
Journal of Mathematical Imaging and Vision (2018) 60:1261–1283

https://doi.org/10.1007/s10851-018-0811-3

A Novel Diffeomorphic Model for Image Registration and Its Algorithm

Daoping Zhang1 · Ke Chen1

Received: 22 March 2017 / Accepted: 29 March 2018 / Published online: 10 April 2018

© The Author(s) 2018

Abstract

In this work, we investigate image registration by mapping one image to another in a variational framework and focus on

both model robustness and solver efficiency. We first propose a new variational model with a special regularizer, based on

the quasi-conformal theory, which can guarantee that the registration map is diffeomorphic. It is well known that when

the deformation is large, many variational models including the popular diffusion model cannot ensure diffeomorphism.

One common observation is that the fidelity error appears small while the obtained transform is incorrect by way of mesh

folding. However, direct reformulation from the Beltrami framework does not lead to effective models; our new regularizer is

constructed based on this framework and added to the diffusion model to get a new model, which can achieve diffeomorphism.

However, the idea is applicable to a wide class of models. We then propose an iterative method to solve the resulting nonlinear

optimization problem and prove the convergence of the method. Numerical experiments can demonstrate that the new model

can not only get a diffeomorphic registration even when the deformation is large, but also possess the accuracy in comparing

with the currently best models.
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1 Introduction

Image registration is to find a transformation to map the cor-

responding image data, which are taken at different times,

from different sensors, or from different viewpoints, for the

purpose of telling the difference or merging information.

Nowadays, image registration is widely used in many areas,

such as computer vision, biological imaging, remote sensing

and medical imaging [6,21,26,32,36,38,40,47,57].
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In reality, according to the specific application, image reg-

istration can be classified into two categories: mono-modal

registration and multi-modal registration. For multi-modal

registration, finding a suitable distance measure is the most

essential step [22,35,36,47,57]. The idea of this paper will

be applicable to multi-modal registration framework, but we

focus on the mono-modal registration in this work.

In dealing with the mono-modal registration, there are

many choices of a data fidelity term [33] and a common

approach for computing this transformation is to use the

sum of squared differences (SSD) to measure the difference

between the reference image R and the deformed template

image T [11]. However, minimization of SSD alone in image

registration is an ill-posed problem in the sense of Hadamard

since it may have many solutions. In order to overcome this

difficulty, regularization is indispensable [38,52]. However,

the choice of the regularization term, which needs some prior

information about physical properties and helps to avoid the

local minima, depends on the specific application.

All registration models are nonlinear but they can be

classified into two main categories according to the way

deformation mapping is represented: linear registration and

nonlinear registration. In linear registration, the deformation
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model is linear and global, including rotation, translation,

shearing and scaling [11,38]. Although the computation

speed of a linear model is fast since it contains few vari-

ables, it is commonly used as the pre-registration for starting

a more sophisticated model. This is mainly because linear

models can not accommodate the local details (differences).

In contrast, nonlinear registration models inspired by phys-

ical processes of transformations [47] such as the elastic

model [5], fluid model [9], diffusion model [16], TV (total

variation) model [19], MTV (modified TV) model [12], linear

curvature model [17,18], mean curvature model [14], Gaus-

sian curvature model [27] and total fractional-order variation

model [56] are proposed to account for localized variation in

details, by allowing many degrees of freedom. The particu-

lar free-form deformation models based on B-splines lying

between the above two types possess simplicity, smoothness,

efficiency and ability to describe local deformation with few

degrees of freedom [44,45,47]. For relatively small deforma-

tion, all models can be effective, but for large deformation,

not all models are effective and in particular few models can

guarantee a one-to-one mapping unless one fine tunes the

coupling parameters to reduce the deformation magnitude

allowed (since the mapping quality is perfect if deformation

is zero) which in turn loses the ability of modelling large

deformation.

Over the last decade, more and more researchers have

focused on diffeomorphic image registration where folding

measured by the local invertibility quantity det(Jy) is reduced

or avoided. Here, y denotes the transformation in the regis-

tration model and det(Jy) is the Jacobian determinant of y.

Under desired assumptions, obtaining a one-to-one mapping

is a natural choice as reviewed in [47].

In 2004, Haber and Modersitzki [23] proposed an image

registration model imposing volume preserving constraints,

by ensuring det(Jy) is close to 1. Although volume preser-

vation is very important in some applications where some

underlying (e.g. anatomical) structure is known to be incom-

pressible [47], it is not required or reasonable in others. In

a later work, the same authors [25] relaxed the constraint

to allow det(Jy) to lie in a specific interval. Yanovsky et

al. [55] applied the symmetric Kullback–Leibler distance to

quantify det(Jy) to achieve a diffeomorphic mapping. Burger

et al. [7] designed a volume penalty term that ensured that

shrinkage and growth had the same cost in their variational

functional. The constrained hierarchical parametric approach

[41] ensures that the mapping is globally one-to-one and

thus preserves topology in the deformed image. Sdika [46]

introduced a regularizer to penalize the non-invertible trans-

formation. In [51], Vercauteren et al. proposed an efficient

non-parametric diffeomorphic image registration algorithm

based on Thirion’s demons algorithm [49]. In addition, a

framework called large deformation diffeomorphic metric

mapping (LDDMM) can generate the diffeomorphic trans-

formation for image registration [3,15,37,50]. An entirely

different framework proposed by Lam and Lui [30] obtains

diffeomorphic registrations by constraining Beltrami coeffi-

cients of a quasi-conformal map f = y1(x)+ i y2(x), instead

of controlling the map y(x) directly.

In this paper, we aim to reformulate the Lam and Lui Bel-

trami measure as a direct regularizer for controlling det(Jy)

and to assess the effectiveness of the resulting variational

models; though the idea applies to any commonly used mod-

els, we apply it to the diffusion model as one simple example.

Our contributions are twofold:

• We propose a new Beltrami coefficient-based regular-

izer that is explicitly expressed in terms of det(Jy). This

establishes a link between the Beltrami coefficient of the

transformation and the quantity det(Jy).

• An effective, iterative scheme is presented and numerical

experimental results show that the new registration model

has a good performance and produces a diffeomorphic

mapping while remaining competitive to the state-of-the-

art models from non-Beltrami frameworks.

We remark that several interesting works that are concerned

with reversible transformations (such as [8,54]) may also

benefit from this study.

The rest of the paper is organized as follows. Section 2

briefly reviews the basic mathematical formulation of image

registration modelling, several typical regularization terms

and how to get a diffeomorphic transformation for image

registration. In Sect. 3, we propose a new regularizer and

a new registration model. The effective discretization and

numerical scheme are discussed in Sect. 4. Numerical exper-

iment results are shown in Sect. 5, and finally a summary is

concluded in Sect. 6.

2 Preliminaries, Regularization and
Diffeomorphic Transformation

In general, image registration aims to compare, in space R
d ,

two or more images or image sequences in a video. In this

work, we consider the case of a pair of images T , R : � ⊂

R
d → R and d = 2. Here by convention, R is the Reference

image and T is the (moving) Template image.

The aim of image registration is to find a transformation

y(x) such that

T ◦ y(x) = T (y(x)) ≈ R,

where x = (x1, x2) and y(x) = (y1(x), y2(x)). That is, the

transformation y(x) moves T to match R. If we define y(x) =

x + u(x), then u(x) = (u1(x), u2(x)) indicates how much T

moves, i.e. u(x) is the displacement. Thus, the determination
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of the transformation y(x) is equivalent to the determination

of the displacement field u(x).

2.1 Data Fidelity

One way to ensure that T (y) can approximate R is to mini-

mize the difference T (y) − R. A commonly used difference

measure is the sum of squared differences (SSD) defined by

D[y] =
1

2

∫

�

(T (y) − R)2dx

=
1

2
‖T (y) − R‖2

=
1

2
‖T (x + u) − R‖2 = D[u] (1)

where ‖·‖2 denotes the squared L2-norm. Of course, there are

some other typical distance measures, including normalized

cross-correlation [38], mutual information [35,38], normal-

ized gradient fields [24,39] and mass-preserving measure [7].

2.2 Regularization

Minimizing any of the above-mentioned measures is inef-

ficient to obtain a unique transformation y for image reg-

istration, because min D[y] is ill-posed [38,39]. In order to

overcome this problem, regularization is necessary. Combin-

ing distance measure and regularization gives the variational

model for image registration:

min
u

J (u) = D[u] + αS[u], (2)

where D[u] is the distance measure from (1), S[u] is the

regularizer to be discussed and α is a positive parameter to

balance these two terms.

There exist many regularizers and we can classify them

into three categories:

• First-order regularizers involving |∇u| or |∇ · u|. The

diffusion regularizer [16] and the TV regularizer [19] are

well-known first-order regularizers. The former one aims

to control smoothness of the displacement and the latter

one can preserve the discontinuity.

• Fractional-order regularizer ∇αu with α ∈ (1, 2). In [56],

a fractional-order regularizer is used for image registra-

tion. Because the fractional-order regularizer is a global

regularizer, its implementation must explore the struc-

tured Toeplitz matrices. This regularizer can not only

produce accurate and smooth solutions but also allow

for a large rigid alignment [56].

• Second-order regularizers involving∇2u or∇·(∇u/|∇u|).

These include the linear curvature regularizer [17,18],

mean curvature regularizer [14] and Gaussian curvature

regularizer [27].

The first two categories of models require an affine linear

transformation in an initial pre-registration step while the

latter category does not need a linear transformation in pre-

registration.

Differing from the above three categories, an impor-

tant class of fluid-like models based on partial differential

equations was developed to capture large deformations.

