πft+ θ
( )

+ η (4)

where:

PL = |Ps(t0 − τ) − Pr(t0)| (5)

VL =
d

dt
|Ps(t0 − τ) − Pr(t0)| (6)

f = f0 −
VLf0

c
(7)

θ = θ0 +
2π f0t0VL

c
−

2π f0

c
PL (8)

The I and Q components of a satellite signal after correlation are represented by:

I =

∫(k+1)T

kT

{sin(ω̂t+ θ̂)[A cos(ωt+ θ) + η0]}dt

=
−A

2ωe

{cos(ωe(k + 1)t+ θe) − cos(ωekt+ θe)} + ηI

(9a)

Q =

∫(k+1)T

kT

{cos(ω̂t+ θ̂)[A cos(ωt+ θ) + η0]}dt

=
A

2ωe

{sin(ωe(k + 1)t+ θe) − sin(ωekt+ θe)} + ηQ

(9b)

where:

ωe = ω̂− ω = 2π(f̂ − f ) = 2πfe is the frequency error tracked by Frequency Lock

Loop (FLL).

θe = θ̂ − θ is the phase error tracked by Phase Lock Loop (PLL).
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k is the measurement epoch.

T is the integration interval.

ηI and ηQ are the noise components.

Taking expectation of the integral leads to:

E[I ] =
−A

2ωe

[cos(ωe(k + 1)T + θe) − cos(ωekT + θe)] (10a)

E[Q] =
A

2ωe

[sin(ωe(k + 1)T + θe) − sin(ωekT + θe)] (10b)

which shows that E[I ] and E[Q] depends on the errors of the carrier frequency

and phase. These error parameters fe and θe are described in terms of position and

velocity as:

fe =
f0

c
|V̂L − VL| (11)

θe =
2πf0

c
[|V̂L − VL|t− |P̂L − PL|] =

2πf0

c
[Vet− Pe] (12)

where:

PL and VL are measured position and velocity of the receiver.

P̂L and V̂L are the receiver estimates of position and velocity.

Detailed information for the derivatives relating the I/Q and carrier phase/

frequency used in the EKF can be referred to Babu and Wang (2009).

Doppler reflects the relative dynamics on the received radio frequency carrier. By

use of the satellite ephemerides, dynamics of the GPS satellites can be known

accurately, and velocity/acceleration information of the receiver can be extracted from

the received Doppler signal. The Doppler calculated by the integration filter is fed into

the carrier tracking loop. It is noted that when operated in the ultra-tight mode the

local NCO is also updated between the navigation filter updates using the INS derived

code phase and Doppler information. The following Doppler analysis is adopted from

Babu and Wang (2004). The received Doppler frequency due to relative motion

between the satellite and receiver can be modelled as:

fdyn = f0 1−
vr · e

c

( )

(13)

where:

f0 represents the carrier frequency of GPS L1 signals.

vr is the relative velocity.

e is the receiver to satellite unit vector.

c is the speed of light.

The measured Doppler frequency can be written as

fGPS = fdyn + fclk (14)

where fdyn and fclk represents the Doppler due to receiver motion and receiver clock

error. The INS-estimated Doppler can be modelled as:

fINS = fdyn + fbias + fstoc (15)
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fbias is due to systematic errors and fstoc is due to the stochastic errors of the inertial

sensors. The Doppler due to receiver motion fdyn can be calculated with the aid of INS

information.

fINS = fc +
1

λ
(v̂x − vsx)

p̂x − psx

Re

( )

+ (v̂y − vsy)
p̂y − psy

Re

( )

+ (v̂z − vsz)
p̂z − psz

Re

( )[ ]

(16a)

λ =
fc

c
(16b)

Re =











































(p̂x − px)
2 + (p̂y − py)

2 + (p̂z − pz)
2

√

(16c)

where:

(p̂x, p̂y, p̂z) is the estimated receiver’s position.

(v̂x, v̂y, v̂z) is the estimated receiver’s velocity.

Subtracting Equation (14) and Equation (15) gives:

fres = fclk − fbias − fstoc (17a)

The integration filter estimates and subsequently removes the systematic error.

