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A novel discrete variable representation (DVR) is introduced for use as the L 2 basis of the S- 
matrix version of the Kohn variational method [ Zhang, Chu, and Miller, J. Chem. Phys. 88, 
6233 ( 1988) ] for quantum reactive scattering. (It can also be readily used for quantum 
eigenvalue problems.) The primary novel feature is that this DVR gives an extremely simple 
kinetic energy matrix (the potential energy matrix is diagonal, as in all DVRs) which is in a 
sense “universal,” i.e., independent of any explicit reference to an underlying set of basis 
functions; it can, in fact, be derived as an infinite limit using different basis functions. An 
energy truncation procedure allows the DVR grid points to be adapted naturally to the shape 
of any given potential energy surface. Application to the benchmark collinear 

H + H, + H, + H reaction shows that convergence in the reaction probabilities is achieved 
with only about 15% more DVR grid points than the number of conventional basis functions 
used in previous S-matrix Kohn calculations. Test calculations for the collinear 
Cl + HCl-+ CIH + Cl reaction shows that the unusual dynamical features of heavy + light- 
heavy reactions are also well described by this approach. Since DVR approaches avoid having 
to evaluate integrals in order to obtain the Hamiltonian matrix and since a DVR Hamiltonian 
matrix is extremely sparse, this DVR version of the S-matrix Kohn approach should make it 
possible to deal with more complex chemical reactions than heretofore possible. 

I. INTRODUCTION 

The last three to four years have seen a “great leap for- 
ward” in the ability to carry out accurate quantum mechani- 
cal reactive scattering calculations for simple chemical reac- 
tions ‘v2 the beginnings of an “ab initio quantum chemistry” 
for chemical reactions. Some of this progress has been due 
simply to enhanced computational power (and access to it 
by academic researchers), but there have also been signifi- 
cant methodological advances. The work here at Berkeley 
has been based primarily on the S-matrix version of the 
Kohn variational principle,3 for once it was realized that this 
version of the Kohn method is free of the anomalous singu- 
larities that have plagued other versions of it in the past,4 
scattering calculations (even reactive scattering) are re- 
duced to very standard quantum mechanical procedures, 
i.e., choosing appropriate basis functions, computing matrix 
elements of the Hamiltonian, and performing a linear alge- 
bra calculation. 

Essentially all applications to date have been to the sim- 
plest chemical reactions, atom plus diatomic molecule 
(A + BC-+AB + C). Complete cross sections (both differ- 
ential as well as integral) have been calculated for the 
H + H, 5 and F + H, 2(b)*6 reactions (and their isotopic var- 
iants) and reaction probabilities for J = 0 (zero total angu- 
lar momentum of the complete ABC system) have been cal- 
culated for a number of other reactions.’ The S-matrix 
Kohn approach has also been applied very fruitfully to elec- 
tron-molecule scattering,* producing the most impressive 
such calculations to date in that field. 

The work in this paper is motivated by the desire to go 
beyond A + BC reactions, e.g., to four-atom reactions 

(AB + CD-AC + BD, etc.) in their full dimensionality. 
This is a formidable undertaking to contemplate even for 
J = O-a four-atom system involves six degrees of freedom 
(compared to three degrees of freedom for a three-atom sys- 
tem with J = 0). This means that computation of the matrix 
elements of the Hamiltonian will require six-dimensional 
numerical quadrature and also that the linear algebra part of 
the Kohn calculation (i.e., solution of a set of simultaneous 

linear equations M*x = a for x = M - ‘*a) will be much larg- 
er than for the three-atom case. For example, if one needs an 
average of ten basis functions per degree of freedom, the 
typical four-atom system will involve a Hamiltonian matrix 

that is 106X 106, compared to lo3 X lo3 for a three-atom sys- 
tem with J = 0. Of course not all of the degrees of freedom 
may be strongly coupled, so that fewer basis functions may 
be required for some degrees of freedom and a number of 
contraction schemes’ will undoubtedly be helpful in reduc- 
ing the size of the basis set, but the above simpleminded 
analysis is a fairly realistic indicator of the challenge. (There 
is also a large menu of approximate models” that reduce a 
complex system to one of lower dimensionality and these are 
often useful in specific applications, but our focus here is on 
completely rigorous quantum calculations.) 

