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.e design of a swarm optimization-based fractional control for engineering application is an active research topic in the
optimization analysis. .is work offers the analysis, design, and simulation of a new neural network- (NN) based nonlinear
fractional control structure. With suitable arrangements of the hidden layer neurons using nonlinear and linear activation
functions in the hidden and output layers, respectively, and with appropriate connection weights between different hidden
layer neurons, a new class of nonlinear neural fractional-order proportional integral derivative (NNFOPID) controller is
proposed and designed. It is obtained by approximating the fractional derivative and integral actions of the FOPID
controller and applied to the motion control of nonholonomic differential drive mobile robot (DDMR). .e proposed
NNFOPID controller’s parameters consist of derivative, integral, and proportional gains in addition to fractional integral
and fractional derivative orders. .e tuning of these parameters makes the design of such a controller much more difficult
than the classical PID one. To tackle this problem, a new swarm optimization algorithm, namely, MAPSO-EFFO algorithm,
has been proposed by hybridization of the modified adaptive particle swarm optimization (MAPSO) and the enhanced fruit
fly optimization (EFFO) to tune the parameters of the NNFOPID controller. Firstly, we developed a modified adaptive
particle swarm optimization (MAPSO) algorithm by adding an initial run phase with a massive number of particles.
Secondly, the conventional fruit fly optimization (FFO) algorithm has been modified by increasing the randomness in the
initialization values of the algorithm to cover wider searching space and then implementing a variable searching radius
during the update phase by starting with a large radius which decreases gradually during the searching phase. .e tuning of
the parameters of the proposed NNFOPID controller is carried out by reducing the MS error of 0.000059, whereas the MSE
of the nonlinear neural system (NNPID) is equivalent to 0.00079. .e NNFOPID controller also decreased control signals
that drive DDMR motors by approximately 45 percent compared to NNPID and thus reduced energy consumption in
circular trajectories. .e numerical simulations revealed the excellent performance of the designed NNFOPID controller by
comparing its performance with that of nonlinear neural (NNPID) controllers on the trajectory tracking of the DDMR with
different trajectories as study cases.
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1. Introduction

Mobile robots serve platforms with huge versatility within
their environment; they are not limited to one location
because they can be pushed autonomously in their own
circumference. In other words, it has the capability of
implementing tasks without assistance from external op-
erators [1]. Mobile robots are unique to move freely in a
predefined workplace to accomplish the preferred objectives.
.is skill of mobility makes the mobile robots appropriate
for vast application fields in unstructured and structured
surroundings. .e ground mobile robot can be categorized
into a wheeled mobile robot (WMR) and legged mobile
robot (LMR). .e WMRs are prevalent because they are
tailored to particular applications with reasonably small
mechanical complexities and power drain [2].

Within the last decades, many different control struc-
tures were introduced into industrial societies to handle the
restrictions of the classical controllers. .e PID controller
which has been dominated by the industrial organizations
has been changed using the concept of differentiators and
integrators of fractional power. It was shown that a com-
bination of further degrees of freedom with differentiators
and integrators of fractional power provided a greater degree
of flexibility and performance that would otherwise be hard
(even impossible) to come by the conventional PID con-
trollers [3, 4]. .e fractional-order PID (FOPID) controllers
are the generalization of widely applicable PID controllers;
in recent years, they have drawn much attention from both
academics and industry [3–5]. Fractional controls are less
sensitive to parameter changes in a controlled system. A
fractional control unit can easily achieve the isodamping
property. On the other hand, incorporating an integral
action in the feedback loop has the advantage of eliminating
steady-state errors on account of reducing relative stability
of the system. It can be concluded that by designing more
general controller laws in the form (1/sn), (sn), n ∈R+, the
feedback system with more favorable solutions between
undesirable and constructive consequences of the above
scenario could be attained and by combining these control
actions.

Tuning of a fractional PID controller is difficult as five
parameters have to be tuned, which means two more pa-
rameters compared to a traditional PID controller [3–5].
Some methods were proposed for the proper choice of the
parameters’ values of the PID controller. .e method of
Ziegler–Nichols tuning strategy was acquainted in 1942 for
the parameters regulation of the PID controller coefficients;
this tuning technique is utilized if the model of the system is
a first order plus dead time.

In recent years, methods of optimization which are
theoretically different from classical optimization have been
invented..ey depend on specific properties and behavior of
organic herd of birds and nature-inspired and neurobio-
logical systems. .ese metaheuristic procedures have been
developed in the last decade and are evolving as common
methods for solving numerical optimization and intricate
industrial case studies. Particle swarm optimization (PSO) is
a metaheuristic optimization method which depends on the

motion and intellect of bird’s colony behavior or fish bevy
schooling. Kennedy and Eberhart initially suggested particle
swarm optimization (PSO) technique in 1995 [6]. Advan-
tages of PSO are as follows: (1) it does not need the derivative
of the cost function, (2) it can be parallelized, and (3) it has
fast convergence behavior.

On the other hand, the fruit fly optimization (FFO)
swarm technique is one of the state-of-the-art evolutionary
computation techniques based on the foraging behavior of
fruit flies which was pointed out by Pan [7]. .e olfactory
organ of a fruit fly can collect different smells from the air
and even locate the source of the food from a distance of
40 km. Subsequently, the fruit flies travel to the source of the
food and use their acute visionary system to locate the food
destination (minimum or maximum of the function) where
their companions form a swarm and then travel in that
direction. .e FFO algorithm seems to be an excellent
optimization algorithm; it has numerous benefits such as
speed to acquire solutions, the simplicity of its structure, and
ease of implementation. So, FFO was effectively used and
applied in a diverse class of applications [7–9].

However, FFO algorithm suffers from some shortcom-
ings. Firstly, there is inadequacy in the FFO algorithm
concerning the searching policy, a necessary step to yield
new solutions of the FFO algorithm using random infor-
mation of the previous solutions. Moreover, the FFO al-
gorithm has weak exploration ability, low convergence
precision, and jumps out of the local minimum. Finally, the
candidate solutions cannot be generated in a uniform
manner in the domain. On the other hand, PSO experiences
the premature convergence, a common phenomenon in the
evolutionary methods in very sophisticated applications
such as path planning and motion control of mobile robots.
Also, it relies on user experience to find the optimum values
of some parameters like the inertia weights and social and
cognitive coefficients. Moreover, standard swarm optimi-
zation algorithms do not find the optimum solutions in a
rational time [9]. .erefore, the structure of the FFO and
PSO algorithms requires further improvements for attaining
the optimum solutions to the real-world applications.