Therefore, assuming fbias is exactly determined and removed, the effective dynamics

the tracking loop needs to track becomes:

fres = fclk − fstoc (17b)

It is seen that through the Doppler frequency estimate, the tracking range can be

reduced since both fclk and fstoc are small. Further information for the Doppler

estimation can be referred to Babu and Wang (2004; 2005), Alban, Akos and Rock

(2003), Alban, Akos, Rock, and Gebre-Egziabher (2004).

3. THE NAVIGATION INTEGRATION FILTER. The combination

of adaptive UPF and FLAS is adopted for reducing the number of particles with

sufficiently good results. The PF consists of recursive propagation of the weights and

support points as each measurement is received sequentially. However, a common

problem with the generic PF is the degeneracy phenomenon. To avoid the degeneracy

phenomenon of the particles, one of the solving methods is to add the number of

samples (or particles). However, if one adds too many particles in a filter, a large

computational burden will occur. Resampling is a better method to reduce degeneracy

of the algorithm. As for the resampling scheme, there are many selections such as

Sampling Importance Resampling (SIR), residual resampling and systematic re-

sampling. A good proposal distribution is essential to the efficiency of Importance

Sampling (IS).

3.1. The Unscented Kalman Filter. The first step in the UKF is to sample the

prior state distribution, i.e., generate the sigma points through the UT, which is a

method for calculating the statistics of a random variable which undergoes a nonlinear

transformation. The basic premise is that to approximate a probability distribution is

easier than to approximate an arbitrary nonlinear transformation. A set of sigma

points is deterministically chosen so as to capture the true mean and covariance of the

random variable. The samples are propagated through true nonlinear equations and
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the linearization of the model is not necessary. The UKF requires less computational

cost due to deterministic sampling of the sigma points as opposed to the particle filter’s

random particles.

The UKF is a nonlinear filter which deals with the case governed by the nonlinear

stochastic difference equations:

xk+1 = f (xk, k) + wk (18a)

zk = h(xk, k) + vk (18b)

where:

the state vector xk [ R
n.

process noise vector wk [ R
n.

measurement vector zk [ R
m.

measurement noise vector vk [ R
m.

Both the vectors wk and vk are zero mean Gaussian white sequence having zero

cross-correlation with each other:

E[wkw
T
i ] = Qkδik; E[vkv

T
i ] = Rkδik; E[wkv

T
i ] = 0 for all i and k (18c)

Consider an n dimensional random variable x, having the mean x̂ and covariance P,

and suppose that it propagates through an arbitrary nonlinear function f. The

unscented transform creates 2n+1 sigma vectors X (a capital letter) and weighted

points W, given by:

X(0) = x̂

X(i) = x̂+ (












(n+ λ)P
√

)Ti , i = 1, . . . , n

X(i+n) = x̂− (












(n+ λ)P
√

)Ti , i = 1, . . . , n

(19)

Wi
(m) and Wi

(c) are the weights for the mean and covariance, respectively, associated

with the ith point.

W (m)
0 =

λ

(n+ λ)
(20a)

W (c)
0 = W (m)

0 + (1− α2 + β) (20b)

W (m)
i = W (c)

i =
1

2(n+ λ)
, i = 1, . . . , 2n (20c)

The sigma vectors are propagated through the nonlinear function to yield a set of

transformed sigma points, yi= f (Xi), i=0, . . ., 2n.

The implementation algorithm of UKF is summarized as follows:

1. The transformed set is given by instantiating each point through the process

model:

ζi,k|k−1 = f (Xi,k|k−1), i = 0, . . . , 2n (21)

2. Predicted mean:

x̂k|k−1 =
∑

2n

i=0

W (m)
i ζi,k|k−1 (22a)
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3. Predicted covariance:

Pk|k−1 =
∑

2n

i=0

W (c)
i [ζi,k|k−1 − x̂k|k−1][ζi,k|k−1 − x̂k|k−1]

T +Qk−1 (22b)

4. Instantiate each of the prediction points through observation model:

Zi,k|k−1 = h(ζi,k|k−1) (23a)

