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Abstract

In this paper, we present a new capacitance extraction

method named Dimension Reduction Technique (DRT) for

3D VLSI interconnects. The DRT converts a complex 3D

problem into a series of cascading simple 2D problems.

Each 2D problem is solved separately, so we can choose

the most e�cient method according to the arrangement of

conductors. More importantly, it is very easy to obtain the

analytical solutions of 2D problem in many layers such as

the pure dielectric layers and the layers with parallel signal

lines. Therefore, the domain that has to be analyzed nu-

merically is minimized. This leads to the drastic reduction

of the computing time and memory needs. We have used

the DRT to extract the capacitances of multilayered and

multiconductor cross-overs, bends, via with signal lines and

open-end. The results are in good agreement with those of

Ansoft's SPICELINK and MIT's FastCap, But the com-

puting time and memory size used by the DRT are several

even tens times less than those used by SPICELINK and

FastCap.

1 Introduction

With continuous increase in the clock rate of high speed

VLSI system and decrease in the feature size of the in-

terconnects and packages of VLSI circuit chips, the resul-

tant signal delay, crosstalk, distortion and re
ection may

degrade the system performance. Analysis of these nega-

tive e�ects has become as important as the circuit design.

This has increased the interest in the e�cient methods for

calculating electrical parameters of the interconnects and

packages.

Many numerical methods have been applied to ex-

tract the electrical parameters of the interconnects and

packages. These methods can be generally classi�ed into

two categories: integral equation methods and di�eren-

tial equation methods. The di�erential equation meth-

ods, such as Finite Element Method (FEM)[1] and Fi-

nite Di�erence Method (FDM)[2], divide an interconnect

cell into meshes and lead to a large scale sparse matrix

equation. Though the compressed storage technique and

some e�cient sparse matrix equation solvers may be ap-

plied, the solving process is still time-consuming and needs

huge memory. The integral equation methods, such as the

Method of Moments(MoM)[3, 4] and the Boundary Ele-

ment Method (BEM)[5, 6], divides the surfaces of conduc-

tors and the interfaces of dielectric layers into meshes and

lead to a comparatively smaller but full matrix. When

the number of conductors and dielectric layers increase,

the analysis procedure will also be too costly in terms of

computing time and memory needs. Measured Equation

of Invariance (MEI) [7] and its variety Geometry Indepen-

dent MEI (GIMEI) [8, 9] combined the advantages of the

above two classes of methods together and leads to a sparse

matrix with small number of unknowns, however, when

problem become very complex, the computation resources

it used are still quite considerable.

Until now, several commercial and/or public domain

tools such as TMA's Raphael (based on Finite Di�erence

Method (FDM), Ansoft's SPICELINK (based on Finite

Element Method (FEM) and MIT's FastCap (based on

multipole accelerated Boundary Element Method (BEM)