Christensen et al. [10] proposed an effective viscous fluid

model characterized by a spatial smoothing of the velocity

field. For the viscous fluid model, the deformation is gov-

erned by the Navier–Stokes equation:

η∇2v + (η + λ)∇(∇ · v) + F = 0, v = ∂t u + v · ∇u. (3)

Here, η and λ are the viscosity coefficients, the term ∇2v con-

strains the velocity field to vary smoothly, the term ∇(∇ · v)

allows structures in the template to change in mass and F is

the nonlinear deformation force field, which can be defined

by (T (x + u) − R)∇T . The velocity field v is initialized as

0 in implementation. In [10], the condition | det(Jy)| ≥ 0.5

is checked at each iteration and if not satisfied, restarting the

numerical solver is initiated so that a diffeomorphic trans-

form is obtained; see also [38]. Further in [55], the model

is enhanced by incorporating a volume preservation idea

relating to minimizing | det(Jy) − 1| again to ensure diffeo-

morphism without restarting.

Next, we review the Diffusion model [16]

min
u

J (u) = D[u] + αS[u]

=
1

2

∫

�

(T (x + u) − R)2dx

+
α

2

∫

�

2
∑

ℓ=1

|∇uℓ|
2dx. (4)

It leads to the Euler–Lagrange equation:

(T (x+u) − R)∇uT (x+u) − α�u = 0

i.e.
(T (x+u) − R)∂u1 T (x+u) − α�u1 = 0,

(T (x+u) − R)∂u2 T (x+u) − α�u2 = 0,

subject to 〈∇uℓ, n〉 = 0 on ∂� and ℓ = 1, 2. Particularly,

there exits a fast implementation based on the so-called addi-

tive operator splitting (AOS) scheme [38,53]. In [13], a fast

solver was developed for this model.

However, as with other models reviewed in the three cate-

gories, the obtained solution u or y is mathematically correct

but often incorrect physically. This is due to no guarantee of

mesh non-folding which is measured by det(Jy) > 0, i.e. a
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positive determinant of the local Jacobian matrix Jy of the

transform y.

2.3 Models of Diffeomorphic Transformation

To achieve det(Jy) > 0, one can find several recent works

that impose this constraint in some direct ways. We review a

few of such models before we present our new constraint. In

the form of (4), the idea is to choose S1[·] in the following

(note y = x + u)

min
u

J (u) = D[u] + αS[u] + βS1[y]. (5)

2.3.1 Volume Control

In 2004, Haber and Modersitzki [23] used volume preserving

constraint (area in 2D) for image registration, namely

det(Jy) = 1.

As a consequence, we can ensure that the transforma-

tion is diffeomorphic. However, volume preservation is not

desirable when the anatomical structure is compressible in

medical imaging.

2.3.2 Slack Constraint

Improving on [25], the constraint det(Jy) = 1 is relaxed and

a slack constraint is proposed

Ma ≤ det(Jy) ≤ Mb,

where a positive interval [Ma, Mb] is provided by the user as

prior information in the specific application e.g. [Ma, Mb] =

[0.1, 2].

2.3.3 Unbiased Transform

In [55], according to the information theory, det(Jy) is con-

trolled by the symmetric Kullback–Leibler distance

∫

�

| det(Jy) − 1| log(| det(Jy)|)dx.

It can help to get an unbiased diffeomorphic transformation.

This idea was tested with the fluid regularizer (first order).

2.3.4 Balance of Shrinkage and Growth

Geometrically det(Jy) = 1 implies volume preservation.

Similarly det(Jy) < 1 implies shrinkage while det(Jy) > 1

implies growth. A function that treats the cases of shrink-

age and growth identically is φ(x) = ((x − 1)2/x)2 since

φ(1/x) = φ(x). A volume penalty

∫

�

(

(det(Jy) − 1)2

det(Jy)

)2

dx (6)

is used in the hyperelastic model [7], which ensures that

shrinkage and growth have the same price.

2.3.5 LDDMM Framework

In LDDMM framework, the deformation is modelled by con-

sidering its velocity over time according to the transport

equation. We can write its variational formulation as follows:

min
T ,v

D(T (·, 1), R) + αS(v)

s.t. ∂tT (x, t) + v(x, t) · ∇T (x, t) = 0 and T (x, 0) = T ,

where v : � × [0, 1] → R
2 is the velocity and T : � ×

[0, 1] → R is a series of images. For more details, please see

[3,15,37,47,50]

2.3.6 Beltrami Indirect Control

In 2014, Lam and Lui [30] presented a novel approach in

a Beltrami framework to obtain diffeomorphic registrations

with large deformations using landmark and intensity infor-

mation via quasi-conformal maps. Before introducing this

model, we first describe some basic theories about quasi-

conformal map and Beltrami coefficient.

A complex map z = x1 + ix2 −→ f (z) = y1(x1, x2) +

iy2(x1, x2) from a domain in C onto another domain is quasi-

conformal if it has continuous partial derivatives and satisfies

the following Beltrami equation:

∂ f

∂ z̄
= μ( f )

∂ f

∂z
, (7)

for some complex-valued Lebesgue measurable μ [4] satis-

fying ‖μ‖∞ < 1. Here μ = μ(y) ≡ f z̄/ fz is called the

Beltrami coefficient explicitly computable from y since

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

fz =
∂ f

∂z
≡

1

2

(

∂ f

∂x1
− i

∂ f

∂x2

)

=
(y1)x1 + (y2)x2

2
+ i

(y2)x1 − (y1)x2

2
,

f z̄ =
∂ f

∂ z̄
≡

1

2

(

∂ f

∂x1
+ i

∂ f

∂x2

)

=
(y1)x1 − (y2)x2

2
+ i

(y2)x1 + (y1)x2

2
,

(8)

where (y1)x1 = ∂ y1/∂x1. Conversely y = yμ can be com-

puted for a given μ through solving μ(y) = μ.

A quasi-conformal map is a homeomorphism (i.e. one-to-

one) and its first-order approximation takes small circles to

small ellipses of bounded eccentricity [20]. As a special case,

μ = 0 means that the map f is holomorphic and conformal,

characterized by f z̄ = 0 or y1, y2 satisfying the Cauchy–

Riemann equations (y1)x1 = (y2)x2 , (y1)x2 = −(y2)x1 .
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Thus in the context of image registration, enforcing

‖μ‖∞ < 1 provides the control for the transform f and

ensures homeomorphism. The quasi-conformal hybrid reg-

istration model (QCHR) in [30] is

min
y

∫

�

|∇μ|2 + α

∫

�

|μ|p + β

∫

�

(T (y) − R)2 (9)

subject to y = (y1, y2) satisfying

(1) μ = μ(y);

(2) y(p j ) = q j for 1 ≤ j ≤ m (Landmark constraints);

(3) ‖μ(y)‖∞ < 1 (bijectivity),

which indirectly controls det(Jy) via Beltrami coefficient,

where μ(y) is the Beltrami coefficient of the transformation

y. The above model is solved by a penalty splitting method.

It minimizes the following functional:

∫

�

|∇ν|2 + α

∫

�

|ν|p + σ

∫

�

|ν − μ|2

+β

∫

�

(T (yμ) − R)2 (10)

subject to the constraints that ‖ν‖∞ < 1 and yμ be the

quasi-conformal map with Beltrami coefficient μ satisfying

yμ(p j ) = q j for 1 ≤ j ≤ m. Then in each iteration, it needs

to solve the following two subproblems alternately:

μn+1 = arg min σ

∫

�

|μ − νn|2 + β

∫

�

(T (yμ) − R)2

s.t. yμ(p j ) = q j for 1 ≤ j ≤ m

(11)

and

νn+1 = arg min

∫

�

|∇ν|2

+α

∫

�

|ν|p + σ

∫

�

|ν − μn+1|
2. (12)

In addition, it also solves the equation μ(y) = μ by the

linear Beltrami solver (LBS) [34] to find y and ensures that

y matches the landmark constraints.

Thus, instead of controlling the Jacobian determinant of

the transformation directly, controlling Beltrami coefficient

is also a good alternative providing the same but indirect con-

trol. However, since their algorithm [30] has to deal with two

main unknowns (the transformation y and its Beltrami coef-

ficient μ) and one auxiliary unknown (the coefficient ν) in a

non-convex formulation, the increased cost, practical imple-

mentation and convergence are real issues; for challenging

problems, one cannot observe convergence and therefore the

full capability of the model is not realized.

We are motivated to reduce the unknowns and simplify

their algorithm. Our solution is to reformulate the problem

in the space of the primary variable y or u, not in the trans-

formed space of variables μ, ν. We make use of the explicit

formula of μ = μ(y). Working with primal mapping y

enables us to introduce the advantages of minimizing a Bel-

trami coefficient to the above reviewed variational framework

(2), effectively unifying the two frameworks.

Hence, we propose a new regularizer-based Beltrami coef-

ficient and, in the numerical part, we can find that it is easy to

be implemented. Moreover, the reformulated control regular-

izer can potentially be applied to a large class of variational

models.

3 The Proposed Image RegistrationModel

In this section, we aim to present a new regularizer based on

Beltrami coefficient, which can help to get a diffeomorphic

transformation. Then combining the new regularizer with the

diffusion model, we present a novel model. Of course, com-

bining with other models may be studied as well since the

idea is the same.

For f (z) = y1(x1, x2) + iy2(x1, x2), according to the

Beltrami equation (7) and the definitions (8), we have

μ( f ) =
∂ f

∂ z̄

/∂ f

∂z

=
((y1)x1 − (y2)x2) + i((y2)x1 + (y1)x2)

((y1)x1 + (y2)x2) + i((y2)x1 − (y1)x2)
, (13)

|μ( f )|2 =
((y1)x1 − (y2)x2)

2 + ((y2)x1 + (y1)x2)
2

((y1)x1 + (y2)x2)
2 + ((y2)x1 − (y1)x2)

2

=
‖J f ‖

2
2 − 2 det(J f )

‖J f ‖
2
2 + 2 det(J f )

. (14)

Note (y1)x1(y2)x2 − (y2)x1(y1)x2 = det(J f ). So det(J f ) can

be represented by the Beltrami coefficient μ( f )

det(J f ) = | fz |
2(1 − |μ( f )|2) (15)

Clearly det(∇ f ) > 0 if |μ( f )| < 1, and by the inverse

function theorem, the map f is locally bijective. We conclude

that f is diffeomorphism if we assume that � is bounded,

simply connected.