5. Predicted observation:

ẑk|k−1 =
∑

2n

i=0

W (m)
i Zi,k|k−1 (23b)

6. Innovation covariance:

Pzz =
∑

2n

i=0

W (c)
i [Zi,k|k−1 − ẑk|k−1][Zi,k|k−1 − ẑk|k−1]

T + Rk (24)

7. Cross covariance:

Pxz =
∑

2n

i=0

W
(c)
i [ζi,k|k−1 − x̂k|k−1][Zi,k|k−1 − ẑk|k−1]

T (25)

8. Performing update:

Kk = PxzP
−1
zz

x̂k = x̂k|k−1 + Kk(zk − ẑk|k−1)

Pk = P−
k − KkPzzK

T
k

(26)

3.2. The Particle Filter (PF). Although the EKF and UKF can deal well with

some nonlinear filtering problems, they always approximate p(xk|Zk) to be Gaussian,

where p(xk|Zk)= pdf of xk conditioned on measurements z1, z2, . . ., zk.

The PF is a probability-based estimator. If the true density is non-Gaussian, PFs

will provide better performances in comparison to that of EKF and UKF. Figure 2

shows the recursive Bayesian state estimation, which is based on the Bayes’ rule.

p(xk|Zk) =
p(yk|xk)p(xk|Zk−1)

p(yk|Zk−1)
(27)

Posterior )|( kkp Zx at step k

Measurement kz

1−→kk Prior )|( 1−kkp Zx at step k

Posterior )|( 11 −− kkp Zx at step 1−k

Figure 2. The recursive Bayesian state estimation.
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In order to compute p(xk|Zk), the equation p(xk|Zk−1) needs to be found from the

Chapman-Kolmogorov equation and the marginal density function:

p(xk|Zk−1) =

∫

p(xk|xk−1)p(xk−1|Zk−1)dxk−1 (28a)

The pdf p(zk|Zk−1) can be obtained to be:

p(zk|Zk−1) =

∫

p(zk|xk)p(xk|Zk−1)dxk (28b)

The basic PFs combine two principles namely the Monte Carlo (MC) principle and

the IS method where the transition prior density p(xk|xk−1) is taken as the importance

distribution:

q(xk|xk−1, zk) = p(xk|xk−1) (29)

The weights of these particles are evaluated according to:

wk / wk−1p(zk|xk) (30a)

and:

wk /
p(xk|Zk)

q(xk|Zk)
(30b)

where:

q(xk|xk−1, zk) is the importance density function.

wk−1 are the importance weights of the previous epoch particles.

wk are the importance weights of the current epoch.

The use of transition prior distribution as the importance distribution greatly

simplifies weight calculations; however, after a few iterations, most samples have

negligible weights as information coming from the latest measurement is completely

ignored. In order to reduce this problem, a resampling step can be incorporated.

Nevertheless, the resampling step at every time epoch can easily lead to sample

impoverishment.

3.3. The Unscented Particle Filter. The importance density function is used in

the Sequential Importance Sampling (SIS) and SIR schemes, where the transition

prior does not take into consideration the most recent measurement data zk.

Deficiency may arise in particle filters, especially when there is little overlap between

the importance density function and the posterior pdf p(Xk|Zk), and the estimation

result is poor. To avoid this problem that may arise from using the transition prior as

the importance density function, the filter needs to incorporate the latest measurement

data into it.

An improvement in the choice of proposal distribution over the simple transition

prior can be accomplished by moving particles towards the regions of high likelihood,

based on the most recent measurement. In a local linearization technique, utilization

of the UKF within a PF framework leads to the UPF where the UKF is used to

generate the true mean and covariance of the proposal distribution. This is accom-

plished by using a separated UKF to generate and propagate a Gaussian proposal
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distribution for each particle. In the UPF, each particle is drawn from the local

Gaussian approximation of the optimal importance distribution p(xk|xk−1, zk) that is

conditioned on the current state and the latest measurement:

q(xk|xk−1, zk)Optimal = qN (xk|Zk) (31)

where qN is representative of the Gaussian approximation of importance density and is

obtained from the UKF.