.e motivation for the hybridization between the
MAPSO and EFFO algorithms is an attempt to combine the
beneficial features of MAPSO and EFFO algorithms and
conduct a sequential operation for these two optimization
algorithms over the progression of the process. Moreover,
the hybridization between MAPSO and EFFO algorithms
will overcome the limitations of the individual MAPSO and
EFFO algorithms mentioned above. .is hybridization will
be accomplished as described later in this paper.

Many researchers have conducted research studies on
motion control problem of DDMR under nonholonomic
constraints, and so various kinds of controllers were dem-
onstrated in the literature for the mobile robots to track
specific trajectories. Trajectory tracking of wheeled mobile
robots using hybrid visual servo equipped with onboard
vision systems is described in [10]. In [11], the authors
addressed the output feedback trajectory tracking problem
for a nonholonomic wheeled mobile robot in the presence of
parameter uncertainty, exogenous disturbances, and without
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velocity measurements using fuzzy logic techniques. .e
work in [12] focused on the localization, kinematics, and
closed-loopmotion control for a DDMR..e authors of [13]
developed an online nonlinear optimal tracking control
method for unmanned ground systems by firstly establishing
the nonlinear tracking error model for unmanned ground
systems (UGSs), and then the tracking control problem for
UGS was converted to a continuous nonlinear optimal
control problemwith the help of a symplectic pseudospectral
method based on the third kind of generation function. In
[14], the authors proposed a kinematic-based neural net-
work controller for nonlinear control of the DDMR with
nonholonomic constraints. In [15], an iterative learning
control over a wireless network for a class of unicycle type
mobile robot systems is proposed, and the study included the
channel noise effect and the robustness analysis of the pro-
posed system. In [16], a sliding mode-based asymptotically
stabilizing controller law has been proposed for a mobile
robot. A dynamic prediction-based model predictive control
method is offered in [17] for wheeled mobile robots taking
into account the tire sideslip. Fuzzy based controllers for
autonomous mobile robots have been argued in [18, 19],
where the work in [19] dealt with unstructured environments.
.e work in [20] proposed a disturbance observer based on
biologically inspired integral sliding mode control for tra-
jectory tracking of mobile robots. A time-optimal velocity
tracking controller for DDMR is presented in [21]. .e au-
thors in [22, 23] investigated a model predictive control
(MPC) for differential drive mobile robots. Backstepping
nonlinear control has been investigated on DDMR in [24].
Recently, researchers are applying a new control paradigm
named active disturbance rejection control (ADRC) [25–30]
on a wide range of applications [31, 32] and particularly on
DDMR [33]. .e authors in the literature proposed many
algorithms for tuning parameters of the FOPID controller
with different applications, where [34, 35] used the genetic
algorithms and [36–39] utilized PSO algorithm. Others like
Rajasekhar et al. [40] applied the gravitational search opti-
mization technique based on the Cauchy and Gaussian
mutation, and El-Khazali [41] exploited the artificial bee
colony algorithm. Frequency-domain methods for the design
of the FOPID controllers can be found in [42]. Finally, other
algorithms like GA can be used to tune the FOPID controller
and more complex controllers like [43].

.e contributions in this research work lie in twofold:

(1) Development of a MAPSO-EFFO algorithm: de-
veloping a modified adaptive particle swarm opti-
mization (MAPSO) algorithm by adding an initial
run phase with a massive number of particles. At the
end of this initial running point, the smaller group of
these fitness particles will be selected to continue
with an adaptive PSO (APSO) algorithm. Moreover,
the conventional fruit fly optimization (FFO) algo-
rithm has been modified by increasing the ran-
domness in the initialization values of the algorithm
to cover wider searching space and then imple-
menting a variable searching radius during the up-
date phase by starting with a large radius which

decreases gradually during the searching phase. Fi-
nally, adopting a hybridized MAPSO-EFFO algo-
rithm by the serial blending of theMAPSO algorithm
with EFFO one, i.e., the input to the EFFO algorithm
is the output of the MAPSO. .e hybridized
MAPSO-EFFO technique is used for the evaluation
of the parameters of the NNFOPID.

(2) New nonlinear fractional control structure: a new
NNFOPID controller is proposed in this paper which
employs the structure of the neural networks (NNs).
With suitable arrangements of the hidden layer
neurons using sigmoid nonlinear activation and
linear functions in the hidden and output layers,
respectively, and with appropriate connection
weights between different neurons in different layers,
a new class of nonlinear neural FOPID controller is
obtained by approximating the fractional derivative
and integral actions of the FOPID controller. .e
outputs of the neural networks are the control ac-
tions used to drive the motors of the DDMR.

.e paper is organized in the following structure. Section
2 gives the motivation and problem statement. Section 3
presents the fractional calculus and the theoretical back-
ground of the fractional PID controllers. .e kinematic
model of the DDMR is introduced in Section 4. .e pro-
posed nonlinear neural conventional and fractional PID
controllers for the trajectory tracking of the DDMR are
explained in Section 5. Section 6 discusses the results and
simulations of the designed motion controllers for the
DDMR based on different trajectories. Finally, the conclu-
sions are given in Section 7.

2. Problem Statement

Given a nonholonomic differential drive mobile robot
(DDMR) following a particular path, the tracking error
occurs because of many factors like noise, disturbances,
slippage, and the errors measured from sensors due to both
interior and exterior causes. .ese issues also make the
mobile robot has the difficulty to turn left or right by di-
rection set or by using various sensors. .erefore, the
DDMR kinematic model has been employed in this paper to
synthesize neural network fractional-order PID (NNFOPID)
controllers to regulate its speed so that it would track the
required path in the plane as fast as possible with minimum
mean square tracking error; this is called trajectory tracking
problem. .ree FOPID controllers will be designed to
control the position (x and y) of the DDMR in the 2D plane
and its orientation θ. Moreover, the aim of the proposed
tracking FOPID controllers is reducing the energy con-
sumed by the left and right motors of the DDMR. Given a
reference path that needs to be followed by the DDMR,
which consists of a set of positions in the 2D plane together
with the orientation, i.e., xr, yr, and θr, the actual path
consists of a set of positions x, y, and θ..en, it is required to
design a NNFOPID controller to generate the control ve-
locities of the kinematic model of the DDMR such that the
mean square error between xr and x, yr and y, and θr and θ
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is minimum with minimum peak of the left and right ve-
locities of the DDMR. In contrast to the FOPID controller, the
NNFOPID controller has more capability to capture the
nonlinearity of the DDMR model due to the nature of the
neural network structure employed in the design where
nonlinear activation functions are used with hidden layer that
has adaptable parameters (NNFOPID controller parameters).