For more details about quasi-conformal theory, the readers

can refer to [1,20,31].
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3.1 New Regularizer

Our new regularizer based on |μ( f )| < 1 to control the

transformation to get a diffeomorphic mapping is

S1[y] =

∫

�

φ(|μ|2)dx, |μ|2 =
‖Jy‖

2
2 − 2 det(Jy)

‖Jy‖
2
2 + 2 det(Jy)

(16)

which clearly involves the Jacobian determinant det(Jy) in a

non-trivial way and we explore the choices of φ below.

Remark Our new regularizer has two advantages: one is

that the obtained transformation y do not need to possess

det(Jy) → 1; the other one is that we only compute the

transformation and do not need to compute its Beltrami coef-

ficient and introduce another auxiliary unknown as [30]. In

addition, from the numerical experiments, we can see that

our new regularizer is easy to implement and obtain accurate

and diffeomorphic transformations.

3.2 The ProposedModel

The above regularizer (16) providing a constraint on y is

ready to be combined with an existing model. In the frame-

work (5), using (16), the first version of our new model takes

the form

min
y

1

2
‖T (y) − R‖2

2 +
α

2
‖ |∇u| ‖2

2 + β

∫

�

φ(|μ|2)dx (17)

where u = y(x)− x = (y1(x), y2(x))− x is the deformation

field, |∇u|2 = |∇u1|
2 + |∇u2|

2 and μ = μ(y). To promote

|μ( f )| < 1, our first and simple choice is φ(v) = φ1(v) =
1

(v−1)2 , which forces (17) and φ(v) to reduce v, at the initial

guess v = 0 when u=0, since φ1(v) → ∞ when v → 1.

Remark From (9) and (17), we see that the QCHR model

focuses on obtaining a smooth Beltrami coefficient and our

model focuses on the diffeomorphic transformation itself.

There are major differences between the regularizer in QCHR

model and our new regularizer: the former is characterized

by the Beltrami coefficient μ directly and gradient of this

Beltrami coefficient μ, while the latter is characterized by the

Beltrami coefficient indirectly in terms of the transformation

y and the gradient of u. Since y = x + u is our desired

transformation, our direct regularizers such as |∇u|2 make

more sense than indirect regularizers such as |∇μ|2.

However, as long as |μ( f )| < 1, we would not give a

preference to forcing |μ( f )| → 0. To put some control on

bias, similarly to [7], we are led to 2 more choices of a less

unbiased function to modify S1[y]

• φ(v) = φ2(v) = v

(v−1)2 : balance |μ( f )| between 0 and

1 as φ2(v) = φ2(1/v);

• φ(v) = φ3(v) = v2

(v−1)2 : encourage |μ( f )| → 0 and

|μ( f )| �= 1;

Below, we list first-order derivatives and second-order

derivatives for the above different φ(v):

• φ′
1(v) = 2

(v−1)3 and φ′′
1 (v) = 6

(v−1)4 ;

• φ′
2(v) = − v+1

(v−1)2 and φ′′
2 (v) = 2v+4

(v−1)4 ;

• φ′
3(v) = − 2v

(v−1)3 and φ′′
3 (v) = 4v+2

(v−1)4

which will be used in subsequent solutions. With a general

φ(v), the second version of our proposed model takes the

form:

min
u

1

2

∫

�

(T (x+u) − R)2dx

+
α

2

∫

�

2
∑

ℓ=1

|∇uℓ|
2dx + β

∫

�

φ(|μ|2)dx, (18)

where |μ|2 =
(∂x1

u1−∂x2
u2)

2+(∂x1
u2+∂x2

u1)
2

(∂x1
u1+∂x2

u2+2)2+(∂x1
u2−∂x2

u1)
2 is written in

component form ready for discretization, using y1 = x1 +

u1(x1, x2), y2 = x2 + u2(x1, x2), and ∂x1 u1 = ∂u1/∂x1.

Remark For the existence or uniqueness of a solution of (18),

this is out of the scope of the present work and will be con-

sidered in our forthcoming work.

4 The Numerical Algorithm

In this section, we will present a numerical algorithm to solve

model (18). We choose the discretize—optimize approach.

Directly discretizing this variational model gives rise to a

finite-dimensional optimization problem. Then we use opti-

mization methods to solve this resulting problem.

4.1 Discretization

We use finite differences to discretize model (18) on a unit

square domain � = [0, 1]2. In implementation, we employ

the nodal grid and define a spatial partition �h = {xi, j ∈

� | xi, j = (x i
1, x

j
2 ) = (ih, jh), 0 ≤ i ≤ n, 0 ≤ j ≤ n},

where h = 1
n

and the discrete domain consists of n2 cells of

size h×h. We discretize the displacement field u on the nodal

grid, namely ui, j = (u
i, j
1 , u

i, j
2 ) = (u1(x i

1, x
j
2 ), u2(x i

1, x
j
2 )).

For ease presentation, according to the lexicographical order-

ing, we reshape

X =
(

x0
1 , . . . , xn

1 , . . . , x0
1 , . . . , xn

1 , x0
2 , . . . , x0

2 , . . . , xn
2 , . . . , xn

2

)T

∈ R
2(n+1)2×1,
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and

U =
(

u
0,0
1 , . . . , u

n,0
1 , . . . , u

0,n
1 , . . . , u

n,n
1 , u

0,0
2 , . . . , u

n,0
2 , . . . , u

0,n
2 , . . . , u

n,n
2

)T

∈ R
2(n+1)2×1.

4.1.1 Discretization of Term 1 in (18)

According to the cell-centred partition in Fig. 1a and mid-

point rule, we get

D[u] : =
1

2

∫

�

(T (x + u(x)) − R(x))2dx

=
h2

2

n−1
∑

i=0

n−1
∑

j=0

(T (xi+ 1
2 , j+ 1

2

+ u(xi+ 1
2 , j+ 1

2 )) − R(xi+ 1
2 , j+ 1

2 ))2.

(19)

Set �R = R(P X) ∈ R
n2×1 as the discretized refer-

ence image and �T (P X + PU ) ∈ R
n2×1 as the discretized

deformed template image, where P ∈ R
2n2×2(n+1)2

is an

averaging matrix for the transfer from the nodal grid repre-

sentation of U to the cell-centred positions.

Consequently, for SSD, we obtain the following dis-

cretization:

D[u] ≈
h2

2
( �T (P X + PU ) − �R)T ( �T (P X + PU ) − �R).

(20)

4.1.2 Discretization of Term 2 in (18)

For the diffusion regularizer,

Sdiff [u] :=
α

2

∫

�

2
∑

ℓ=1

|∇uℓ|
2dx, (21)

according to the partition in Fig. 1b and mid-point rule, we

have

∫

�
x1
i, j

|∂x1uℓ|
2dx ≈ h2(∂

i+ 1
2 , j

x1
uℓ)

2 1 ≤ j ≤ n − 1, (22)

or at the boundary half-boxes

∫

�
x1
i, j

|∂x1uℓ|
2dx ≈

h2

2
(∂

i+ 1
2 , j

x1
uℓ)

2 j = 0, n. (23)

And for
∫

�
x2
i, j

|∂x2 uℓ|
2dx, ℓ = 1, 2, we have similar results.

As designed, we use compact (short) difference schemes

to compute the ∂x1uℓ and ∂x2 uℓ, ℓ = 1, 2:

∂
i+ 1

2 , j
x1

uℓ ≈
u

i+1, j

ℓ − u
i, j

ℓ

h
,

∂
i, j+ 1

2
x2

uℓ ≈
u

i, j+1
ℓ − u

i, j

ℓ

h
. (24)

Then (21) can be rewritten in the following formulation:

Sdiff [u] ≈
αh2

2
U T AT G AU . (25)

See “Appendix A” for details on A and G.

Remark Note that here the matrix A is the discretized gradi-

ent matrix. So AT G A is the discretized Laplace matrix.

4.1.3 Discretization of Term 3 in (18)

For simplicity, denote |μ(y)| = |μ(x + u)| by |μ(u)|. From

(18), note that φ(|μ(u)|2) involves only first-order deriva-

tives and all ui, j are available at vertex pixels. Thus it is

convenient first to obtain approximations at all cell centres

(e.g. at V5 in Fig. 2) and second to use local linear elements

to facilitate first-order derivatives. We shall divide each cell

(Fig. 2) into 4 triangles. In each triangle, we construct two

linear interpolation functions to approximate the u1 and u2.

Consequently, all partial derivatives are locally constants or

φ(|μ(u)|2) is constant in each triangle.