We believe that both of the difficulties noted above- 
integral evaluation and solution of the linear algebra prob- 
lem-can be effectively overcome by use of a discrete vari- 
able representation (DVR) for the L 2 (square integrable) 
basis set in the Kohn method. DVR methods have been pio- 
neered in recent years by Light and co-workers9@),” 
(though the origins go back much farther12 ) for use in vibra- 
tional eigenvalue calculations, Peet and YangI have made 
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similar applications of the related collocation method, and 
Friesner and colleagues’4 have developed and utilized simi- 
lar methods for the electronic Schriidinger equation. The 
DVR is a grid-point representation and it solves the problem 
of integral evaluation because there are no integrals to evalu- 
ate. It also helps solve the linear algebra problem because the 
Hamiltonian matrix is extremely sparse-the matrix of the 
potential energy is diagonal and that of the kinetic energy is a 
sum of one-dimensional matrices-which means that Lanc- 
zos-type (iterative) linear algebra methods2’c’*‘5 can deal 
efficiently with extremely large systems. More on this in Sec. 
II. 

Peet et al. I6 have shown previously that DVR and collo- 
cation methods can in principle be used efficiently in S-ma- 
trix Kohn variational calculations, but this previous work 
was not readily generalizable to reactive scattering. The pri- 
mary purpose of the present paper is thus to present a DVR 
methodology that does deal with reactive scattering and effi- 
ciently so. The specific DVR we have devised also has a 
particularly simple and generic or universal character; it in- 
volves only the grid points themselves, with no explicit refer- 
ence to an underlying basis set, both for the construction of 
the Hamiltonian matrix and its subsequent use in the Kohn 
scattering calculation. We believe that this particular DVR 
and the adaptive nature of the energy cut-off scheme dis- 
cussed below [in relation to Eq. (2.8) ] should also be of use 
for quantum eigenvalue calculations. 

Section II first describes the particular DVR scheme 
that we use; it is not only extremely simple, but quite an 
efficient basis. It is then shown in Sec. III how this DVR is 
utilized in the S-matrix Kohn method for reactive scattering 
and numerical examples to illustrate it are presented in Sec. 
IV. For the benchmark H + H, + H, + H reaction, e.g., it is 
seen that the number of DVR grid points needed to achieve a 
given degree ofconvergence is approximately the same as the 
number of conventional basis functions used in previous S- 
matrix Kohn calculations. 

II. DISCRETE VARIABLE REPRESENTATION (DVR) 
WITH A UNIFORM GRID/FOURIER BASIS 

We seek as generic and universal a DVR scheme as pos- 
sible in order to be able to apply it as a “black box” procedure 
for complex problems. To this end, our thinking has been 
influenced by the many applications of “wave packet propa- 
gation on a grid” by Fourier transform methods, stimulated 
primarily by the work of Kosloff and co-workers.” This has 
led us to choose a uniform (i.e., equally spaced) grid in the 
coordinates, for which the corresponding basis set is a Four- 
ier basis. All the DVR transformations” can be carried out 
completely analytically in this case and the novel aspect of 
our approach is that we then take the infinite order limit. 
Appendix A carries out this calculation and here we summa- 
rize the results. A particularly appealing feature is that the 
DVR kinetic energy matrix so obtained is not only extremely 
simple, but also universal, i.e., independent of the specific 
basis used to derive it. 