An effective approach to accomplish this is to use an UKF generated Gaussian

approximation optimal proposal by Julier and Uhlmann et al., (1995, 2002). That is:

x̂ik � q(xik|x
i
k−1, zk) � N(xik,P

i
k) (32)

where xk
i and Pk

i are the mean and covariance of the ith particle generated by the UKF,

respectively. The ith particle at time step k is redrawn from this new updated distri-

bution. While still making a Gaussian assumption, the approach provides a better

approximation to the optimal conditional proposal distribution (van der Merwe,

et al., 2000).

One cycle of the UPF algorithm is summarized as follows.

3.3.1 Initialization. Assume {xi0}
N
i=1 be a set of particles sampled from the prior

x0
i
*p(x0) at k=0 and set:

x̂i0 = E[xi0]

Pi
0 = E[(xi0 − x̂i0)(x

i
0 − x̂i0)

T ]

wi
0 = 1/N

(33)

where i=1. . .N

3.3.2. Importance Sampling.

. Update each particle with the UKF to obtain mean x̄ik and covariance Pk
i .

. Sample the particles from x̂ik � q(xik|x
i
k−1, zk) � N(xik,P

i
k), where x̂

i
k,P

i
k are the

estimation of mean and covariance of UKF, i=1, . . .,N

. The recursive estimate for the importance weights can be written as follows:

wi
k = wi

k−1

p(zk|x
i
k)p(x

i
k|x

i
k−1)

q(xik|x
i
k−1, zk)

(34)

where N is the number of samples. Normalize the importance weights by:

wi
k = wi

k/
∑

N

i=1

wi
k (35)

3.3.3. Selection or Re-sampling. Compute the effective weights according to:

Neff =
1

∑

N

i−1

(wi
k)

2

(36)

If Neff<N, resample particles {xk
i }i=1

N and assign equal weights to them wk
i =1/N.
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3.3.4. Output.

xk =
∑

N

i=1

xikw
i
k (37)

P̂k =
∑

N

i=1

wi
k(x

i
k − x̂k)(x

i
k − x̂k)

T (38)

3.4 The Adaptive Strategy for the UKF. Based on the idea as in the AKF, the

synthesis of UKF and fading factors, the covariance matrix can be updated as follows.

The new Pk
− needs to be modified and can be obtained by multiplying Equation (22b)

by the factor Sk:

Pk|k−1 =
∑

2n

i=0

W (c)
i [ζi,k|k−1 − x̂k|k−1][ζi,k|k−1 − x̂k|k−1]

T + SkQk−1 (39)

Similarly, the covariance matrix Pzz and Pxz, as represented by Equations (24) and

(25), respectively, can also be modified and rewritten as:

Pzz =
∑

2n

i=0

W (c)
i [Zi,k|k−1 − ẑk|k−1][Zi,k|k−1 − ẑk|k−1]

T + SkRk (40)

Pxz = Sk

∑

2n

i=0

W
(c)
i [ζi,k|k−1 − x̂k|k−1][Zi,k|k−1 − ẑk|k−1]

T

{ }

(41)

where Sk=diag(s1, s2 . . ., sm).

One approach is to assign the scale factors as constants. When s≤1 (i=1, 2, . . .,m),

the filtering is in a steady state processing while s>1, the filtering may tend to be

unstable. For the case si=1, it deteriorates to the standard UKF.

A typical fuzzy system consists of three components, that is, fuzzification, fuzzy

reasoning (fuzzy inference), and fuzzy defuzzification, as shown in Figure 3. The

fuzzification process converts a crisp input value to a fuzzy value, the fuzzy inference is

responsible for drawing calculations from the knowledge base, and the fuzzy

defuzzification process converts the fuzzy actions into a crisp action.