According to the partition in Fig. 2, we get

SBeltrami[u] : = β

∫

�

φ(|μ(u)|2)dx

= β

n
∑

i=1

n
∑

j=1

4
∑

k=1

∫

�i, j,k

φ(|μ(u)|)2)dx. (26)

Set Li, j,k(x) = (L
i, j,k
1 (x), L

i, j,k
2 (x)) = (a

i, j,k
1 x1 +

a
i, j,k
2 x2 + a

i, j,k
3 , a

i, j,k
4 x1 + a

i, j,k

5 x2 + a
i, j,k
6 ), which is the

linear interpolation for u in the �i, j,k . Note that ∂x1 L
i, j,k
1 =

a
i, j,k
1 , ∂x2 L

i, j,k
1 = a

i, j,k
2 , ∂x1 L

i, j,k
2 = a

i, j,k
4 and ∂x2 L

i, j,k
2 =

a
i, j,k

5 . According to (18), the discretization of Beltrami reg-

ularizer can be written into following:

SBeltrami[u] ≈
βh2

4

n
∑

i=1

n
∑

j=1

4
∑

k=1

φ

⎛

⎜

⎝

(

a
i, j,k
1 − a

i, j,k

5

)2
+
(

a
i, j,k
2 + a

i, j,k
4

)2

(

a
i, j,k
1 + a

i, j,k

5 + 2
)2

+
(

a
i, j,k
2 − a

i, j,k
4

)2

⎞

⎟

⎠
. (27)

To simplify (27), define 3 vectors �r(U ), �r1(U ), �r2(U )∈ R
4n2

by �r(U )ℓ = �r1(U )ℓ�r
2(U )ℓ, �r1(U )ℓ = (a

i, j,k
1 − a

i, j,k

5 )2 +

(a
i, j,k
2 + a

i, j,k
4 )2, �r2(U )ℓ = 1

/

[(a
i, j,k
1 + a

i, j,k

5 + 2)2 +

(a
i, j,k
2 − a

i, j,k
4 )2] where ℓ = (k − 1)n2 + ( j − 1)n + i ∈
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i+1,j+1i,j+1

j,1+ij,i

i+0.5,j+0.5

i-1,j i-0.5,j i,j i+1,j

i+1,j+1

i+1,j+0.5

(a) (b)

Fig. 1 Partition of domain � = ∪i j �i, j . Note that solutions u1 and u2 are defined at nodes. a Illustration of cell-centred partition: Green cell

denoted by �i, j . Nodal Grid �, b partition for ∂x and ∂y . The left yellow cell is �
x1

i, j and the right green cell is �
x2

i, j (Color figure online)

[1, 4n2]. Hence, (27) becomes

SBeltrami[u] ≈
βh2

4
φ(�r(U ))eT (28)

where φ(�r(U )) = (φ(�r(U )1), . . . , φ(�r(U )4n2)) denotes the

pixel-wise discretization of u1, u2 at all cell centres, and

e = (1, . . . , 1) ∈ R
4n2

. Here, �r(U ) is the square of the

discretized Beltrami coefficient; we rewrite it in a compact

form in “Appendix B”.
Finally, combining the above three parts (20), (25) and

(28), we get the discretization formulation for model (18):

min
U

J (U ) :=
h2

2
( �T (P X + PU ) − �R)T ( �T (P X + PU ) − �R)

+
αh2

2
U T AT G AU +

βh2

4
φ(�r(U ))eT .

(29)

Remark According to the definition of φ and �r(U )ℓ ≥ 0,

each component of φ(�r(U )) is nonnegative and differen-

tiable.

4.2 Optimization Method for the Discretized
Problem (29)

In the numerical implementation, we choose line search

method to solve the resulting unconstrained optimization

problem (29). In order to guarantee the search direction is a

descent direction, we employ the Gauss–Newton direction as

the standard direction involving non-definite Hessians does

V5

V1 V2

V3 V4

Fig. 2 Partition of a cell, nodal point � and centre point ◦. △V1V2V5

is �i, j,k

not generate a descent direction. Otherwise, using a Gauss–

Newton approach presents two advantages: one is that we do

not need to compute the second-order term and it can save

computation time; the other one is that this Gauss–Newton

matrix is more important than the second term, either because

of small second-order derivatives or because of small resid-

uals [42].

Let J (U ) : R
2(n+1)2

→ R be twice continuously differen-

tiable, U i ∈ R
2(n+1)2

and the approximated Hessian H(U i )

positive definite. We model J at the current point U i by the

quadratic approximation q i (s),
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J (U i + s) ≈ q i (s) = J (U i ) + dJ (U i )T s

+
1

2
sT H(U i )T s, (30)

where s = U − U i and dJ (U i ) = ∇ J (U i ). Minimizing

q i (s) yields

U i+1 = U i − [H(U i )]−1dJ (U i ). (31)

In order to guarantee the global convergence of the Gauss–

Newton method, we employ the line search and its iteration

is as follows:

U i+1 = U i − θi [H(U i )]−1dJ (U i ). (32)

where θi is a step length.

Next, we will investigate the details about the approxi-

mated Hessian H(U i ), step length θi , stopping criteria and

multilevel strategy.

4.2.1 Approximated Hessian H

We consider each of the three terms in J (U ) from (29) sep-

arately.

Firstly, we consider the discretized SSD

h2

2
( �T (P X + PU ) − �R)T ( �T (P X + PU ) − �R). (33)

Its gradient and Hessian are, respectively,

{

d1 = h2 PT �T T

Ũ
( �T (Ũ) − �R) ∈ R

2(n+1)2×1,

H1 = h2 PT ( �T T

Ũ
�T
Ũ

+
∑n2

ℓ=1(
�T (Ũ) − �R)ℓ∇

2( �T (Ũ) − �R)ℓ)P
(34)

where Ũ = P X + PU and �T
Ũ

= ∂ �T (Ũ)

∂Ũ
as the Jacobian of �T

with respect to Ũ.

For H1, we cannot ensure that it is positive semi-definite.

If it is not positive definite, we may not get a descent direc-

tion. So we omit the second-order term of H1 to obtain the

approximated Hessian of (33):

Ĥ1 = h2 PT ( �T T

Ũ
�T
Ũ
)P. (35)

Remark Evaluation of the deformed template image T must

involve interpolation because Ũ do not in general correspond

to pixel points; in our implementation, as with [39], we use

B-splines interpolation to get �T (Ũ).

Secondly, for the discretized diffusion regularizer
αh2

2
U T AT G AU ,

its gradient and Hessian are the following:

{

d2 = αh2 AT G AU ∈ R
2(n+1)2×1,

H2 = αh2 AT G A ∈ R
2(n+1)2×2(n+1)2

.
(36)

Since H2 is positive definite when U is applied with Dirichlet

boundary conditions, we do not approximate it.

Finally, for the discretized Beltrami term

βh2

4
φ(�r(U ))eT , (37)

the gradient and the Hessian are as follows:

{

d3 = βh2

4
d�rT dφ(�r) ∈ R

2(n+1)2×1,

H3 = βh2

4
(d�rT d2φ(�r)d�r +

∑4n2

ℓ=1[dφ(�r)]ℓ∇
2�rℓ) ∈ R

2(n+1)2×2(n+1)2

(38)

where dφ(�r) = (φ′(�r1), . . . , φ
′(�r4n2))T is the vector of

derivatives of φ at all cell centres,

⎧

⎨

⎩

d�r = diag(�r1)d�r2 + diag(�r2)d�r1,

d�r1 = 2 diag(A1U )A1 + 2 diag(A2U )A2,

d�r2 = − diag(�r2 ⊙ �r2)[2 diag(A3U + 2)A3 + 2 diag(A4U )A4],

(39)

⊙ denotes a Hadamard product, d�r, d�r1, d�r2 are the Jaco-

bian of �r, �r1, �r2 with respect to U , respectively, [dφ(�r)]ℓ is

the ℓth component of dφ(�r) and d2φ(�r) is the Hessian of

φ with respect to �r, which is a diagonal matrix whose i th

diagonal element is φ′′(�ri ), 1 ≤ i ≤ 4n2. Here diag(v) is

a diagonal matrix with v on its main diagonal. More details

about �r1, �r2, A1, A2, A3 and A4 are shown in “Appendix B”

and some illustration of our notation is given in “Appendix

C”.

To extract a positive semi-definite part out of (38), we omit

the second-order term and obtain the approximated Hessian

as

Ĥ3 =
βh2

4
d�rT d2φ(�r)d�r. (40)

Therefore for functional J (U ) in (29) with any choice of

φ, we obtain its gradient

dJ = d1 + d2 + d3 (41)

and approximated Hessian:

H = Ĥ1 + H2 + Ĥ3. (42)

4.2.2 Search Direction

At each iteration, using (41) and (42), we need to solve the

Gauss–Newton system to find the search direction of (29):

HδU = − dJ , (43)
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where δU is the search direction. In our implementation,

we use MINRES with diagonal preconditioning to solve this

linear system [2,43].

4.2.3 Step Length

We use the standard Armijo strategy with backtracking to

find a suitable step length θ . In the implementation, we also

need to check that �r(U ) (54) is smaller than 1. Recall that

�r(U ) is the norm square of the discretized Beltrami term. As

a safe guard, we choose T0 = 10−8 and Tol = 10−12 as the

lower bound of the step length θ and θ‖δU‖ [7,28,42,48].

The algorithm is summarized in Algorithm 1.

Algorithm 1 Armijo Line Search: (U , ID) ← ALS(U , δU )

Step 1: Initialization. Set ID = 0, θ = 1, Tol= 10−12, T0 = 10−8 and

η = 10−4. Compute J (U ) and dJ .

Step 2: Feasibility checking.

while θ‖δU‖ ≥ Tol do

U new = U + θδU ;

if ||�r(U new)|| ≤ 1 then

If θ ≥ T0, exit this while loop and go to Step 3, else if θ < T0,

go to Step 4.

end if

Reduce the factor θ by θ = θ/2;

end while

Step 3: Line Search.

while θ‖δU‖ ≥ Tol do

Compute J (U new);

if J (U new) < J (U ) + θηdJ
T δU then

If θ ≥ T0, exit this algorithm with U = U new , else if θ < T0,

go to Step 4.

end if

Reduce the factor θ by θ = θ/2;

U new = U + θδU ;

end while

Step 4: Set ID = 1 and U = U new .

4.2.4 Stopping Criteria

Here, we adopt the stopping criteria as in [39]:

(1.a) ‖J (U i+1) − J (U i )‖ ≤ τJ (1 + ‖J (U 0)‖),

(1.b) ‖yi+1 − yi‖ ≤ τW (1 + ‖y0‖),

(1.c) ‖dJ ‖ ≤ τG(1 + ‖J (U 0)‖),

(2) ‖dJ ‖ ≤ eps,

(3) i ≥ MaxIter.