3. Fractional Control Analysis

Fractional calculus is a part of the mathematical analysis,
which demonstrates the likelihood of the differential op-
erator orders to be the complex or real number for the
differentiation and integration. Generally, the form of the
fractional-order operation represented by aD

α
b is called as

differintegral operator. .e sign of α controls the action of
differintegral (aDα

b) whether to be an identity operator, an
integrator, or a differentiator.

.e fractional integral and derivative using
Grünwald–Letnikov (GL) definition follow the same pro-
cedures based on the multiderivative integer calculus. .e
general GL definition is stated as [42, 44]

GL
a D

α

bf(b) � lim
h⟶0

1

hα
∑[(b− a)/h]

j�0
(− 1)j

α

j

 f(b − jh), (1)

where ((b − a)/h) refers to the integer part, a and b are the
start and final limit values, and h is the sampling time. .e
utilization of GL of (1) in the computation of the output
response of any fractional-order system can be illustrated as
follows. Given any fractional system expressed by the
fractional-order linear constant coefficients differential
equation as [44],

anD
∝ ny(t) + an− 1D

∝ n− 1y(t) + · · · + a0D
∝ 0y(t)

� bmD
δmu(t) + bm− 1D

δm− 1u(t) + · · · + b0D
δ0u(t),

(2)

where D∝ � 0D
α
b ; ai (i � 0, . . . ., n) bi(i � 0, . . . ., m) are

constant and ∝ n(i � 0, . . . , n) and δi(i � 0, . . . , m) are real
numbers. Without loss of generality, the parameters ∝ ’s
and δ’s might be ∝ n > ∝ n− 1 > · · · > ∝ 0, and δm > δm− 1 >
· · · > δ0. Consider (2) with its right-hand side equal to u (t)
such that

anD
∝ ny(t) + an− 1D

∝ n− 1y(t) + · · · + a0D
∝ 0y(t) � u(t).

(3)
Recall GL definition in (1); then, by substituting (1) into

(3), the numerical solution of (3) can be evaluated as [44]

yb �
1∑ni�0 ai/hαi( ) ub − ∑n

i�0

ai
hαi

∑[(b− a)/h]

j�1
w

αi
j yb− jh, (4)

and wα
j can be evaluated in recursive manner as follows:

wα
0 � 1,

wα
j � 1 − α + 1

j
( )wα

j− 1, j � 1, 2, . . . ,
(b − a)
h

.
(5)

Now reconsider (2), where its right-hand side is equal to
ǔ (t):

u
⌣(t) � bmD

δmu(t) + bm− 1D
δm− 1u(t) + · · · + b0D

δ0u(t).
(6)

.us, ǔ (t) may be calculated firstly using (1), and then
the output response due to ǔ (t) is computed from the
solution of (6) as

y � ∑(b− a)/h
j�1

∑m
i�0

bi
hδi
∗wδi

j
yb+h− jh. (7)

.e FOPID controller increases the efficiency and the
possibility of better system performance because of its five
parameters. .e differential equation of the FOPID con-
troller with fractional power denoted as PIλDα is described
by

u(t) � kpe(t) + kiD
− λe(t) + kdD

αe(t). (8)

Taking Laplace transform to (8), we have

U(s) � kpe(s) + ki
e(s)
sλ

+ kds
αe(s), (9)

where kd, kp, and ki are derivative, proportional, and integral
control parameters, respectively, λ is the order of the
fractional integral, and α is the fractional derivative order. It
is obvious that the FOPID controller has the three standard
coefficients kd, ki, and kp in addition to parameters λ and α,
which are fractional powers for derivative and integral ac-
tions, respectively. .e values of α and λ are nonintegers
with the restriction of being positive real numbers.

Discretization methods of continuous-time fractional
operators have been studied widely by many researchers
[45, 46]. .e fundamental principle to discretize a contin-
uous fractional-order operator sα (α ∈R) is to define it by
what is called as the generating function s�ω (z− 1). Ex-
amples of such transformations are Euler, Tustin, and
Simpson transformations. A more recent transformation
formula is found as a weighted interpolation between the
Euler and Tustin [45]. Usually, the aforementioned trans-
formation schemes lead to a nonrational polynomial in z. To
get a rational polynomial, one may find the power series
expansion (PSE) of s�ω (z− 1) and then truncate the z-
polynomial function (in the form of finite impulse response
(FIR) filters) to compute the final approximation..e Tustin
method is applied since it is more accurate compared to
other transforms such as backward and forward difference as
given below:

sα � ω z− 1( )( )α � 2

T

1 − z− 1
1 + z− 1( )α

. (10)

Based on the above analysis, the nonlinear control law
that drives wheels of the DDMR will be derived in detail in
the next sections. Before that, a concise review of DDMR
modeling will be developed.
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4. Kinematic Modeling of
Nonholonomic DDMR

.e position of the DDMR in the world coordinates axis {o, x,
y} is illustrated in Figure 1. .e kinematics model of the
DDMR as shown in the figure consists of a castor wheel in the
head of the cart and two driving wheels attached on one axis
located at the back..emotion and the orientation of DDMR
are achieved via two DC motors which form the actuators of
the right and left wheels. Table 1 lists the parameters that have
been used in the derivation of the DDMR kinematics.