are available to calculate the capacitances of various inter-

connects. It is well known that most VLSI interconnects

have strati�ed structures and every layer is homogeneous

along the direction perpendicular to the interfaces of the

layers (denoted as z-direction). However, it seems that the

tools mentioned above have neglected this fact. In this

paper, we present a new capacitance extraction method

named Dimension Reduction Technique (DRT) to take full

advantage of this fact. According to the method of separa-

tion of variables, the 3D Laplace equation de�ned in each

layer can be reduced to a 2D Helmholtz equation de�ned

on the cross section of the layer because the layer is ho-

mogeneous along the z-direction. Therefore, original 3D

problem is converted into a series of cascading 2D prob-



lems. Each 2D problem can be solved separately, thus

we can choose the most e�cient method for each problem

according to the arrangement of the conductors. More im-

portantly, it is very easy to obtain the analytical solutions

of 2D problems in many layers such as the pure dielectric

layers and the layers with parallel signal lines. Therefore,

the domain that has to be analyzed numerically is reduced

dramatically. This leads to the dramatic reduction of the

computing time and memory needs. We have used the

DRT to extract the capacitances of multilayered and mul-

ticonductor cross-overs, bends, via with signal lines and

open-end. The results are in good agreement with those

of SPICELINK and FastCap, but the computing time and

memory size used by DRT are several even tens times less

than those used by SPICELINK and FastCap. In addi-

tion, these examples show that the DRT has following

attractive features: 1)The computing time and memory

needs are unrelated to the ratio between the thickness of

dielectric layers, which means we need not to pay addi-

tional e�orts for an interconnect with both very thin and

very thick layers. But it will be very costly to use FDM

and FEM to extract the capacitances of this kind of inter-

connects: 2)Since the 2D problems in some layers can be

solved analytically, the computing time and memory needs

only increase slightly when the sizes of conductors increase.

However, the computing time and memory used by BEM

will increase greatly if the same thing happens; 3)The te-

dious task of 3D mesh generation is avoided, only 2D mesh

generation is necessary if the 2D problems in some layers

have to be solved numerically.

2 Principle of DRT

Up to now, the e�ective frequency range of the signal in

VLSI system is still within 10 GHz. Therefore, the quasi-

TEM assumption is valid. A simple example of intercon-

nect layout is shown in Fig. 1. According to quasi-TEM

assumption, the planes, which are far enough from the dis-

continuities in Fig. 1 and normal or parallel to the axis of

the signal lines, can be replaced by magnetic walls (M.W.).

Therefore, we can decompose the whole interconnect sys-

tem into a lot of simple cells with magnetic walls and ana-

lyze each cell separately. These cells can be classi�ed into

a limited number of typical structures, such as those shown

in Fig. 2.

We will use a typical 3D multilayer and multiconductor

interconnect structure as shown in Fig. 3 to illustrate the

principle of the DRT. Along the interfaces of dielectric lay-

ers, the whole structure is cut into slices. In the ith slice,

the potential function �i satis�es the 3D Laplace equation

@2�i

@x2
+
@2�i

@y2
+
@2�i

@z2
= 0 (1)

From Fig. 3 it is obviously that each slice is homoge-

Figure 1: An example of layout

(g)  2D multilayer multiconductor

(a)   multiconductor  coss over (b)  open-end

(f)  gap

(c)   via with signal lines bends(d)

(e)   Cross over with bend

Figure 2: Some typical interconnect structures
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Figure 3: A 3D interconnect and its slices

neous along z-direction. It should be noted that every slice

is surrounded by magnetic walls. Thus the boundary con-

ditions can be expressed as the following forms

�
i(x; y; z) = V

j
c Zi�1 � z � Zi; (x; y) 2 �jc (2)

@�i(x;y; z)

@n
= 0 Zi�1 � z � Zi; (x; y) 2 �M (3)�
�i = �i+1

"i
@�i

@z
= "i+1

@�i+1

@z

z = Zi (4)

�
1(x;y; Z0) = 0; �

5(x; y;Z5) = 0 (5)

where V j
c refers to the voltage on the jth conductor, and n

is the unit vector normal to the magnetic walls. �jc refers

to the sides of the jth conductor, �M refers to the magnetic

walls. Eq. 2 will be invalid if the slice is a pure dielectric

layer. Denote W i(x;y; V j
c ) as a linear function of x; y and

V j
c , let

�
i =  

i +W
i(x;y; V j

c ) (6)

If there exists such a function W i(x; y; V j
c ) to let func-

tion  i(x; y; z) satis�es

 
i(x;y; z) = 0 Zi�1 � z � Zi; (x; y) 2 �jc (7)

@ i(x; y; z)

@n
= 0 Zi�1 � z � Zi; (x; y) 2 �M (8)

and Laplace equation 1, then from the method of separa-

tion of variables, the general solution of  (x; y; z) is

 
i =
X
m=1

T
i
m(x;y)L

i
m(z) (9)

where T iM (x; y) and Lim(z) satisfy the following equations

respectively
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The solution of Eq. 10 and 11 is called mode functions.