Here, eps is the machine precision and MaxIter is the max-

imal number of outer iterations. We set τJ = 10−3, τW =

10−2, τG = 10−2 and MaxIter= 500. If any one of (1) (2)

and (3) is satisfied, the iterations are terminated. Hence, a

Gauss–Newton numerical scheme with Armijo line search

can be developed. The resulting Gauss–Newton numerical

scheme by using Armijo line search is summarized in Algo-

rithm 2.

Algorithm 2 Gauss–Newton scheme by using Armijo

line search for Image Registration: (U , ID) ←

GNAIRA(α, β, U 0, T , R)

Step 1: Set i = 0 at the solution point U i = U 0.

Step 2: For (29), compute the energy functional J (U i ), its gradient

d i
J and the approximated Hessian H i by (42).

while “none of the listed 3 stopping criteria are satisfied” do

—Solve the Gauss–Newton equation: H i δU i = −d i
J ;

—(U i+1, ID) ← ALS(U i , δU i ) by Algorithm 1;

if ID = 1 then

Exit this algorithm.

else

i = i + 1;

Compute J (U i ), d i
J and H i ;

end if

end while

Next, we discuss the global convergence result of Algo-

rithm 2 for our reformulated problem (29). Firstly, we review

some relevant theorem.

Theorem 1 ([28]) For the unconstrained optimization prob-

lem

min
U

J (U )

let an iterative sequence be defined by U i+1 = U i + θδU i ,

where δU i = −(H i )−1dJ (U i ) and θ is obtained by Algo-

rithm 1. Assume that three conditions are met: (i). dJ be

Lipschitz continuous; (ii). the matrices H i are SPD (iii).

there exist constants κ̄ and λ such that the condition number

κ(H i ) ≤ κ̄ and the norm ||H i || ≤ λ for all i . Then either

J (U i ) is unbounded from below or

lim
i→∞

dJ (U i ) = 0 (44)

and hence any limit point of the sequence of iterates is a

stationary point.

Remark In the above discretization leading to (29), we do

not need to introduce the boundary condition. However,

for theory purpose, in the following, we will prove our

convergence result under the Dirichlet boundary condition

(namely, the boundary is fixed) and this condition is needed

to prove the symmetric positive definite (SPD) property of the

approximated Hessians. In practical implementation, such a

condition is not required as confirmed by experiments.

In addition, define an important set X := {U | �r(U )ℓ ≤

1 − ǫ, 1 ≤ ℓ ≤ 4n2} for small ǫ. So U ∈ X means that the

transformation is diffeomorphic. Under the suitable β, we

assume that each U i generated by Algorithm 2 is in the X .
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Secondly we stage a simple lemma that is needed shortly

for studying H i .

Lemma 2 Let a matrix be comprised of 3 submatrices H =

H1 + H2 + H3. If H1 and H2 are symmetric positive semi-

definite and H3 is SPD, then H is SPD with λh3 ≤ λh , where

λh3 and λh are the minimum eigenvalues of H3 and H sep-

arately.

Proof According to Rayleigh quotient, we can find a vector

v such that

λh =
vT Hv

vT v
. (45)

Then we have

λh3 ≤
vT H1v

vT v
+

vT H2v

vT v
+

vT H3v

vT v
=

vT Hv

vT v
= λh, (46)

which completes the proof. ⊓⊔

Theorem 3 Assume that T and R are twice continuously

differentiable. For (29), when φ = φ1, φ2 or φ3, by using

Algorithm 2, we obtain

lim
i→∞

dJ (U i ) = 0 (47)

and hence any limit point of the sequence of iterates produced

by Algorithm 2 is a stationary point.

Proof It suffices to show that Algorithm 2 satisfies the

requirements of Theorem 1. Recall �r(U ) and we can see that

it is continuous. Here, we use the Dirichlet boundary condi-

tion and we can assume that ‖U‖ is bounded. Then �r(U ) is a

continuous mapping from a compact set to R
4n2×1 and �r(U )

is proper. So for some small ǫ > 0, X is compact.

Firstly, we show that in X , dJ of (29) is Lipschitz continu-

ous. When φ = φ1, φ2 or φ3, the term φ(�r(U ))eT in the (29)

is twice continuously differentiable with respect to U ∈ X .

In addition, T and R are twice continuously differentiable.

So (29) is twice continuously differentiable with respect to

U ∈ X and dJ is Lipschitz continuous.

Secondly, we show that in X , H i = Ĥ i
1 + H i

2 + Ĥ i
3 is

SPD. By the construction of Ĥ i
1 and Ĥ i

3 , they are symmet-

ric positive semi-definite. H i
2 is symmetric positive definite

under the Dirichlet boundary condition. Consequently H i is

SPD.

Thirdly, we show that both κ(H i ) and ‖H i‖ are bounded.

We notice that in each iteration, H i
2 = αh2 AT G A is constant

and we can set ‖H i
2‖ = M2. For Ĥ i

1 = h2 PT ( �T T

Ũ
�T
Ũ
)P ,

we get its upper bound M1 because T is twice continuously

differentiable and X is compact. For φ = φ1, φ2 or φ3, φ is

twice continuously differentiable with respect toU ∈ X , then

we have ‖Ĥ i
3‖ ≤ βh2

4
‖d�rT ‖‖d2φ(�r)‖‖d�r‖ ≤ M3. Hence, we

have

‖H i‖ ≤ ‖Ĥ i
1‖ + ‖H i

2‖ + ‖Ĥ i
3‖ ≤ M1 + M2 + M3. (48)

So set M = M1 + M2 + M3 and ‖H i‖ ≤ M . Set σ as

the minimum eigenvalue of H i
2 . According to Lemma 2, the

smallest eigenvalue λmin of H i should be larger than σ . The

largest eigenvalue λmax of H i should be smaller than M due

to λmax ≤ ‖H i‖. So the conditional number of H i is smaller

than M
σ

.

Finally, we can find that (29) has lower bound 0. So by

applying Theorem 1, we finish the proof. ⊓⊔

4.3 Multilevel Strategy

In practice, we employ the multilevel strategy. We firstly

coarsen the template T and the reference R by L levels. Here,

we set TL = T and RL = R in the finest level and T1 and R1

in the coarsest level. Then we can obtain U1 by solving our

model (18) on the coarsest level. In order to give a good initial

guess for the finer level, we adopt an interpolation operator

on U1 to obtain U 0
2 as the initial guess for the next level.

We repeat this process and get the final registration on the

finest level. A multilevel strategy has several advantages: in

the coarse level, only important patterns can be considered

and it is a standard technique used in order to avoid getting

trapped in a meaningless local minimum; the computational

speed is very fast because of less variables than on the fine

level; the solution on the coarse level can be a good initial

guess for the fine level.

The multilevel scheme representing our main algorithm

is summarized below where I h
H is an interpolation opera-

tor based on bi-linear interpolation techniques and I H
h is a

restriction operator for tansferring information to a coarser

level.

5 Numerical Results

In this section, we will give some numerical results to illus-

trate the performance of our model (18). We hope to achieve

3 aims:

(1) Which choice of φ is the best for our model (18)?

(2) We wish to compare with the current state-of-the-art

methods (with codes listed for readers’ benefit) in the

literature for good diffeomorphic mapping:

(a) Hyperelastic Model [7]: code from http://www.siam.

org/books/fa06/

123

http://www.siam.org/books/fa06/
http://www.siam.org/books/fa06/


1272 Journal of Mathematical Imaging and Vision (2018) 60:1261–1283

Algorithm 3 Multilevel Image Registration: U ←

MLIR(α, β, U 0, T , R)

Step 1: Compute the largest possible number of levels based on size

of T , R: L = Maxlevel; Define the coarsest level as level 1.

Work out the multilevel representation of given images R and T :

RL = R, TL = T ;

RL−1 = I H
h RL ,

TL−1 = I H
h TL ; . . . ;

R1 = I H
h R2, T1 = I H

h T2 .

Step 2: Set the initial guess on the coarsest level:

UL = U 0, U 0
j = I H

h U 0
j+1, j = L − 1, ..., 1.

Step 3: Apply Algorithm 2 on the coarsest level i = 1 with U 0
1 :

(U1, ID) ←GNAIRA(α, β, U 0
1 , T1, R1);

if ID = 1 then

Exit this algorithm;

end if

for level j = 2 : L do

Interpolate the solution from a coarser level U 0
j = I h

H U j−1;

Apply Algorithm 2 on level j : (U j , ID) ←GNAIRA

(α, β, U 0
j , T j , R j );

if ID = 1 then

Exit this algorithm;

end if

end for

(b) LDDMM [37]: code from https://github.com/C4IR/

FAIR.m/tree/master/add-ons/LagLDDMM

(c) Diffeomorphic Demons (DDemons) [51]: code from

http://www.insight-journal.org/browse/publication/154

(d) QCHR [30]; code provided by the author Dr. Kam Chu

Lam.

All of the tests are performed on a PC with 3.40 GHz Intel(R)

Core(TM) i7-4770 microprocessor, and with installed mem-

ory (RAM) of 32 GB.

3). Most importantly, we like to test and highlight the advan-

tages of our new model.

Let y be the final transform obtained by a particular model

for registering two given images T , R. We use the following

three measures to quantify the performance of this model and

use them for later comparisons:

(i) Re_SSD (the relative Sum of Squared Differences)

which is given by

Re_SSD =
‖T (y) − R‖2

‖T − R‖2
; (49)

(ii) min det(Jy) and max det(Jy) that are the minimum and

the maximum of the Jacobian determinant of this trans-

formation;

(iii) Jaccard similarity coefficient (JSC) as defined by

JSC =
|DTr ∩ Rr |

|DTr ∪ Rr |
, (50)

where DTr and Rr represent, respectively, the seg-

mented regions of interest (e.g. certain image feature

such as an organ) in the deformed template (after reg-

istration) and the reference. Hence, JSC is the ratio of

the intersection of DTr and Rr to the union of DTr and

Rr [29]. JSC = 1 shows that a perfect alignment of the

segmentation boundary and JSC = 0 indicates that the

segmented regions have no overlap after registration.