.e motion of the DDMR can be determined by the
linear velocities of the right and left wheels, Vright and Vleft.
.e angular and linear velocities of the DDMR, VA and VLi,
can be described by Vleft(t) and Vright(t) as follows [2]:

VA(t) �
Vleft(t) − Vright(t)

D
, (11)

VLi(t) �
Vleft(t) + Vright(t)

2
. (12)

.e kinematics equation of the DDMR in the world
frame is derived as

_x(t) � VLi(t)cos θ(t), (13)

_y(t) � VLi(t)sin θ(t), (14)

_θ(t) � VA(t). (15)

Substituting (11) and (12) in (13)–(15), and integrating them,
we get the solutions, x(t), y(t), and θ(t). Moreover, consid-
ering a sample interval Δt and a zero-order hold , we get the
discrete representation of x(t), y(t), and θ(t) as follows [38]:

x(k) � 0.5 Vleft(k) + Vright(k)[ ]cos θ(k)Δt + x(k − 1),
(16)

y(k) � 0.5 Vleft(k) + Vright(k)[ ]sin θ(k)Δt + y(k − 1),
(17)

θ(k) � 1

D
Vleft(k) − Vright(k)[ ]Δt + θ(k − 1), (18)

where x(k), y(k), θ(k) are the position components at the
kth step of the motion and Δt is the interval between two
adjacent samples. Equations (16)–(18) are used in the design
of the NNFOPID controller. It should be remembered that
the coordinates of the DDMR given in Figure 1 are in the
global frame (world frame) and can be transformed into the
local coordinate by the rotation matrix given below:

R �
cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 . (19)

.e configuration error signals are acquired by this
matrix to transform the DDMR from local coordinate to the
global one.

Assumption (H1). .e DDMR moves to any location in the
free workplace assuming that the wheels of DDMR are
ideally set up such that they have no slipping with ideal
rolling.

5. The Proposed Swarm-Based Nonlinear
Neural FOPID (NNFOPID) Trajectory
Controller for DDMR

.e two main objectives of DDMR Trajectory controller are
to establish a control strategy that prevents the DDMR from
drifting out of the desired track and keep its movement
smoothly within a minimum error with stability. .e pro-
posed configuration of the DDMR motion control in this
research consists of two main parts as explained in the next
sections.

5.1. Nonlinear Neural FOPID (NNFOPID) Kinematic Tra-
jectory Controller Structure. Figure 2 illustrates the struc-
ture of the NNFOPID-based kinematic trajectory
controller for the DDMR. .e suggested trajectory
tracking control for the DDMR in this work is the
NNFOPID. Mathematically, it can be derived as follows.
Inspired by the work in [47] and starting from (10) and
assuming ω � z− 1, the PSE of the right-hand side of (10) is
given as

y-axis

y

D

m
θ

x

2F

x-axis

yrobot VA

Vright

Vle�

xrobot

VLi

Figure 1: DDMR position representation in the world frame.

Table 1: Parameters of the DDMR model kinematics.

Symbol Definition

m Center point between the two rear wheels of DDMR
D Distance between the DDMR back wheels (m)
r Wheel radius of DDMR (m)
VLi(t) DDMR linear velocity (m/sec)
VA(t) DDMR angular velocity (rad/sec)
Vleft(t) Left wheel linear velocity (m/sec)
Vright(t) Right wheel linear velocity (m/sec)
θ Orientation of the mobile robot from the x-axis
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sα � ω z− 1( )( )α � 2

T

1 − z− 1
1 + z− 1( )α

� 2

T
( )α∑∞

i�0
gi(α)ω

i, |ω|< 1.

(20)
It is mapped inside the unit circle in the z-plane, with

region of convergence (ROC) |z|> 1, i.e.,

sα � 2

T
( )α∑∞

i�0
gi(α)z

− i, |z|> 1. (21)

g(α)’s coefficients are calculated from the following
equation:

gi(α) �
1

i!
· di

dωi
1 − ω

1 + ω
( )α∣∣∣∣∣∣∣∣ω�0. (22)

.e integral term s− λ of (9) can be treated as follows:

s− λ � 1

s
s1− λ. (23)

Applying Tustin transformation of (10) on (23), we get

s− λ � T
2

1 + z− 1( )
1 − z− 1( ) ·

2

T

1 − z− 1
1 + z− 1( )1− λ

� 2

T
( )− λ 1 + z− 1( )

1 − z− 1( ) ·∑
∞

i�0
gi(1 − λ) z− k, |z|> 1,

(24)

where g(1 − λ) can be calculated using (22). Now,
substituting (21) and (24) into (9) yields the general discrete-
type PID controller with a long memory:

C(z) � KP +KD ∑∞
i�0
gi(α) z

− i

+KI

1 + z− 1( )
1 − z− 1( ) ·∑

∞

i�0
gi(1 − λ) z− i,

(25)

where KP � kp, KD � (2/T)αkd, and KI � (2/T)− λki.
.e upper limit in the of the sum in (25) cannot be con-
sidered for practical limitations. So, we calculate the sum up
to L; then,

C(z) � KP +KD∑L
i�0
gi(α)z

− k

+KI

1 + z− 1( )
1 − z− 1( ) ·∑

L

i�0
gi(1 − λ)z− i.

(26)

Multiplying both sides of (26) by (1 − z− 1) and re-
membering that U(z) � C(z) · E(z),

1 − z− 1( )U(z) � 1 − z− 1( )KPE(z) + 1 − z− 1( )KD E(z)

·∑L
i�0
gi(α) z

− k +KI 1 + z− 1( )
· E(z)∑L

i�0
gi(1 − λ) z− k.

(27)
.en, the general difference equation relating e(k) to

U(k) looks like
U(k) � U(k − 1) +KP(e(k) − e(k − 1))

+KD ∑L
i�0
gi(α)(e(k − i) − e(k − i − 1))

+KI ·∑L
i�0
gi(1 − λ) (e(k − i) + e(k − i − 1)).

(28)
Equation (28) describes the control signal for the dis-

crete-time FOPID controller. .en, the suggested feedback
control law of the NNFOPID trajectory tracking controller
for the DDMR is given as

Vleft(k) � U1(k) � Ox(k) + Oy(k) + Vleft(k − 1),

Vright(k) � U2(k) � Oθ(k) + Oy(k) + Vright(k − 1),
(29)

whereVright(k − 1) andVleft(k − 1) are the delayed signals of
the control signals Vright(k) and Vleft(k). .e signals
Ox(k), Oy (k), andOθ(k) correspond to the neural net-
work’s outputs of the hidden layer neurons with the sigmoid
signal as an activation function and are described as

Oδ(k) �
2

1 + e− netδ(k) − 1, (30)

for δ � x, y, and θ, and netδ(k) is given as

netδ(k) � KPδ
eδ(k) − eδ(k − 1)( )

+KDδ
∑L
i�0
gi(α) eδ(k − i) − eδ(k − i − 1)( )

+ KIδ
·∑L
i�0
gi(1 − λ) eδ(k − i) + eδ(k − i − 1)( ),

(31)
for δ � x, y, and θ. Figure 3 portrays the proposed NNFO-
PID controller for the DDMR used in the block diagram of
Figure 2.