The general solution of Eq. 12 is

L
i
m(z) =

�
Ai
mch(�

i
mz) +Bi

msh(�
i
mz) �im 6= 0

Ai
0z + Bi

0 �im = 0
(13)

where Ai
m and Bi

m are the undetermined coe�cients. Sub-

stituting the mode functions, 6, 9 and 13 into 4 and 5, and

making the inner product of each side of Eq. 4 with the

mode functions, we can obtain a system of linear equation

about Ai
m and Bi

m by utilizing the orthogonal property of

mode functions. The potential functions in every slice and

then the capacitance matrix can be readily retrieved from

the solutions of these equations.

Therefore, the crux of the whole problem has become

how to e�ciently solve Helmholtz equation 10 with bound-

ary conditions 11. In pure dielectric layer, such as the �rst

and the �fth layer in Fig. 3, the mode functions and eigen-

values have the analytical expressions as

T
i
m(x; y) = cos

(p� 1)�x

a
cos

(q� 1)�y

b
; i = 1; : : : ; 5

(14)

�
i
m = �

r
(
p� 1

a
)2 + (

q � 1

b
)2 (15)

where p = 1; 2; : : : ;NMx; q = 1; 2; : : : ;NMy;m = p+ (q�

1) � NMx; NMx and NMy are the truncated numbers of

the mode functions along x and y direction, a and b are

the distance between the magnetic walls along x and y

direction, respectively. For the slice with irregular con-

ductors (such as the fourth layer in Fig. 3), we will choose

suitable numerical methods, such as the FD methods, to

solve Eq. 10 and 11. The discretized form of Eq. 10 can

be reduced to the following eigenvalue equation

[S] �T = � �T (16)

where � = (�im)
2 is the eigenvalue, �T is the eigenvector

consisting of the potential value at each mesh node, and

[S] is a sparse matrix resulted from the FD equations at

each mesh node. This equation can be solved by some

standard subroutines, such as Lanczos method. And the

general solution of potential functions can be expressed as

Eq. 9. The �eld matching process is almost the same as

that of continuous mode functions.

In summary, the DRT consists of four steps: 1)Par-

titioning the complex interconnects into simple cells with
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Figure 4: Cross section of typical layers of cross-overs

magnetic walls; 2)Along the interfaces of the dielectric lay-

ers, cutting the strati�ed structure of each cell into slices;

3)Finding the function W i(x;y; V j
c ) in Eq. 6, following the

well-known method of separation of the variables, reducing

the 3D Laplace equation (1) into 2D Helmholtz equation

(6) and solving the Helmholtz equation in the cross section

of every slice separately; 4)Matching the potential of each

slice at the interfaces and solve the linear matrix equation

about the unknown coe�cients. The �eld matching pro-

cess is the same as that of the mode matching technique

[10], so we will omit the details of this step. The �rst and

the second step are �xed and can be easily implemented

for all kinds of structures, while the third and fourth step

may need some more explanations. In the next section we

will present further details about them.

3 Application of DRT

In this section, we will use the DRT to analyze several typ-

ical interconnect structures shown in Fig. 2. Since these

structures are surrounded by magnetic walls, we only need

to perform the second, the third and the fourth step men-

tioned in section 2. All relevant programs were run on a

Sun Sparc 20 workstation.

A. Multiconductor crossover in multilayered di-

electric media

The structure of the multiconductor crossover is shown

in Fig. 2(a). Based upon the DRT concept, the structure

is cut into slices. There are three kinds of slices: pure di-

electric layers, layer with x direction signal lines and layer

with y direction signal lines. Their cross sections are shown

in Fig. 4, where Nx and Ny are the number of the signal

lines along x and y direction respectively.