The fuzzification modules: (1) transforms the error signal into a normalized fuzzy

subset consisting of a subset for the range of the input values and a normalized

Rule base

Membership functions

Fuzzification Fuzzy inference Defuzzification

Figure 3. A fuzzy system.
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membership function describing the degree of confidence of the input belonging to this

range; (2) selects reasonable and good, ideally optimal, membership functions under

certain convenient criteria meaningful to the application. The characteristics of the

fuzzy adaptive system depend on the fuzzy rules and the effectiveness of the rules

directly influences its performance. To obtain the best deterministic output from a

fuzzy output subset, a procedure for its interpretation, (known as defuzzification)

should be considered. The defuzzification is used to provide the deterministic values of

a membership function for the output. Using fuzzy logic to infer the consequent of a

set of fuzzy production rules invariably leads to fuzzy output subsets.

The parameters for checking the Degree Of Divergence (DOD) to identify the

degree of change in vehicle dynamics need to be defined. The innovation information

at the present epoch is employed for timely reflecting the change in vehicle dynamics.

The averaged magnitude of the absolute value of innovation at the present epoch

(i.e., the window size is one) can be used as the first DOD parameter:

μ =
1

m

∑

m

i=1

|υi| (42)

Furthermore, the other DOD parameter ξ can be defined as the trace of innovation

covariance matrix at present epoch divided by the number of measurements employed

for navigation processing:

ξ =
υTkυk

m
(43)

where:

υk = [ υ1 υ2 · · · υm ]T

m is the number of measurements.

In the FLAS, the DOD parameters are employed as the inputs for the fuzzy

inference engines. By monitoring the DOD parameters, the FLAS is able to on-line

tune the softening factor according to the fuzzy rules, and accordingly improve the

performance in terms of tacking capability and estimation accuracy. Block diagram of

the GPS/INS navigation sensor fusion using the FUPF is shown in Figure 4.

4. RESULTS AND DISCUSSION. Simulation experiments have been

carried out to evaluate the performance of the proposed approach in comparison

with the conventional methods for ultra-tightly coupled GPS/INS navigation pro-

cessing. The work was conducted using a personal computer with Intel Q8400 2·66

GHz CPU. The computer codes were constructed using the MATLAB® 2009 version

software. In this work, the commercial software Satellite Navigation (SATNAV)

Toolbox (2005) by GPSoft LLC was employed for generating the satellite positions

and pseudoranges.

Assume that the Differential GPS (DGPS) mode is used and most of the errors

can be corrected, but the multipath and receiver thermal noise cannot be eliminated.

The measurement noise variances rρi are assumed a priori known, which is set as 1m2.

Let each of the white-noise spectral amplitudes that drive the random walk position

states be Sp=0·0003(m/sec2/rad/sec). Also, let the clock model spectral amplitudes be
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Sf=0·4(10−18)sec and Sg=1·58(10−18)sec−1. The measurement noise covariance

matrix is given by Rk=4× Imm.

The membership functions (MFs) of input fuzzy variable DOD parameters (μ, ξ) as

shown in Figure 5 are triangle MFs. The presented FLAS is the If-Then form and

consists of 9 rules:

Rule 1. IF μ is small and ξ is small THEN s is 0·8

Rule 2. IF μ is small and ξ is medium THEN s is 0·8

Rule 3. IF μ is small and ξ is large THEN s is 0·2μ+0·1ξ+0·1

Rule 4.IF μ is medium and ξ is small THEN s is 0·2μ+0·1ξ+0·1

Rule 5. IF μ is medium and ξ is medium THEN s is 0·2μ+0·1ξ+0·1

Rule 6. IF μ is medium and ξ is large THEN s is 0·4μ+0·2ξ+0·2

Rule 7. IF μ is large and ξ is small THEN s is 0·2μ+0·1ξ+0·1

Rule 8. IF μ is large and ξ is medium THEN s is 0·4μ+0·2ξ+0·2

Rule 9. IF μ is large and ξ is large THEN s is 0·4μ+0·2ξ+0·2

In order to evaluate the performance of the proposed approach, a series of

numerical experiments were conducted for two examples.

4.1. Scenario 1 (Example 1). Figure 6 shows the schematic illustration of test

trajectory for Example 1. Table 1 presents description of the vehicle motion. Table 2

provides the INS error specification for Scenario 1. The trajectory can be divided

mainly into ten time intervals (or segments) according to the dynamic characteristics.