.e proposed NN structure is a multilayer perceptron
(MLP) which consists of three layers. .e first layer is the
input layer which sums the error input signals and its past
values. .e second layer is the hidden layer; it consists of
three neurons with nonlinear activation function; they are
there to implement the three FOPID controllers needed for
the x, y, and θ subsystems of the mobile robot. .e

xr (k)

yr (k)

θr (k)

ex (k)

ey (k)

eθ (k)

Vleft (k)

Vright (k)

Vleft (k – 1)

Vright (k – 1)

x (k)

y (k)

θ (k)

–

Rotation
matrix

NNFOPID
controller

MAPSO-EFFO
optimization

Kp KI KD α λ

∆

Figure 2: .e NNFOPID-based trajectory tracking controller for
DDMR.
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connection weights for this hidden layer are the coefficients
of the FOPID controllers, i.e., KPδ

, KIδ
, and KDδ

, and
δ � x, y, and θ. Finally, the third layer is the output layer; it
consists of a single neuron with linear activation function; it
adds up the three outputs of the hidden layer. .e fractional
derivatives are translated into a weighted sum of the past and
current values of the input error signal eδ(k) for δ �
x, y, and θ as indicated by (31). So, the tuning input vector
of the NNFOPID controller consists of eδ(k), eδ(k − 1),
eδ(k − 2), . . . , eδ(k − L − 1), for δ � x, y, and θ. .e activa-
tion function of the output layer in Figure 3 is linear. Its
proposed structure is different from the NN-based FOPID
controllers proposed in [48, 49], where in these works, the
outputs of the neural networks are the parameters of the
FOPID controller themselves, while in the proposed scheme,
the structure of the neural network itself has been used as a

nonlinear fractional-order PID controller where the coef-
ficients of the fractional-order PID controller themselves are
the connection weights of the NN structure, and the output
of the neural networks are the control actions used to drive
the motors of the DDMR. .e NNFOPID neural controller
parameters KD, KI, KP, α, and λ are adjusted using the
proposed MAPSO-EFFO described next.

5.2. Hybridized MAPSO-EFFO-Based Tuning Algorithm.
PSO and FFO algorithms are the metaheuristic procedures
which have been invented in the last decade and are evolving
as common procedures for solving numerical optimization
and industrial case studies. .ey require only function
evaluations (and not the integral or derivative values). .e
next section presents the modified PSO and FFO algorithms,
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Figure 3: .e proposed structure of the NNFOPID controller for DDMR.
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namely, the MAPSO and EFFO and the hybridization be-
tween them to produce a hybridized algorithm with fast
convergence behavior. .is is to overcome the limitations of
the individual PSO and FFO algorithms like premature
convergence, user dependence on setting parameter values,
and exploration ability. In the following section, the indi-
vidual algorithms used in this work are discussed, and then
the hybridization between them is introduced.

5.2.1. Modified Adaptive PSO (MAPSO) Algorithm. In this
work, improvement is added to increase the speed and
efficiency of the algorithm where the optimal solutions are
found by spreading a large amount of population size (from
6M to 10M, where M is the standard population size and
lies between 20 and 30 particles) in the search space. .en,
choosing the best (20–30 particles) from all these pop-
ulations as initial populations, the best particles are the
ones that have the minimum of the following fitness
function:

MSE � 1

Q
∑Q
k�1
(xr(k) − x(k))2 +(yr(k) − y(k))2

+(θr(k) − θ(k))2,

(32)

MSE � 0.5∗ 1

Q
∑Q
k�1
(xr(k) − x(k))2 +(yr(k) − y(k))2

+(θr(k) − θ(k))2 + 0.5∗ U2
1(k) + U

2
2(k)[ ],

(33)

whereQ is the maximum number of samples, k is the current
sample, xr, yr, and θr are reference values, and U1 and U2

are the control signals. Moreover, the social and cognitive
parameters c1 and c2 are considered variable through the
iterative process, in contrast to being constant in the
standard PSO. Figure 4 illustrates this modification. .e
pseudocode for the calculations of the values of the optimal
coefficients of the NNFOPID controller using the MAPSO is
listed in Algorithm 1.

5.2.2. Enhanced Fruit Fly Optimization (EFFO) Algorithm.
.e process of finding food by fruit fly can be explained as
follows. First, fruit flies smell the food location using the
organ osphresis and then fly towards the food source. When
fruit flies become in the neighboring of the food source, they
use the visual sense to locate the food and the next location
for the fruit flies swarm. Finally, it flies towards the food
direction. .e standard FFO has been explained in detail in
the literature [7], and some improvements have been added
in this paper to the standard EFFO as follows:

(a) Assign a range of values as an upper and lower limits
for the initialization of the decision variables.

(b) A dynamic change of the search radius with some
iteration has been proposed for the standard FFO
algorithm to improve its performance and exclude

the drawbacks of the fixed value searching radius (see
Figure 5). .e modification to the standard FFOA is
proposed by adding an inertia weight as follows:

w(i) � wmax − wmin�
i

√ + wmin, (34)

where w is the weight of the inertia used to adjust the radius
of spread and δ � x, y, and θ. .e pseudocode for the cal-
culation of the optimal values of the NNFOPID controller’s
coefficients using the EFFO algorithm is listed in
Algorithm 2.

5.3.HybridizedSwarmOptimizationAlgorithm:#eMAPSO-
EFFO Algorithm. In this paper, a hybridization between
MAPSO and EFFO is proposed. .e first phase utilizes
MAPSO algorithm, where a particle swarm spreads in dif-
ferent orientations and the global best solution is obtained.
.e second phase includes the EFFO for updating the
preceding best locations of the swarm particles. By taking
advantages of the MAPSO and EFFO, the hybridized
MAPSO-EFFO algorithm is illustrated in the following
pseudocode (Algorithm 3).