Before computing JSC, in the first three examples below,

we have employed a segmentation algorithm to segment

the main features in both T and R but for the 4th exam-

ple, the segmentation was manually done for both T and

R.

In practice, we scale the intensity value of T and R to [0, 255].

Here, we state a strategy for choosing the parameters. For

our model (18), α should be related to energy D[u0] where

u0 is the initial guess for the displacement, and β should

be related to α. Empirically, we set α ∈ [α1, α2], where

α1 = 0.5D[u0]10−2 and α2 = 2D[u0]10−2. Respectively,

for φ = φ1, φ2, φ3, we set β ∈ [3α, 5α], [0.5α, 2α] and

[α, 5α]. For simplicity, we denote by New 1, New 2 and

New 3 the model (18) with φ1, φ2 and φ3, respectively.

It should be noted that a good registration result should

produce a small Re_SSD, be diffeomorphic and yield a large

JSC value for a region of interest.

5.1 Example 1—Improvement Over the Diffusion
Model

In this example, we test a pair of real medical images, X-

ray Hands of resolution 128 × 128. Figure 3a, b shows the

template and the reference. We compare our model with the

diffusion model and study the improvement over it. In imple-

mentation, for both models, we use a five-step multilevel

strategy.

We conduct two experiments using different parameters:

i) Fixed parameters. Our first choice uses fixed param-

eters. For New 1–3, we set β = 7, β = 1 and β = 9,

respectively, and fix α = 2. To be fair, we also choose

α = 2 for the diffusion model. In this case, Fig. 3 shows the

deformed templates T (y) from 4 models. From it, we can see

that all four models can produce visually satisfactory results.

To differentiate them, we have to check the quantitative mea-

sures from Table 1. We can notice that the transformation

obtained by the diffusion model is non-diffeomorphic due to

min det(Jy) < 0 (i.e. mesh folded, though visually pleasing

and the Re_SSD is small). Figure 4 illustrates the transform
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Fig. 3 Test example 1 results of Hand to Hand registration (α = 2):

in the top row, there are the template and reference. In the second row,

there are the deformed templates obtained by model (18) and the dif-

fusion model separately. Though the last column is visually fine, the

transform is not correct—see Table 1. a Template, b reference, c T (y)

by New 1 , d T (y) by New 2 , e T (y) by New 3 , f T (y) by diffusion

model

y = x + u locally at its folding point. In contrast, our New

1–3 can generate diffeomorphic transformations.

ii) Optimized parameters. The second choice uses the

fine-tuned parameters for the diffusion model. We tested α ∈

[1, 500] and found the smallest α = 430 with which the

diffusion model generates a diffeomorphic transformation.

Then for our model, we also set α = 430 (which is not

optimized in order to favour the former) and set β = 5 for

New 1–3 (to test the robustness of our model). Table 1 shows

the detailed results for this second test. From it, we can see

that the Re_SSD and JSC of our model are similar to the

diffusion model. And the transformations obtained by New

1–3 are all diffeomorphic while the diffusion model is only

diffeomorphic with the help of an optimized α. This shows

that our model possesses the robustness (in the sense of not

requiring optimized α) with the help of a positive β.

Hence, this example demonstrates that our New 1–3 are

robust and can all help to get an accurate and diffeomorphic

transformation.

5.2 Example 2—Test of Large Deformation and
Comparison of Models

As known, if the underlying deformation is small, it is gen-

erally believed that most models can deliver diffeomorphic

transformations. This belief is true if one keeps increasing α,

which in turn compromises the registration quality by result-

ing in an increase in Re_SSD (as seen in 2 tests of α in

Example 1 where the larger α = 430 achieves diffeomor-

phism for diffusion with a worse Re_SSD value).

Therefore, to test the capability of a registration model,

we need to take an example that requires large deforma-

tion. To this end, we consider Example 2—a classic synthetic

example consisting of a Disc and a C shape of resolution

128 × 128 as shown in Fig. 5a, b. We compare our 3 mod-

els (New 1–3) with 5 other models: the hyperelastic model,

LDDMM, DDemons, QCHR and the diffusion model in reg-

istration quality and performance. For this example, we use

a five-step multilevel strategy for our model, the hyperelastic

model and the diffusion model. For LDDMM and QCHR,

we use a three-step multilevel strategy. We use a one-step

multilevel strategy for DDemons as we find that multilevel

does not improve the results.

Following our stated strategy for choosing the parame-

ter for our model, we set β = 80, 120, 100 for New 1–3,

respectively, and fix α = 70. To be consistent, we also set

α = 70 for the diffusion model. For the hyperelastic model,

LDDMM and QCHR, we set, respectively, {αl = 100, αs =

0, αv = 18}, α = 400 and {α = 0.1, β = 1} as used in the

literature [7,30,37] for the same example. For the parameters

of DDemons, we tried to optimize the parameters {σs, σg} in

the domain [0.5, 5] × [0.5, 5] and took the optimal choice

{σs = 1.5, σg = 3.5}.
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Table 1 Test example

1—Comparison of the new

model (New 1–3) with the

diffusion model based a fixed α

and an optimized α for the latter

Resolution Re_SSD (%) min det(Jy) max det(Jy) JSC (%) Time (s)

First Test α = 2

New 1 128 × 128 1.84 0.0032 20.1582 99.35 38.34

New 2 128 × 128 1.25 0.0003 33.2404 99.54 30.66

New 3 128 × 128 1.63 0.0014 28.1372 99.26 21.86

Diffusion model 128 × 128 0.90 − 36.7964 72.2924 98.41 13.42

Second test α = 430

New 1 128 × 128 7.83 0.1337 4.8247 98.28 3.16

New 2 128 × 128 7.80 0.1300 4.8364 98.28 3.24

New 3 128 × 128 7.78 0.1260 4.8472 98.36 3.03

Diffusion model 128 × 128 7.75 0.0066 4.8278 98.30 1.08

Clearly the latter model can produce an incorrect result if not tuned while New 1–3 are less sensitive to α

with the help of β

Fig. 4 Zooming in the transformation (obtained by the diffusion model)

where there is folding

We now present the comparative results. Figure 5c–j

shows that except for the diffusion model, all the other mod-

els can produce the accepted registered results. Especially,

our model and LDDMM are slightly better than the hypere-

lastic model, DDemons and QCHR. It is pleasing to see that

the new model produces equally good results for this chal-

lenging example. From Table 2, we see that our New 1–3,

hyperelastic model, LDDMM, DDemons and QCHR pro-

duce min det(Jy) > 0, i.e. the transformations obtained by

these five models are diffeomorphic but the diffusion model

fails again with min det(Jy) < 0.

Because New 1–3 are motivated by the QCHR model,

we now discuss the results about these two types of mod-

els. On the one hand, according to Table 2, we can find that

our model takes less time. This is because, as we have men-

tioned, the algorithm for QCHR needs to solve alternatively

two subproblems (including several linear systems) in each

iteration. Its convergence cannot be guaranteed. However,

our model only needs to solve one linear system in each

iteration. In addition, we employ the Gauss–Newton method

which can be superlinearly convergent under the appropriate

conditions. As we have also remarked, the QCHR algorithm

can have convergence problems. This is now illustrated in

Fig. 6 where we plot the relative residual of our model (New

3) and the relative residual of QCHR. We observe that New

3 decreases to below 10−2 though not monotonically, but the

relative residual of QCHR does not decrease and is over 0.1.

On the other hand, we can compare the obtained solutions’

quality by checking the energy functionals. Using the same

QCHR functional, the QCHR solution for Example 2 has

the value 1042 while the transformation obtained by New 3

gives the value 147 which is much smaller. This indicates that

the result obtained by the QCHR algorithm is not accurate.

This is consistent with the fact that the Re_SSD and JSC of

New 3 are also better than QCHR. Both discussions reach

the same conclusion: the QCHR algorithm cannot obtain the

minimizer of the original QCHR functional.

5.3 Example 3—Comparison of Models for a
Challenging Test

Here, we illustrate the fact that area preservation between

images can become unnecessary and trying to enforce it

(as in the hyperelastic model) can fail to register an image.

We choose the particular template and reference images, as

shown in Fig. 7a, b, having significantly different areas in

their main features—here the area of ’Disc’ is much larger

than ’C’. The resolution of the images is 512 × 512. We test

the performance of New 1–3 and other models. In this exam-

ple, we use a seven-step multilevel strategy for New 1–3, the

hyperelastic model and the diffusion model. For LDDMM

and QCHR, we use a five-step multilevel strategy. We use a

single level for DDemons (since multilevels do not help).

In choosing the parameters for all the models to regis-

ter this example, we first follow our strategy to set β =

250, 50, 100 for New 1–3, respectively, and fix α = 50. To

be consistent, we also set α = 50 for the diffusion model.

For the hyperelastic model, we also set αl = 50 because

it contains the diffusion term, and take αs = 0. For the
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Fig. 5 Test example 2 results of Disc to C. The percentage value shows

Re_SSD error. In the top row, there are the template and the reference. In

the second and third row, there are the deformed templates obtained by

New 1–3 and 5 other models separately. The landmarks in the template

and reference are only used for QCHR and the last result (j) by diffusion

is evidently not correct. a Template T , b reference R, c T (y) 0.1% by

New 1, d T (y) 0.1% by New 2, e T (y) 0.1% by New 3, f T (y) 0.8%

by hyperelastic, g T (y) 0.1% by LDDMM, h T (y) 1.7% by DDemons,

i T (y) 7.7% by QCHR 6 landmarks, j T (y) 1.3% by diffusion model

Table 2 Test example 2—Comparison of the new model (New 1–3) with 5 other models

Resolution Re_SSD (%) min det(Jy) max det(Jy) JSC (%) Time (s)

New 1 128 × 128 0.06 0.0042 22.4 95.57 7.00

New 2 128 × 128 0.07 0.0012 19.5 95.84 10.10

New 3 128 × 128 0.06 0.0034 22.6 95.37 3.93

Hyperelastic Model 128 × 128 0.81 0.2426 5.9 94.84 1.84

LDDMM 128 × 128 0.06 0.1175 12.0 96.00 9.16

DDemons 128 × 128 1.71 1.3 × 10−7 8.2 92.69 57.27

QCHR Model 128 × 128 7.69 0.0255 57.4 85.36 141.86

Diffusion Model 128 × 128 1.25 −10.1612 162.5 94.21 0.31
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third parameter αv in the hyperelastic model, we test it in

the range [55, 150] and choose its optimal value αv = 75.