The vehicle was simulated to conduct constant acceleration level flight during 0–25s,

clockwise circular motion with radius 900 metres during 41–231s, and counter-

clockwise turn during 283–374s, where high dynamic manoeuvring is involved. For all

the other segments, constant-velocity straight-line flight is involved.

Figures 7–9 provide the position accuracy for the FUPF as compared to EKF and

UKF. Performance enhancement through the Doppler velocity aiding is also

examined. For trajectories with sharp turns or abrupt manoeuvres involved, the

Integrated navigation output

INS

GPS

)( INSxh

kz

UKF

FLAS

I,Q 

FUPF

I, Q prediction

PF

−
− kk zz ˆ

Figure 4. Configuration of the ultra-tightly coupled feedback integrated navigation using the

FUPF.
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performance enhancement becomes obvious. The mismatch of the model leads to

large navigation error while the FLAS timely detects the increase of DOD values, and

therefore increases the scaling factor so as to maintain good tracking capability. The

number of particles used in Figure 9 is 50. It is verified that, by monitoring the

innovation information, the FUPF has good capability to detect the change in vehicle

dynamics and tune the scaling factor larger so as to prevent the divergence and remain

better navigation accuracy. Figure 10 shows comparison of position errors for FUPF

when 10 and 50 particles are used (both with aiding). Doppler frequency errors (Hz)

for the 9 satellites based on the EKF (black), UKF (green) and FUPF (blue)

approaches are depicted in Figure 11. Furthermore, comparison of position Root

Mean Square (RMS) errors for the five approaches is given in Figure 12. Numerical

data for the five approaches (RMS errors, in metres) is summarized in Table 3. The

FUPF algorithm with Doppler velocity aiding confirms remarkable improvement in

navigation estimation accuracy with reduced number of particles. Comparison of

execution time for various approaches (with aiding) is given in Table 4. Table 5

provides comparison of position RMS errors for the FUKF when different particle

0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

residual mean

residual mean

S M L

0 5 10 15 20 25 30 35 40

0

0.2

0.4

0.6

0.8

1
S M L

Figure 5. Membership functions of input fuzzy variables μ (top) and ξ (bottom).
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numbers are used. It can also be seen that the computational load for the particle filter

has been rapidly increased.

4.2. Scenario 2 (Example 2). One more example is provided to further confirm

the effectiveness and justify the performance of the proposed method. The test traj-

ectory for Example 2 is shown in Figure 13. Table 6 provides description of the vehicle

motion. Similarly to Example 1, the trajectory can be divided mainly into ten time

intervals/segments according to the dynamic characteristics. The vehicle conducted

-4000
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2000

0

1000

2000

3000
0

50
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200

East (m)North (m)

A
lti

tu
d
e
 (
m

)
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Figure 6. Three-dimensional test trajectory for Scenario 1.

Table 1. Description of the vehicle motion for Scenario 1.

Segment number Time interval (sec) Motion

1 [0*25] Constant acceleration level flight

2 [26*40] Climbing

3 [41*231] Clockwise circular motion

4 [232*266] Climbing

5 [267*282] Constant velocity level flight

6 [283*374] Constant acceleration counter-clockwise turn

7 [375*389] Descending

8 [390–424] Constant velocity level flight

9 [425–449] Descending

10 [450–483] Constant velocity level flight

Table 2. INS error specification for Scenario 1.

Gyros Accelerometers

In-Run Bias Error 0·1 rad/sec 0·5 m/s2

Noise (1σ, no over-samples) ± 0·01 rad/sec ± 0·05m/s2
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Figure 7. Position errors using the EKF for the cases with aiding and w/o aiding – Scenario 1.
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Figure 8. Position errors using the UKF for the cases with aiding and w/o aiding – Scenario 1.
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Figure 9. Position errors for FUPF, as compared to the UKF and EKF – Scenario 1

(all with aiding).
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Figure 10. Comparison of position errors for FUPF when 10 and 50 particles are used – Scenario 1

(with aiding).
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constant acceleration level flight during 0–12s, clockwise circular motion with radius

275 metres during 50–206s, and counter-clockwise circular motion with radius

250 metres during 271–413s, where high dynamic manoeuvring is involved. For all the
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Figure 11. Doppler frequency errors (Hz) for the 9 satellites based on the EKF (black), UKF

(green) and FUPF (blue) approaches, all with aiding – Scenario 1.
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Figure 12. Comparison of position RMS errors for the five approaches – Scenario 1.
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other segments, constant-velocity straight-line flight is involved. For Scenario 2, the

data for INS error specifications is taken from Crista IMU specifications (2012), as

shown in Table 7.