.e advantage of the proposed hybridized MAPSO-
EFFO algorithm will overcome the limitations of the indi-
vidual particle swarm optimization (PSO) and fruit fly
optimization (FFO) algorithms like premature convergence,
user dependence on setting parameter values, and explo-
ration ability..e salient features of the hybridizedMAPSO-
EFFO algorithm are the simplicity of its structure and ease of
implementation. Knowing that the hybridized MAPSO-
EEFO algorithm does not need the derivative of the cost
function and since the MAPSO and EFFO algorithms will
run sequentially, the proposed hybridized MAPSO-EEFO
algorithm can be parallelized, which results in fast con-
vergence behavior. Finally, the proposed hybridized algo-
rithm will not rely on user experience to find the optimum
values of some parameters like the inertia weights and social
and cognitive coefficients.

6. Simulation Results and Discussion

In this section, the simulation results of applying the
NNFOPID as a kinematic controller to the DDMR given in
(11)–(18) to track a certain trajectory will be presented.

6.1. Simulation Considerations. Various examinations have
been done with the recommended NNFOPID-based kine-
matic controller for the DDMR tuned by the proposed
hybridized MAPSO-EFFO algorithm. .ese examinations
are built on the parameter values of the Eddie DDMRmodel
[50]:D� 0.452m, r� 0.076m, and the sampling time is equal
to 0.5 seconds.

6.2. Parameter Settings for Hybridized MAPSO-EFFO
Algorithm. For simulations, comparisons between the
nonlinear neural PID (NNPID) controller and nonlinear
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neural fractional-order PID (NNFOPID) controller are
made considering the MAPSO-EFFO as a tuning algorithm
for both controllers. .e simulation parameters are the first
population size� 150 particles, the second population

size� 25 particles, c1min � c2min � 0.25, c1max � c2max � 0.85,
wmin � 0.2, wmax � 0.9, the maximum generation size� 25
gen for EFFO, wmin � 0.1, wmax � 0.9, and iteration
number� 100 iteration.

Fitness

Min

Max

(a) (b)

(c)

Figure 4:.e proposed modification of MAPSO algorithm. (a) Standard PSO algorithm. (b) MAPSO. (c) After selecting the best pop. of the
MAPSO.

(1) Initialize the swarm in the range of about (6M–10M) particles.
(2) Choose the best M swarm and randomly assign the initial location and velocities and other related parameters. Randomly assign

the position values of PSO particles with zero velocities and initialize the constants imax, wmax, wmin, c1max, c1min, c2max, c2min. Set
i� 1 and go to the step (3)

(3) For j� 1, 2, . . ., M
Calculate the fitness function of the particle j, i.e., MSE(j) using (32) or (33) to each particle j,
set local best cost� current MSE
Local best position� current position
End

Set global best MSE�min (for all local best MSE)
(4) w(i) � wmax − ((wmax − wmin)/imax)i, c1(i) � c1min + ((c1max − c1min)/imax)i, c2(i) � c2min + ((c2max − c2min)/imax)i

For δ � x, y, θ
For X � KP, KI, KD, α, λ
For j� 1, 2, . . ., M

VXδ,j
(i) � w(i)VXδ,j

(i − 1) + c1(i) · R1[PBestδ,j − Xδ,j(i − 1)] + c2(i) · R2[GBest − Xδ,j(i − 1)] , Xδ,j(i) � Xδ,j(i − 1) + VXδ,j
(i)

Calculate the MSE of (32) or (33)
End

End

End

(5) Set i� i+ 1 and go to step 4 until either iteration i reaches imax or convergence is achieved.

ALGORITHM 1: Tuning of the optimal NNFOPID parameters for DDMR using MAPSO.
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Fitness

Min

Max

(a)

Radius

(b)

(c)

Figure 5: .e proposed enhancement of EFFO algorithm. (a) Initial FFO. (b) Standard FFO. (c) Enhanced FFO (EFFO).

(1) Initialization phase.
Assign random initializations with upper and lower limits and initialize other algorithm parameters.
X axis � (U + (U − L)∗R)∗R
Y axis � (U + (U − L) ∗R)∗R
where X axis is the initial value of the fruit fly position in the x-direction and L and U are the lower and upper limits of
X-position, respectively,R ∈ [0, 1] is a random value, Y axis is the initial value of Y in the y-direction, andL andU are the upper
and lower limits of Y, respectively. Define imax, Smell best � 1. Define the number of fruit flies N, wmax, wmin. Set iteration i� 1.

(2) Osphresis searching process
Every individual searches about food in all directions randomly around the initial locations of the previous step using the osphresis
organ to generate the next population.
For δ � x, y, θ

For L � KP, KI, KD, α, λ,
While i< imax

For j� 1, 2, . . ., N
wLδ,j(i) � (wmax − wmin)/

�
i

√
+ wmin

XLδ,j
(i) � X axis +R∗wLδ,j(i)

YLδ,j(i) � Y axis +R∗wLδ,j(i)
(3) Path construction phase.

DisLδ,j(i) �
�����������������
XLδ,j

(i)2 + YLδ,j(i)
2

√
Lδ,j(i) � 1/DisLδ,j(i)

(4) Fitness calculation phase.
Calculate the fitness function by the following equations, where (32) or (33) are calculated with the updated values of the
NNFOPID parameters Lδ,j(i), i.e.,
SmeδL,j(i) � MSE(Lδ,j(i))

End For

[best_smell, best_index] � min(SmeLδ(i))
where SmeLδ(i) is the vector of the concentration of smell for the fruit fly swarm, best_smell represents the smallest elements,
best_index are its indices along the different dimensions of smell vectors, and min (SmeLδ(i)) is the minimum concentration of
smell in the fly swarm.

ALGORITHM 2: Continued.
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6.3. Trajectory Tracking Results

6.3.1. Study Case 1 (Circular Trajectory).

yd(t) � sin
t

10
( ),

θd(t) �
π

2
+ t

10
.

(35)

.e DDMR starts from the initial posture P (0)� [2.1,
− 0.1, π/2].

.e actual initial posture of theDDMR is Pd (0)� [2, 0, π/2].

.e effectiveness of the proposed NNFOPID and NNPID
controllers is validated in the case of tracking an orbicular
trajectory. .e proposed controllers for the DDMR give an
excellent trajectory tracking based on hybrid MAPSO-EFFO
algorithm as shown in Figure 6. .e results of the simulations
prove the high efficiency of the offered NNFOPID controller
based on hybridMAPSO-EFFO algorithm to yield bounded and
smooth left and rightwheels’ velocities.When both the proposed
NNFOPID and NNPID controllers are tuned using the pro-
posed hybrid MAPSO-EFFO algorithm, the proposed NNFO-
PID controller presents a superior results by eliminating the
overshoots in the wheel's velocities as compared to the NNPID
one, this is evident from Figure 7..e plot in Figure 8 illustrates
the left and right wheels’ velocities of (control action) of DDMR
with orbicular trajectory when 0.5∗MSE+0.5∗ (U12+
U22) performance index is used.