For LDDMM and QCHR, we set the default value α = 400

and {α = 0.1, β = 1} as the previous example. For the

parameters of DDemons, we test the parameters {σs, σg} in

the domain [0.5, 5] × [0.5, 5] and choose its optimal choice

{σs = 2, σg = 5}. Hence we would expect the hyperelastic

model and DDemons to perform well.

The test results for Example 3 are presented in Table 3 and

Fig. 7. Although all models except for the diffusion model

produce diffeomorphic transformations, we can see visually

that only 3 models (our New 2–3 and LDDMM) produce

acceptable results, also confirmed by the table:

• The badly deformed template generated by our New 1

shows that the model lacks robustness;

• The hyperelastic model, though producing a diffeo-

morphic transform, fails (despite using an optimized

parameter) because this model including a regularization

term (det(Jy) − 1)4/(det(Jy))
2 tends to preserve area.

If we do not optimize parameters for the hyperelastic

model, our tests show that its results are even worse.

• In the previous example, we have pointed out that QCHR

needs more computing time and, from Table 3, we see that

the time for QCHR is about 20 times as long as our New

3;

• The DDemons is trapped in a local minimum and its cpu

time is also excessive (> 5000 s). We also try to apply

a multilevel strategy to DDemons, but for this example

the result is not satisfied. The Re_SSD, JSC and cpu time

of our New 3 are all slightly better than the second best

LDDMM;

• Both Tables 2 and 3 show that the diffusion model

produces solutions having a negative Jacobian (fold-

ing) which might be viewed non-physical; this model

is included only for reference.

Hence, our model has advantages over other models for large

deformation registrations not requiring preserving area.

We now give 2 remarks on comparing New 3 (or New 2)

and QCHR. As remarked, QCHR regularizes the Beltrami

coefficient only and the landmarks supplied to QCHR can

severely affect the results while our model regularizes the

deformation rather than Beltrami coefficient. Both points can

be further tested below.

(i). On the first point, regularizing the Beltrami coeffi-

cient only leads to smooth Beltrami coefficient. To compare

smoothness of solutions by New 3 and QCHR, we compute

three smoothness measures ‖∇u‖L2 , ‖μ(y)‖L2 , ‖∇μ(y)‖L2

and present them in Table 4. Clearly the table indicates that

QCHR does generate a smoother Beltrami coefficient than

our model New 3 for both Examples 2–3, not a smoother

deformation field. Hence, the model which only regularizes

0 5 10 15 20 25 30 35 40 45 50
10-3

10-2

10-1

100

Relative Residual of Our model 3

Relative Residual of QCHR

Fig. 6 Example 2 Relative Residual of New 3 and QCHR: The solid

line indicates the relative residual of New 3. And the dot line shows

the relative residual of the second subproblem in QCHR. Here, we can

find that in the same 50 iterations, the relative residual of New 3 is

decreasing to below 10−2; however, the relative residual of QCHR is

not decreasing and over 0.1. Hence, the convergence of the algorithm

for QCHR cannot be guaranteed

the Beltrami coefficient rather than the deformation is not

sufficient to produce an accurate deformed template.

(ii). On the second point, we now illustrate the impor-

tance of landmarks for QCHR although for other problems

the model can yield good results without any landmarks. Fig-

ure 8 shows three sets of increasing number of landmarks for

Examples 2–3. We observe that more landmarks lead to better

results in terms of JSC values.

As a final comparison of New 3 with LDDMM and QCHR,

Fig. 9 plots the magnitudes of the Jacobian determinants of

their transformations. It can be seen that New 3 and LDDMM

give a similar pattern but both are different from QCHR.

5.4 Example 4—Comparison of the NewModel with
Other Models

In the final test, we test a pair of anonymized CT images in

resolution 512 × 512 from the Royal Liverpool University

Hospital. Figure 10a, b shows the template and the reference.

The template was taken in September 2016 and the reference

was taken in May 2016. We want to compare the changes

of our interested regions of abdominal aortic aneurysm with

stents inserted inside them (with cross sections shown as

two while ‘circles’ in images in Fig. 10a, b) during these 4

months. In addition, the interested region is used to compute

JSC. The small white region on top of the images helps us to

identify the correct slice to compare.

Here, following the previous example, we use the same

multilevel strategy: a seven-step multilevel strategy for our
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Fig. 7 Example 3 results of a large Disc to small letter C: in the top row,

there are the template and reference. In the second and third row, there

are the deformed templates obtained by model (18) and other models

separately. The landmarks in the template and reference are only used

for QCHR . a Template T , b reference R, c T(y) by our model 1, d T(y)

by our model 2, e T(y) by our model 3, f T(y) by hyperelastic model,

g T(y) by LDDMM, h T(y) by DDemons, i T(y) by QCHR with 20

pairs of landmarks, j T(y) by diffusion model

Table 3 Example

3—Comparison of the new

model (New 1–3) with 5 other

models

Resolution Re_SSD (%) min det(Jy) max det(Jy) JSC (%) Time (s)

New 1 512 × 512 3.06 0.0328 38.2272 78.93 402.87

New 2 512 × 512 0.08 0.0035 64.4950 97.84 281.95

New 3 512 × 512 0.07 0.0064 60.1743 97.82 202.17

Hyperelastic model 512 × 512 3.85 0.4895 7.0781 75.49 46.16

LDDMM 512 × 512 0.41 0.0184 40.2544 95.05 218.32

DDemons 512 × 512 2.83 9.6 × 10−6 34.8529 80.56 > 5000

QCHR model 512 × 512 2.03 0.0207 4.4744 84.24 4716.7

Diffusion model 512 × 512 0.52 −38.8337 286.3411 94.68 5.52

model, the hyperelastic model and the diffusion model, a

five-step multilevel strategy for LDDMM and QCHR and a

one-step multilevel strategy for DDemons.

Following our strategy for choosing the parameter of our

model, we set α = 20 and set β = 100, 40, 75 with New

1–3, respectively. For the diffusion model and LDDMM,

we test α from [100, 2000] and set the optimal value 1300

and 500 ,respectively. For the hyperelastic model, we set

{αl = 20, αs = 0, αv = 50}. We use the default value

{α = 0.1, β = 1} for QCHR. For the parameters of

DDemons, we test the parameters {σs, σg} in the domain

[0.5, 5] × [0.5, 5] and choose {σs = 4, σg = 4.5}.
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Table 4 Comparison of

smoothness measures for

solutions obtained by New 3 and

QCHR. The Beltrami coefficient

μ obtained by QCHR is

smoother than New 3 and the

displacement u obtained by

New 3 is smoother than QCHR

‖∇u‖L2 ‖μ(y)‖L2 ‖∇μ(y)‖L2 Re_SSD

Example 2

QCHR with 16 pairs of landmarks 2.1099 0.6930 0.2782 4.90%

New 3 1.6155 0.5024 0.2800 0.06%

Example 3

QCHR with 20 pairs of landmarks 1.5366 0.5853 0.0868 2.03%

New 3 1.3913 0.3352 0.1090 0.07%

Fig. 8 Tests of QCHR with different landmarks: Example 2 (row 1)

and Example 3 (row 2). On the left 3 columns of row 3, we show the

registered templates for row 1. On the right 3 columns of row 3, we show

the registered templates for row 2. Here, we can see that the accuracy of

QCHR improves with the increase in landmarks. a T with 4 landmarks,

b T with 6 landmarks, c T with 16 landmarks, d R with 4 landmarks,

e R with 6 landmarks, f R with 16 landmarks, g T with 4 landmarks,

h T with 8 landmarks, i T with 20 landmarks, j R with 4 landmarks,

k R with 8 landmarks, l R with 20 landmarks, m T (y) JSC 83.15%,

n T (y) JSC 85.36%, o T (y) JSC 90.16%, p T (y) JSC 54.14%, q T (y)

JSC 65.78%, r T (y) JSC 84.24%
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Fig. 9 Example 3 Illustration of Jacobian determinants of the transfor-

mations obtained by our New 3, QCHR and LDDMM for Example

2 (left two plots) and Example 3 (right two plots). Note all val-

ues are positive (since all models are diffeomorphic) and New 3 has

similar distributions to LDDMM, different from QCHR. a det(Jyφ3
),

b det(JyQCHR
), c det(Jyφ3

), d det(JyLDDMM
)
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Fig. 10 Example 4—Registration results of a pair of CT images: the

template T and the reference R in the top row. The contours show the

regions of interest. In the second and third rows, we show the deformed

templates obtained by 8 models. The 5 landmarks in the template and

the reference are only used by QCHR. a Template T , b reference R,

c T(y) by New 1 JSC 94.2 %, d T(y) by New 2 JSC 94.4 %, e T(y) by

New 3 JSC 95.3 %, f T(y) by hyperelastic model JSC 93.5%, g T(y)

by LDDMM JSC 93.8 %, h T(y) by DDemons JSC 87.4 %, i T(y) by

QCHR with 5 pairs of landmarks JSC 85.7%, j T(y) by diffusion model

JSC 93.7%

With the optimized parameters, all the models in this

example generate diffeomorphic transformations as seen

from Table 5. DDemons and QCHR for this example are not

as good as other models because they give worse Re_SSD

and JSC. A worse JSC means the interested regions obtained

by these two methods have significant differences from the

reference (Fig. 10h, i). The diffusion model obtains a good

JSC; however, its deformed template is a bit far (overall) from

the reference (since Re_SSD = 10.02%). The other 2 models

(Hyperelastic, LDDMM) generate good Re_SSD and JSC.