The effectiveness of the proposed method is essentially similar to that obtained in

Example 1. Figures 14–16 illustrate the position accuracy for the FUPF as compared

to EKF and UKF. The number of particles used in Figure 16 is also 50. It is again

verified that, by monitoring the innovation information, the FUPF has good

capability to detect the change in vehicle dynamics and tune the scaling factor larger

so as to prevent the divergence and retain better navigation accuracy. Figure 17 shows

comparison of position errors for FUPF when 10 and 50 particles are used (both with

aiding). Doppler frequency errors (Hz) for the 9 satellites based on the EKF (black),

UKF (green) and FUPF (blue) approaches are depicted in Figure 18. Furthermore,

comparison of position RMS errors for the five approaches is given in Figure 19.

Numerical data for the five approaches (RMS errors, in metres) is summarized in

Table 8. The FUPF algorithm with Doppler velocity aiding confirms remarkable

improvement in navigation estimation accuracy with reduced number of particles.

Comparison of execution time for various approaches (with aiding) is given in Table 9.

Table 3. Numerical data for the five approaches – Scenario 1 (RMS errors, in metres).

East North Altitude

EKF w/o aiding 7·7418 6·2159 5·4459

EKF with aiding 4·2565 3·3590 2·5888

UKF w/o aiding 4·5158 3·1975 2·6205

UKF with aiding 2·5803 2·2477 1·5921

FUPF with aiding 1·8338 1·6721 0·4304

Table 4. Comparison of execution time for various approaches – Scenario 1 (all with aiding, in sec).

Approach Time

EKF 8·951

UKF 24·239

UPF, 10 particles 76·233

FUPF, 10 particles 77·659

UPF, 50 particles 362·584

FUPF, 50 particles 388·871

UPF, 100 particles 762·319

FUPF, 100 particles 770·767

Table 5. Comparison of position RMS errors (in metres) for the FUKF with different particle

numbers – Scenario 1.

East North Altitude

10 particles 1·8590 1·7638 0·5854

50 particles 1·8348 1·6773 0·4332

100 particles 1·8225 1·6707 0·3962

738 DAH-JING JWO AND OTHERS VOL. 65

https://doi.org/10.1017/S0373463312000161 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463312000161


Table 10 provides comparison of position RMS errors for the FUKF when different

particle numbers are used.

5. CONCLUSIONS. An alternative state estimation technique called the fuzzy

adaptive unscented particle filter has good potential as the state estimation technique
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Figure 13. Three-dimensional test trajectory for Scenario 2.

Table 6. Description of the vehicle motion for Scenario 2.

Segment number Time interval (sec) Motion

1 [0*12] Constant acceleration level flight

2 [13*38] Climbing

3 [39*49] Constant velocity level flight

4 [50*206] Clockwise circular motion

5 [207*223] Constant velocity level flight

6 [224*248] Climbing

7 [249*270] Constant velocity level flight

8 [271–413] Counter-clockwise circular motion

9 [414–439] Climbing

10 [440–459] Constant velocity level flight

Table 7. INS error specifications for Scenario 2 (from Crista IMU Specifications [2012]).