The function W i(x; y; V j
c ) in Eq. 6 can be easily ob-

tained. For the layer with x direction signal lines, it is

W
i(y; V j

x ) =

8<
:

V 1
x 
1
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(V j

x � V
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j

V Nx
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(17)

where V j
x is the voltage on the jth signal line, SXj is the

distance between jth and (j � 1)th line. For the layer

with y direction signal lines, W i(x; y; V j
c ) takes the similar

form.

The mode functions and eigenvalues in every layer can

then be expressed analytically. For the pure dielectric lay-

ers, they are Eq. 14. For the layer with x direction signal

lines, they are

T
k;i
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a
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where p = 1; 2; : : : ;NMx; q = 1; 2; : : : ;NM i
y;m = p+ (q�

1)�NMx+
Pi�1

j=1
NMxNM

i
y, NMx and NMy are the trun-

cated numbers of the mode functions along x and y direc-

tion in the domain 
1 shown in Fig. 4(c), k is the sequence

number of the layer with x direction signal lines. Exchang-

ing x and y, a and b, we can obtain the mode functions and

eigenvalues in the layer with the y direction signal lines.

Substituting the mode functions of every layer into Eq. 9

and matching the potential at the interfaces, we can obtain

the capacitance matrix.

The algorithm can be used to analyze crossover with

arbitrary number of lines embedded in arbitrary number

of dielectric layers. The crossover chosen for analysis is

modeled as: the number of x and y direction lines are 2, the

width, thickness and the length of each line are 1�m, 1�m

and 8�m respectively, the number of dielectric layers is 5,

the relative dielectric constant and thickness of each layer

is 3.9 and 1�m, respectively, the crossover is separated

from the top and bottom planes by 1�m. The truncated

number of mode functions in every layer is 21 � 21. The

capacitance matrix in fF (10�15F ) is

[C] =

2
4 1:536 �0:407 �0:173 �0:173
�0:407 1:535 �0:173 �0:173
�0:173 �0:173 1:535 �0:407
�0:173 �0:173 �0:407 1:535

3
5 (21)

The computing time is 87 seconds and memory need is

2MB while Ansoft SPICELINK's results are (in fF )

[C] =

2
4 1:53 �0:398 �0:188 �0:196
�0:398 1:52 �0:187 �0:195
�0:188 �0:187 1:47 �0:373
�0:196 �0:195 �0:373 1:51

3
5 (22)

with 881 seconds CPU time and 58.551MB memory needs.

B. Via with signal lines in multilayered dielectric

media
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Figure 5: Cross section of typical layers of a via

M1 M2 M3 Cap. Time Memory
in fF in sec. in MB

40 40 49 1.094 50 0.707
45 45 49 1.095 51 0.711
50 50 49 1.070 53 0.715

Table 1: Results of via structure

The structure of a via with signal lines is shown in

Fig. 2(c). The cross sections of three consecutive slices

with conductor are shown in Fig. 5.

For these three slices, the function in Eq. 6 is also

Eq. 23, so the DRT can be applicable to every slice of

the whole structure. Using Eq. 14 for pure dielectric layer

and numerically-solved mode function of slices in Fig. 5,

after the �eld matching step, the capacitance value can be

obtained. The algorithm can be used for the rectangular

via as well as the cases that the signal lines take other

shapes (such as a straight line with pad on the top of the

via).

We will use the via in Fig. 2(c) as the numerical exam-

ple. The whole structure can be cut into �ve slices and is

symmetric to the plane T-T' shown in Fig. 5, so we only

have to analyze half of the structure. The top and bottom

ground planes are separated from the via by the dielectric

layer whose thickness and relative dielectric constant are

2�m and 3.9. The length, width and thickness of the two

signal lines are 6:4�m, 1:6�m and 1�m respectively. The

radius and height of the via is 0:2�m and 3�m respectively.