However, our models produce the lowest Re_SSD and the

best JSC. Hence, for this example of real images, our model

is competitive to the state-of-the-art methods. Though there

is broad agreement between Re_SSD and JSC, one has to

combine with segmentation models to ensure the strict agree-

ment.

Remark According to the above four examples, our New 1 is

not robust while New 2–3 can both generate accurate and dif-

feomorphic transformations. However, we recommend New

3 as the first choice because of the least computing time and

the best quality, and New 2 as the second choice.

We also test these four examples with the Dirichlet bound-

ary condition. Similar results for Examples 1 and 4 are

obtained. However, for Examples 2 and 3, the transforma-
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Table 5 Example

4—Comparison of New 1–3

with 5 other models

Resolution Re_SSD (%) min det(Jy) max det(Jy) JSC (%)

New 1 512 × 512 4.75 0.0124 52.6802 94.19

New 2 512 × 512 3.49 0.0068 46.6383 94.39

New 3 512 × 512 3.47 0.0051 49.9309 95.34

Hyperelastic model 512 × 512 4.44 0.4181 3.6192 93.51

LDDMM 512 × 512 5.18 0.0319 20.8164 93.79

DDemons 512 × 512 18.89 0.1846 2.6309 87.40

QCHR model 512 × 512 26.71 0.0481 16.2555 85.68

Diffusion model 512 × 512 10.02 0.0342 7.3450 93.65

tions would be different since the boundary is better modelled

by the Neumann’s condition.

6 Conclusions

Controlling mesh folding is a key issue in image registration

models to ensure local invertibility. Many existing models

either do not impose any further controls on the underlying

transformation beyond smoothness (so potentially generat-

ing unrealistic or non-physical transforms or mapping) or

impose a direct (often strongly biased e.g. towards area or

volume preservation) control on some explicit function of the

measure det(Jy). This paper introduces a novel, unbiased and

robust regularizer which is reformulated from Beltrami coef-

ficient framework to ensure a diffeomorphic transformation.

Moreover, we find that a direct approach (our New 1) from

this Beltrami reformulation provides an alternative but less

competitive method but further refinements (especially our

New 3) of this new regularizer can give rise to more robust

models than the existing methods. We highly recommend our

model New 3, i.e. (18) with φ = φ3.

In designing optimization methods for solving the result-

ing highly nonlinear variational model, we give a suitable

approximation of the exact Hessian matrix which is necessary

to derive a convergent iterative method. Our test results can

show that the new model (New 1–3, especially New 3) is com-

petitive with the state-of-the-art models. The main advantage

lies in robustness. Our future work will include extensions

to 3D problems, multi-modality models and development of

faster iterative solvers.
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ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit

to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.

Appendix A: Computation of Matrices A and
G in §4.1.2

Set B = I2 ⊗ In+1 ⊗ ∂
1,h
n ∈ R

2n(n+1)×2(n+1)2
, C = I2 ⊗

∂
1,h
n ⊗ In+1 ∈ R

2n(n+1)×2(n+1)2
,

∂1,h
n =

1

h2

⎡

⎢

⎢

⎢

⎢

⎣

−1 1

−1 1

. . . . . . . . .

−1 1

−1 1

⎤

⎥

⎥

⎥

⎥

⎦

∈ R
n,n+1,

A =

[

B

C

]

∈ R
4n(n+1)×2(n+1)2

,

where ⊗ denotes a Kronecker product. To represent the dif-

ference between interior and boundary pixels, we need to

introduce a diagonal matrix

G =

⎡

⎢

⎢

⎣

G1 0 0 0

0 G2 0 0

0 0 G1 0

0 0 0 G2

⎤

⎥

⎥

⎦

∈ R
4n(n+1)×4n(n+1), (51)

where G1 and G2 are diagonal matrices. For G1,

G1i+1+ jn,i+1+ jn
= 1 if 0 ≤ i ≤ n − 1, 1 ≤ j ≤ n − 1

or 1
2

if 0 ≤ i ≤ n − 1, j = 0, n. Similarly, for G2,

G2i+1+ j(n+1),i+1+ j(n+1)
= 1 if 1 ≤ i ≤ n − 1, 0 ≤ j ≤ n − 1

or 1
2

if i = 0, n, 0 ≤ j ≤ n − 1.

Appendix B: Computation of the Vector �r(U)
in § 4.1.3

We demonstrate how to build the linear interpolation L in

△V1V2V5, in Fig. 2.

First of all, denote the 3 vertices of this triangle by

V1 = x1,1, V2 = x2,1 and V5 = x1.5,1.5. Set L(V1) =

(u
1,1
1 , u

1,1
2 ), L(V2) = (u

2,1
1 , u

2,1
2 ) at the vertex pixels, and

L(V5) = (u
1.5,1.5
1 , u

1.5,1.5
2 ) at the cell centre (approximated
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values). Here the linear approximations are L(x1, x2) =

(a1x1 + a2x2 + a3, a4x1 + a5x2 + a6).

After substituting V1, V2 and V5 into L, we get

(

x1
1 − x1.5

1 x1
2 − x1.5

2

x2
1 − x1.5

1 x1
2 − x1.5

2

)(

a1

a2

)

=

(

u
1,1
1 − u

1.5,1.5
1

u
2,1
1 − u

1.5,1.5
1

)

,

(

x1
1 − x1.5

1 x1
2 − x1.5

2

x2
1 − x1.5

1 x1
2 − x1.5

2

)(

a4

a5

)

=

(

u
1,1
2 − u

1.5,1.5
2

u
2,1
2 − u

1.5,1.5
2

)

.

Then

(

a1

a2

)

=
1

det

(

x1
2 − x1.5

2 −x1
2 + x1.5

2

−x2
1 + x1.5

1 x1
1 − x1.5

1

)

(

u
1,1
1 − u

1.5,1.5
1

u
2,1
1 − u

1.5,1.5
1

)

,

(52)

(

a4

a5

)

=
1

det

(

x1
2 − x1.5

2 −x1
2 + x1.5

2

−x2
1 + x1.5

1 x1
1 − x1.5

1

)

(

u
1,1
2 − u

1.5,1.5
2

u
2,1
2 − u

1.5,1.5
2

)

,

(53)

where det =

∣

∣

∣

∣

x1
1 − x1.5

1 x1
2 − x1.5

2

x2
1 − x1.5

1 x1
2 − x1.5

2

∣

∣

∣

∣

.

According to (52) and (53), we can formulate two matrices

D1 ∈ R
4n2×(n+1)2

and D2 ∈ R
4n2×(n+1)2

such that

a1 − a5 = [D1,−D2]U = A1U ∈ R
4n2×1, a4 + a2 =

[D2, D1]U = A2U ∈ R
4n2×1, and

a1 + a5 = [D1, D2]U = A3U ∈ R
4n2×1, a4 −

a2 = [D2,−D1]U = A4U ∈ R
4n2×1. Here, aθ =

(a1
θ , . . . , a4n2

θ )T , θ = 1, 2, 4, 5, where al
θ = a

i, j,k
θ and

l = (k − 1)n2 + ( j − 1)n + i .
Next using the Hadamard product ⊙, we get a compact

form for

⎧

⎪

⎨

⎪

⎩

�r1(U ) = A1U ⊙ A1U + A2U ⊙ A2U ,

�r2(U ) = 1/((A3U + 2) ⊙ (A3U + 2) + A4U ⊙ A4U ),

�r(U ) = �r1 ⊙ �r2 ∈ R
4n2×1.

(54)

Appendix C: Computing the Gradient and
Approximated Hessian of the term (37)

Here, as an example, we set n = 2 and φ = φ1 to compute

the gradient and approximated Hessian of the discretized Bel-

trami term (37).

Because of n = 2, we have

U = (u
0,0
1 , . . . , u

2,0
1 , . . . , u

0,2
1 , . . . , u

2,2
1 , u

0,0
2 , . . . , u

2,0
2 ,

. . . , u
0,2
2 , . . . , u

2,2
2 )T ∈ R

18×1.

From (52)-(53), we can formulate two matrices D1, D2 ∈
R

16×9, respectively by:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−2 2

−2 2

−2 2

−2 2

−1 1 −1 1

−1 1 −1 1

−1 1 −1 1

−1 1 −1 1

−2 2

−2 2

−2 2

−2 2

−1 1 −1 1

−1 1 −1 1

−1 1 −1 1

−1 1 −1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 −1 1 1

−1 −1 1 1

−1 −1 1 1

−1 −1 1 1

−2 2

−2 2

−2 2

−2 2

−1 −1 1 1

−1 −1 1 1

−1 −1 1 1

−1 −1 1 1

−2 2

−2 2

−2 2

−2 2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Then we can build A1, A2, A3 and A4 and compute �r1, �r2

and �r by (54). According to (39), we have d�r ∈ R
16×18.

When φ(v) = φ1(v), we have φ′
1(v) = 2

(v−1)3 ,

φ′′
1 (v) = 6

(v−1)4 and so dφ(�r) = ( 2
(�r1−1)3 , . . . , 2

(�r16−1)3 )T

in (38). In (40) the i th diagonal element [d2φ(�r)]i i =
6

(�ri −1)4 , 1 ≤ i ≤ 16. Similarly when φ(v) = φ2,

dφ(�r) = ( −�r1−1

(�r1−1)2 , . . . , −�r16−1

(�r16−1)2 )T and [d2φ(�r)]i i = 2�ri +4

(�ri −1)4 .

When φ(v) = φ3, dφ(�r) = ( −2�r1

(�r1−1)3 , . . . , −2�r16

(�r16−1)3 )T and

[d2φ(�r)]i i = 4�ri +2

(�ri −1)4 .

Hence, we can get d3 in (38) and Ĥ3 in (40).
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