Gyros Accelerometers

Range ±300°/sec ±10G

Scale Factor Error <3°/sec (@ 25 °C) <100mG (0·98m/s2) (@ 25 °C)

In-Run Bias Error:

Fixed temperature <0·2°/sec (warmed up) <25mG (0·245m/s2)

Over temperature <0·6°/sec <51mG (0·500m/s2)

Noise (1σ, no over-samples) <±0·7°/sec <±12mG (0·120m/s2)
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Figure 14. Position errors using the EKF for the cases with aiding and w/o aiding – Scenario 2.
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Figure 15. Position errors using the UKF for the cases with aiding and w/o aiding – Scenario 2.
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Figure 16. Position errors for FUPF, as compared to the UKF and EKF – Scenario 2

(all with aiding).
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Figure 17. Comparison of position errors for FUPF when 10 and 50 particles are used – Scenario 2

(with aiding).
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for the ultra-tightly coupled Global Positioning System (GPS)/Inertial Navigation

System (INS) navigation. One of the principal advantages of the Ultra-Tightly

Coupled (UTC) structure is that a Doppler frequency derived from the INS is
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Figure 18. Doppler frequency errors (Hz) for the 9 satellites based on the EKF (black), UKF

(green) and FUPF (blue) approaches, all with aiding – Scenario 2.
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Figure 19. Comparison of position RMS errors for the five approaches – Scenario 2.
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integrated with the baseband loops to improve the tracking capability of the receiver.

The Doppler frequency shift has been calculated and fed to the GPS tracking loops for

elimination of the effect of stochastic errors caused by the Doppler frequency. The

proposed state estimation technique is designed so as to improve the navigation

accuracy at the high dynamic manoeuvring or sharp turning regions while preserving/

without sacrificing the precision at the lower dynamic regions. The fuzzy system

has been incorporated to improve the assisted Unscented Particle Filter (UPF)

performance. As a mechanism for timely detecting the dynamical changes, the Fuzzy

Logic Adaptive System (FLAS) implements the on-line tuning of the factors in the

weighted covariance matrices by monitoring the innovation information so as to

maintain good estimation accuracy and tracking capability.

Simulation studies were carried out for two examples for performance comparison

for ultra-integration of GPS and INS. Evaluation of navigation performance among

various nonlinear filters, including Extended Kalman Filter (EKF), Unscented

Kalman Filter (UKF) and FLAS assisted UPF (FUPF). FUPF for navigation sensor

fusion has been presented. As the enhanced version of UPF, the proposed FUPF

reveals very promising improvement in navigational accuracy and has very good

Table 8. Numerical data for the five approaches – Scenario 2 (RMS errors, in metres).

East North Altitude

EKF w/o aiding 4·6983 3·6078 4·7060

EKF with aiding 2·1471 1·8778 1·7886

UKF w/o aiding 2·5757 1·9807 1·7468

UKF with aiding 1·4189 1·6279 1·2053

FUPF with aiding 0·7587 1·0171 0·4246

Table 9. Comparison of execution time for various approaches – Scenario 2 (all with aiding, in sec).

Approach Time

EKF 8·142

UKF 10·834

UPF, 10 particles 70·967

FUPF, 10 particles 71·996

UPF, 50 particles 341·508

FUPF, 50 particles 348·094

UPF, 100 particles 505·923

FUPF, 100 particles 508·943

Table 10. Comparison of position RMS errors (in metres) for the FUKF with different particle

numbers – Scenario 2.

East North Altitude

10 particles 0·8431 1·1098 0·5097

50 particles 0·7587 1·0271 0·4246

100 particles 0·7176 1·0158 0·3442
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potential as an alternative navigation state estimator. Nevertheless, selection of the

nonlinear filters leads to different levels of computational burden. The UPF requires

large computational time as compared to the other algorithms. The FLAS has been

incorporated into the UPF for improving the quality of the proposal distribution and

therefore reducing the number of particles. The mismatch of the model leads to large

navigation error while the FLAS timely detects the increase of Degree Of Divergence

(DOD) values, and therefore increases the scaling factor so as to maintain good

tracking capability. For trajectories with sharp turns or abrupt manoeuvres involved,

the performance improvement becomes obvious. Various numbers of particles were

tested. Trade-off needs to be made for selection of a suitable algorithm and numbers

of particles for a specific purpose.

The paper justifies the performance for the EKF, UKF, UPF and FUPF methods

and confirms the effectiveness of the proposed FUPF method for accuracy

improvement especially in the high dynamic environments. The FUPF algorithm

with Doppler velocity aiding demonstrates remarkable improvement in navigation

estimation accuracy with reduced number of particles.
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