We first discuss this for the case of one dimension and 
show some illustrative examples and then show how it gener- 

alizes for multidimensions and non-Cartesian coordinates. 
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A. One Cartesian dimension 

For one Cartesian dimension, - CO < x < CO, Appendix 
A shows that the DVR, i.e., grid point representation of the 
kinetic energy is [cf. Eq. (A7) ] 

T., = +iq - l)‘-” 
II’ 2mhx2 (/3)2, :;;]. (2.1) 

the only parameter involved being the grid spacing Ax, or 

the “energy quantum of the grid” fi2/( 2mAx’). The poten- 
tial energy is, as usual,” diagonal 

vii, = sii. V(x, ) (2.2a) 

and the grid points {xi} are uniformly spaced 

xi = iAx, i = 0, + 1, f 2 ,... . (2.2b) 

One can also view Eq. (2.1) as an infinite order finite 
difference approximation for the second derivative; see Ap- 
pendix B. Recall, e.g., the simple three-point finite difference 
approximation for a second derivative 

f”(xo,z -& [v-(x,) -ml 1 -J-(x-, I], 

(2.3a) 

or more generally the (2N + 1 )-order expression 

f”(x,) = - (2.3b) 

the three-point and five-point approximations, e.g., have 
A,=2, A+, = - 1, and A, = 5/2, A * , = - 4/3, 

A = l/12, respectively. Appendix B shows that the infi- 
nik20rder finite difference result is the same as that implied 
by Eq. (2.1), i.e., A, = $/3, A,, = 2( - l)“/n2, for 
n = 1,2,... . Table I lists these coefficients {A,} for several 
low order finite difference cases, compared to the infinite 
order result, to show how the N- 03 limit is approached. 
The grid representation of the kinetic energy in Eq. (2.1) is 
thus a property of the grid itself and not tied to any specific 
underlying basis set. 

TABLE I. Coefficients (A,,} of Eq. (2.3b) for the finite difference approxi- 
mation to a second derivative. 2N+ 1 is the number of points and 
A - I, = A,,. 

2N+ 1 
n 3 5 7 03 

0 2X00 2.500 2.122 3.290 
1 - l.ooo - 1.333 - 1.661 - 2.ooo 
2 0 0.083 0.150 0.500 
3 0 - 0.011 - 0.222 
4 0 0.125 
5 - 0.080 
6 0.056 
I - 0.041 
8 0.031 
9 - 0.025 

10 0.020 
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B. Simple test 

It is useful to have some indication of how many grid 
points are necessary for this DVR to provide an accurate 
description a quantum system. This will be explored for re- 
active scattering in Sec. IV, but it is perhaps helpful here to 
test it on a simple one-dimensional eigenvalue problem, the 
harmonic oscillator. (We have carried out similar calcula- 
tions for the Morse potential and the conclusions are essen- 
tially identical.) In units with fi = m = w = 1, the DVR 
Hamiltonian matrix is thus 

Hi, = 

(2.4) 

One potential concern about the infinite order DVR kinetic 
energy matrix [ Eq. (2.1) ] is that it does indeed correspond 
to an infinite grid and the decay of the matrix elements away 

from the diagonal is relatively slow, (i - i’) - ‘. Any real 
calculation must of course be made with finite matrices, i.e., 
a finite number of grid points. Our strategy is to use the 
infinite order expression (2.1), but simply to delete grid 
points, where the wave function is negligibly small, e.g., in 
energetically inaccessible regions. This forces the wave func- 
tion to vanish at points not included in the grid and thus 
corresponds to placing the wave function in a box whose 
dimensions are determined by the grid points retained. A 
simple way to accomplish this is to introduce an energy cut- 
off V, for the potential energy and to discard grid points {xi} 
for which 

0.5 1.0 1.5 2.0 2.5 

Ax 

FIG. 1. The fractional error (E,,, /E,,,,, - 1) given by diagonalizing the 
DVR Hamiltonian for the harmonic oscillator [ Eq. (2.4) ] as a function of 
the grid spacing Ax. The lowest curve is for the state n = 0 and the succes- 
sive higher ones are for states n = 2,4,6, 8. (Odd states fall in between the 
even ones and are omitted for clarity.) 

N = m/Ax. 

From Figs. 1 and 2, one can then deduce that the total num- 
ber of grid points needed to achieve 0.1% relative accuracy 
( 10e3), e.g., is N = 5, 10, and 15 for quantum states n = 0, 
4, and 8, respectively. 

vtxi) > vc, (2.5) 

i.e., where the wave function for states with energies suffi- 
ciently below V, will be negligibly small. Light ef ~1.~‘“‘~” 
have used this idea previously in a variety of truncation and 
contraction methods employing DVRs. Convergence of the 
calculation can be checked by increasing the energy cutoff. 