By comparing Figures 7 and 8, the difference between the
two fulfillment indices (MSE and 0.5∗MSE+ 0.5∗
(U1

2+U2
2)) can be found. .e mean velocity of the left

wheel is 0.07729 and 0.07218m/sec and the mean velocity of
the right wheel is 0.1219 and 0.1165m/sec for NNFOPID and
NNPID, respectively. .e maximum right and left wheels’
velocities are 0.1463m/sec and 0.08375m/sec and 0.1983m/
sec and 0.1783m/sec with NNFOPID and NNPID, re-
spectively. Obviously, by adding the control action term in
the performance index, it decreases the velocity amplitude
for both wheels.

Figure 9 shows the convergence of the posture path and
orientation motion MSEs for the DDMRmodel ( ex, ey, eθ)
which in this case are (0.0000732, 0.00017, 0.000349), re-
spectively, for the NNFOPID controller, while the MSE
( ex, ey, eθ) is (0.000226, 0.000371, 0.00019), respectively,
for the NNPID controller.

6.3.2. Study Case 2 (Lemniscates Trajectory). .e required
lemniscates trajectory is drawn using the following
equations:

xd(t) � − 0.5∗ sin
2πt

30
( ),

yd(t) � 0.5∗ sin 2πt

20
( ),

θd(t) � 2 tan− 1
Δyd(t)��������������������

Δxd(t)( )2 + Δyd(tt)( )2√
+ Δxd(t)

 .
(36)

(5) Vision searching process
.e fruit flies keep the best value of smell concentration and will use visionary sense to fly in the direction of that location according
to the subsequent equations,

If best_smell< Smell_best
Smell_best � best_smell
X axis � X [best_index]
Y axis � Y[best_index]

End if

i � i + 1
End while

End For

End For

ALGORITHM 2: Tuning of the optimal NNFOPID parameters for DDMR using EFFO.

(1) Initialize imax

(2) Start MAPSO algorithm and initialize its parameters (Algorithm 1).
(3) Obtain the Gbest position from the MAPSO for each of the NNFOPID controller parameters.
(4) Start EFFO algorithm and calculate the initial parameter values using

X axisLδ,j �
��������������
Gbest position

2/2
√

Y axisLδ,j �
��������������
Gbest position

2/2
√

(5) Follow the steps of the EFFO algorithm (Algorithm 2).
(6) Set i� i+ 1 and go to step 5 until either iteration i reaches imax or convergence is achieved.

ALGORITHM 3: Tuning of the optimal NNFOPID parameters for DDMR using MAPSO-EFFO
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.e DDMR moves from the first posture P (0)� [2.1,
− 0.1, π/2].

.e actual initial posture of the DDMR is Pd (0)� [2, 0,
π/2].

.e efficiency of the NNFOPID controller is verified to
track a lemniscates trajectory. Compared with the same case
study by using an NNPID controller, the DDMR trajectory
tracking obtained by the NNFOPID proposed controllers is
an excellent tracking based on crossbreed MAPSO-EFFO as
shown in Figure 10(a). .e corresponding results using an
NNPID controller are shown in Figure 10(b)..e simulation

results demonstrate the high success of the offered
NNFOPID controllers based on hybrid MAPSO-EFFO al-
gorithm by showing its capability to give bounded and flat
velocities for the left and right wheels. Also, it dismisses all
the unexpected overshoots as compared to NNPID con-
troller with the same optimization algorithm and the same
trajectory (see Figure 11). Figure 12 interprets the conver-
gence of the posture path and orientation MSE for the
DDMR model. .e motion MSE ( ex, ey, eθ) values are
(0.000049, 0.00001732, 0.0000283), respectively, for the
NNFOPID controller, while the MSE ( ex, ey, eθ) values are
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Figure 6: .e desired and actual orbicular trajectory of DDMR. (a) Trajectory tracking with NNFOPID controller and (b) trajectory
tracking with NNPID controller.
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Figure 7: .e left and right wheels’ velocity of DDMR for circular trajectory. (a) Wheels’ velocity with NNPID and (b) wheels’ velocity with
NNFOPID.
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(0.000072, 0.000051, 0.00016), respectively using the NNPID
controller.

6.3.3. Study Case 3 (Line Trajectory). .e following equa-
tions give the required line trajectory:

xd(t) � t∗ 0.1,

yd(t) � t∗ 0.1,

θd(t) �
π

4
.

(37)
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Figure 8:.e left and right wheels’ velocity of DDMR for circular trajectory tracking adopting 0.5∗MSE+ 0.5∗ (U12 +U22) index. (a).e
left and right wheels with NNFOPID and (b) the left and right wheels with NNPID.
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Figure 9:.e error of x and y coordinates and orientation θ of DDMR in orbicular trajectory with (a) NNFOPID controller and (b) NNPID
controller.
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.e DDMR starts from the initial posture P (0)� [0,
− 0.2, π/2].

.e actual initial posture of theDDMR is Pd (0)� [0, 0, π/4].
A graphical comparison between the the proposed

NNFOPID controller with the NNPID one is depicted in
Figure 13 for the line trajectory; evidently, the proposed
NNFOPID controller shows excellent performance in
tracking the desired trajectory compared to the NNPID
controller. Figure 14 illustrates the convergence curve of the
MAPSO, EFFO, and MAPSO-EFFO algorithms for the line
trajectory. As can be seen, the MAPSO-EFFO outperforms
the two other remaining algorithms in terms of time and
MSE. .is is also evident from Tables 2–4, where they
summarize the hybridized MAPSO-EFFO, MAPSO, and
EFFO algorithms, respectively, used to obtain the optimum

controller’s parameters after 100 iterations. .ese tables
show the MSE performance index for the NNPID controller
which is higher than its corresponding index adopted by the
NNFOPID controller in the three simulation case studies.
Table 5 shows the MSE of the error of x and y coordinates
and error of θ orientation for the NNPID and NNFOPID
controllers. Table 6 tabulates the parameters of the
NNFOPID controller for three case studies with the hy-
bridized MAPSO-EFFO tuning algorithm.