The distance between the center of the via and the edge of

the signal lines is 0:8�m. The relative dielectric constant

of other three layers is 2.45. The capacitance, computing

time and memory size are shown in Table 1, where M1, M2

and M3 refer to the truncated number of mode functions

in the slices with top and bottom signal line, the slice with

the via and the pure dielectric slices respectively.

The capacitance calculated by Ansoft's SPICELINK is

1:124fF , the computing time is 405 seconds, the memory

needs is 48.197MB.

C. Openend in multilayered dielectric media

The structure of an open-end is shown in Fig. 2(b).

The cross section of the slice with the conductor is shown

in Fig. 6(a). Since it is symmetrical to the plane T-T', we
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Figure 6: Cross section of the conductor layer of openend
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Figure 7: A conductor over a ground plane

can replace the plane with a magnetic wall and analyze

half of the structure.

For the slice with the conductor, the function in Eq. 6

is

W
i(x; y; V j

c ) = 1 (23)

Eq. 10 is de�ned on an irregular L-shape domain in

Fig. 6(b), so we use the numerical method, such as FD

method, to obtain the discrete mode functions. The mode

functions of the pure dielectric slices are still Eq. 14. Sub-

stituting the mode functions of every slice and Eq. 13 into

9 and taking the fourth step mentioned in section 2, we

can obtain the capacitance.

To test the algorithm, we have used it to analyze a

simple structure shown in Fig. 7. The width and thickness

of the conductor are 1�m and the length is regarded as

variable. The thickness and the relative dielectric constant

of the dielectric layer above the ground plane is 1�m and

3.9 respectively. The structure has two symmetric planes,

we only need to analyze a quarter of it which is exactly

the same as that shown in Fig. 6(b), thus the algorithm

mentioned above can be used directly. The capacitance of

the structure in Fig. 7 is four times of the capacitance of the

structure in Fig. 6(b). The computed results, CPU time

and memory needs are listed in Table 2. The table shows

that the DRT is several times faster than the FastCap but

uses much less memory.

We have also adopted DRT to multiconductor bends in

Fig. 2(d) and some other combined structures. Numerical

results are in good agreement with Ansoft's and FastCap's

data with orders of magnitude reduction of CPU time and

memory usage. Using similar procedures as shown above,



Conductor DRT FastCap Closed-form DRT CPU FastCap DRT FastCap
length in in formulae [11] time time memory memory
in �m 10�3pF 10�3pF in 10�3pF in sec. in sec. in MB in MB
2 0.415 0.422 0.414 0.8 3.53 0.45 4
4 0.650 0.674 0.659 0.8 11.08 0.45 4.7
6 0.873 0.925 0.904 0.8 7.69 0.45 2.8
8 1.110 1.170 1.149 1.2 8.24 0.47 7.13
10 1.357 1.412 1.195 1.2 7.64 0.47 7
12 1.568 1.654 1.640 1.2 29.45 0.47 11.7

Table 2: Comparison of capacitance, CPU time, and memory usage

analyzing other structures such as the rest in Fig. 2 is

straightforward.

4 Conclusions and Discussions

In this paper, we present a new method named dimension

reduction technique (DRT) to extract the capacitance ma-

trix of the 3D interconnects in VLSI circuits. The method

is very versatile and e�cient. Based upon the basic idea

of DRT, we can set up an accurate and fast �eld solver

library for the typical interconnect structures. By using

this library, accurate closed-form formulae or data base of

the electrical parameter of these typical interconnect struc-

tures can be easily obtained.

The most fundamental assumption in the present paper

is that the method of separate of variables are valid. This

requires that the interfaces of each layer is parallel to each

other and the surfaces of conductors are either parallel or

orthogonal to those interfaces. Unfortunately, some kinds

of packages and bonds do not meet these requirements.

Therefore, the DRT needs some improvement to analyze

these structures. One obvious solution is using straight

segments that parallel or orthogonal to the interfaces to

approximate the original structure. This of course will

introduce some errors. More research work is being done

on this aspect.
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