The correct eigenvalues for the present harmonic oscil- 
lator example are E,, = n + l/2. Figures 1 and 2 show the 
fractional error ( EapprOx,mate/E,xact - 1) that results from 
diagonalizing the DVR Hamiltonian [ Eq. (2.4) ] for various 
quantum states n as a function of the grid spacing AX (Fig. 
1) and the cut-off energy V, (Fig. 2). Figure 1 shows that a 
smaller grid spacing is necessary to achieve a given level of 
accuracy the higher the quantum state; this is expected be- 
cause higher states have shorter de Broglie wavelengths. The 
number ofgridpoints per de Broglie wavelength, however, is 
approximately the same for all states; e.g., - three to four 
grid points per de Broglie wavelength achieves a relative ac- 
curacy of - 10 - 4-10 - 5. Figure 2 shows that a higher energy 
cutoff is required to achieve a given level of accuracy the 
higher the state, also an expected result. To achieve lo- 3 
relative accuracy (i.e., 0.1% ), e.g., requires an energy cutoff 
approximately 2.5 (in units of &) above the energy level of 
interest. 

C. Multidimensional generalization 

The multidimensional generalization of a DVR is 
straightforward.” For three Cartesian degrees of freedom 

I ” , ‘. , , 

10°> : \ 

2 6 10 14 18 

ve 

Since the total interval spanned with an energy cutoff V, 

is 2-, the total number of grid points N for given values 
of Ax and V, is 

FIG. 2. The fractional error for the DVR harmonic oscillator, as in Fig. 1, as 
a function of the energy cut-off parameter V,. The lowest curve is for state 
n = 0 and successive higher ones for n = 2,4, 6, 8. 
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(x,y,z), e.g., the Hamiltonian matrix is 

H,ik,i.j.k. = T,,.S~,S,, , + T,,Sii.S,, . 

+ Tkk t Sir Sac + Siie Sz Sk, * V(Xi ,yj ?zk 1, (2.6) 

where for the present DVR, the three one-dimensional kinet- 
ic energy matrices are all of the form of Eq. (2.1). If the 
masses m,, mu, and m, are different for the three degrees of 
freedom, one chooses the three grid spacings in a mass- 

weighted fashion, i.e., so that m, Ax2 = my Ay2 = m,ti. 

Not only is this Hamiltonian matrix extremely simple to 
construct (i.e., no integrals are involved and there is no ref- 
erence to any specific underlying DVR basis functions), but 
the linear algebra problem is greatly simplified because the 
H matrix is so sparse, as it is for all DVRs.” All of the 
iterative, Lanczos-type methods2’c~~15 for large linear alge- 
bra calculations have as their rate limiting step the multipli- 
cation of the Hamiltonian matrix H into a vector H*v, which 

is in general an N ’ operation where N is the dimension of the 
H matrix. For the case off degrees of freedom [e.g.,f= 3 in 

Eq. (2.6) 1, one has N = ti, where n is the number of grid 
points per degree of freedom. Because of the simple structure 
of the Hamiltonian matrix of Eq. (2.6)) however, one sees 
that the calculation of H-v requires many fewer operations 

(i.e., multiplications) than N 2 = n2f--multiplication of the 
potential energy matrix V into a vector v requires only 

N = timultiplications (because V is diagonal) and it is not 
hard to conclude that multiplication by the kinetic energy 

matrix requires f n + N = fti’ ’ multiplications. Multiplica- 
tion by the kinetic energy matrix is thus the limiting step, but 

since N = Rand thusf= lnN/lnn, the number of multipli- 
cations required for the kinetic energy is 

(n/h n)Nln Nz4Nln N, (2.7) 

for n = 10. For N = 106, (e.g., a four-atom system with 

J = O,f= 6, with n = lo), Eq. (2.7) gives 60x lo6 multipli- 
cations (1 s on a 60 megaflop computer) compared to 
N 2 = lOI* multiplications if the H matrix were full. 