6.4. Discussion. .e simulations results and a comparison
analysis between the NNPID and NNFOPID showed that
the NNFOPID is a perfect trajectory tracking kinematic
controller because of its flexibility and capability that stem
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Figure 10: Desired and actual lemniscates trajectory of DDMR: (a) with NNFOPID controller and (b) with NNPID controller.
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Figure 11: .e left and right wheels’ velocity of DDMR for lemniscates trajectory with (a) NNFOPID controller and (b) NNPID controller.
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from the fractional power of the derivative and integral
actions. .e following are the advantages of the NNFOPID
controller over the kinematic NNPID one:

(i) .e ability to reduce the tracking MSEs for the
DDMR model after 100 iterations (MSE is 0.000059
for the circular path, is 0.00073 for line path, and is
0.00009 for lemniscate path) to follow a desired
continuous track.

(ii) Competence of breeding soft and perfect proper
velocity control actions without sharp upswings
(the linear velocity is 0.1m/s, and the angular

velocity is 0.1 rad/s for orbicular path). .e linear
velocity is 0.18m/s, and the angular velocity is
0 rad/s for line path with a linear velocity of 0.04m/
s, and the angular velocity is ±0.3 rad/s for lem-
niscates path.

(iii) .e results of the three case studies’ simulation
elucidate the ability of all searching methods
(MAPSO, EFFO and mixture MAPSO-EFFO) to get
the best parameters for the NNPID and NNFOPID
kinematic controllers in spite of all the difficult
challenges to control the DDMR by three
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Figure 12: .e error of x and y coordinates and orientation θ of DDMR for lemniscates trajectory with (a) NNFOPID controller and (b)
NNPID controller.
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controllers in the same time (one controller for each
of x, y, and θ).

(iv) .e hybrid MAPSO-EFFO presents higher accuracy
to give a minimum MSE, so it better tunes the
control parameters of the NNPID and the
NNFOPID controllers than other algorithms as

noticed by the simulation results (see Tables 2–4).
.e reasons behind this improvement lie in twomain
points: firstly, instead of initializing the controllers’
parameters within a space of particles of size 150, the
MAPSO algorithm starts from a refined particles’
space of sizeM which represents the bestM particles
of the original space. .e second reason is that in the
EFFO algorithm, two significant modifications have
been added to the algorithm to speed up the con-
vergence. .e first modification is the inertia weight;
the main advantage of the inertia weight is to ac-
celerate the convergence rate of the fruit flies. .e
second modification is the initialization of the EFFO
algorithm which starts from the best of the M best
particles that the MAPSO has found and considers as
the initial positions for the fruit flies.

(v) 0.5∗MSE+ 0.5∗ (U1
2+U2

2) yields a less control
energy for the DDMR by eliminating the upswings
and overshoots of the velocity for the left and right
wheels of the DDMR and limiting the values of these
control signals. .is resulted in a significant ad-
vantage in reducing the energy necessary to drive
the mobile robot to the required position. In ad-
dition, it avoids actuator saturation that protects the
drives of the mobile robot from damage.

Table 2: .e MSE for NNPID and NNFOPID controllers with MAPSO-EFFO.

Controller type
MSE

Case 1 Case 2 Case 3

NNPID 0.00079 0.0012 0.00028
NNFOPID 0.000059 0.00073 0.00009

Table 3: MSE for NNPID and NNFOPID controllers with MAPSO.

Controller type
MSE

Case 1 Case 2 Case 3

NNPID 0.00094 0.00134 0.00031
NNFOPID 0.00082 0.00082 0.00016

Table 4: .e MSE for NNPID and NNFOPID controllers with EFFO.

Controller type
MSE

Case 1 Case 2 Case 3

NNPID 0.0008 0.0013 0.0003
NNFOPID 0.00071 0.0008 0.00012

Table 5: .e MSE of the position and orientation using MAPSO-EFFO algorithm.

Controller type
Case studies

Case 1 Case 2 Case 3

NNPID x 0.000226 0.000237 0.000072
y 0.000372 0.00234 0.000051
θ 0.000193 0.000563 0.00016

NNFOPID x 0.0000598 0.000232 0.0000543
y 0.000182 0.0000357 0.00002283
θ 0.000474 0.00053 0.0000433

Table 6: .e control parameters of NNFOPID controller by
MAPSOA-EFFO.

Control parameter Case1 Case2 Case3

KPx 0.7213 0.2770 0.7706
KIx 1.1883 1.4497 8.6215
KDx 1.2108 0.5298 3.81077
λx 0.8284 0.8389 1.1176
αx 1.0864 0.6049 0.0623
KPy 0.1204 − 0.2191 − 1.1972
KIy − 1.581 − 3.6139 0.5654
KDy 0.5246 − 1.3169 − 2.7585
λy 1.3507 0.3169 0.7094
αy 1.3507 0.8025 0.0009
KPθ 0.6078 1.07 − 3.776
KIθ 1.1686 1.0355 − 5.8303
KDθ 0.3714 0.4932 − 1.8916
λθ 0.644 0.8384 1.3287
αθ 1.176 0.6879 0.1969
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7. Conclusions

.is paper presented a novel nonlinear fractional control
structure based on neural networks. Two tuning optimi-
zation algorithms are also introduced in the work, namely,
MAPSO and EFFO. Furthermore, a hybridization between
MAPSO and EFFO algorithms has been proposed to pro-
duce a new algorithm, namely, MAPSO-EFFO algorithm. It
is employed to optimize controllers’ coefficients of the two
proposed neural network-based nonlinear PID controllers.
i.e., NNPID and NNFOPID controllers. A comprehensive
demonstration and assessment between these two control-
lers through simulations on DDMR with different trajec-
tories as study cases showed the effectiveness and robustness
of the suggested NNFOPID controller tuned by MAPSO-
EFFO algorithm, which has excellent trajectory tracking, and
it has the ability to generate soft and satisfactory linear and
angular velocities. It has excellent performance over the
NNPID controller. Moreover, the hybridizedMAPSO-EFFO
results in convergence behavior and enhances the perfor-
mance of the individual algorithms. It has better perfor-
mance than the individual MAPSO and EFFO algorithms in
tuning the parameters of the NNPID and NNFOPID con-
trollers and avoids the premature convergence of the
original MAPSO and EFFO algorithms.
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