It might appear that the direct product grid in Eq. (2.6) 

I 

is very limiting. That is, often one likes to choose more com- 
plicated coordinates that approximately follow the shape of 
the potential energy surface and then lay down a grid in these 
coordinates. While this might in fact produce a more effi- 
cient set of points, it is highly system dependent (i.e., not 
“generic”) and much of the benefit of this is actually accom- 
plished by using the energy cut-off procedure discussed in 
the paragraph before Eq. (2.5). One thus imagines first lay- 
ing down an infinite three-dimensional grid in x,y, and z for 
Eq. (2.6)) but then proceeds to discard all points (&yj,zk ) 
at which the potential energy is larger than some cut-off 
value V,, 

v(xi,yj,zk) E Vck > Vc* (2.8) 

As discussed with regard to Eq. (2.5), this corresponds to 
setting the wave function to zero at all points that are in 
classically inaccessible regions for all states with energies 
( V,. Furthermore, this procedure generates a nondirect 
product grid that is automatically adapted to the shape of the 
potential energy surface and it can be systematically tested 
for convergence simply by increasing the energy cutoff V, . 

Finally, we note that it is also possible to use a modified 
version of this DVR scheme with curvilinear coordinates. 
For the case of a particle in three dimensions, e.g., the Ham- 
iltonian operator in spherical coordinates (r&q%) is 

HE fi2 * a2 ,.- fi2 a2 
2m r f33 

ti2 - d2 + V(r,f%j). 
2mr%in28 ap 

(2.9) 

Since the volume element is dr dB d# &in 0 and 

a2 a2 -+cot6-&= (sin@-“*- 
de2 de2 

(sin 0) “2 

+ 1 + sin28 

4sin20 ’ 
(2.10) 

a typical matrix element of H between basis functions has the 
form 

(xApIHIxA) =LmdrcdelT dtj,yA,(r&b)r~ -Es---- 
[ 

fi2 a2 +i2 a2 
2m12 de2 2mr%in28 2 

_ A’( 1 + sin20) 

8mr%in28 
+ V(r,B,@ rJiGF~A W$). 

I 
(2.11) 

The transformation matrix” from basis function space to lbdg e rees of freedom are given in Appendix A [ Eqs. (A8), 
grid point space is thus (A9 ) , and (A 12 ) I. Even with non-Cartesian coordinates, 

UiJLA = ~ZZZZ$ri~~~~ cr,t3,&) (2.12) 
therefore, all the important simplicities of a DVR Hamilto- 
nian remain. 

and the DVR of H is 

s..,s,, , 
= T;,Sji,Skk, + T;, L 

s..,s.., III. DVR FOR THE S-MATRIX VERSION OF THE KOHN 

H,jk.t'j'A ’ 6 +T+g?y 
VARIATIONAL PRINCIPLE 

+ slit sit Sk,, 
[ 

v(riej(bk) - 
fi*( 1 + sin2ej) 

1 
We first summarize the basic formulas of the S-matrix 

8mrfsin2ej ’ 
Kohn method3’d’ for the case of a collinear 

(2.13) 
A + BC-AB + C reaction; from previous work,5(a)-5(c) it 
is clear how the expressions generalize. The S matrix for the 

The one-dimensional kinetic energy matrices for the r, 8, and “/n -, I/n’ transition ( y = arrangement index, y = a for 
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A + BC and c for AB + C, and n is the diatom vibrational 
state) is 

qh’,yn }& = i (B - CT.B* - ‘.C), (3.la) 

where matrices {By,n,,yn } and {C,,,,,,} are given by 

B=M, -M3M-‘*MO, (3.lb) 

C = M,, - M;:T’M - ‘*MO. (3.lc) 

All matrices Mare matrix elements of (H - E), H being the 
total Hamiltonian and E the total energy. M, and M,O 
are “free-free” matrices 

(M, )yh,,yn = (~Y~,W--EI~,y,), (3.2a) 

MO 1 y,,,,,yn = (Q>;,JH--EI@Yn), (3.2b) 

where QYn (r,,R,) is a “free” function whose asymptotic 
(R,-+w) formis 

~yn(ry,Ry)-~~(ry)e-iky”Ryv,1’2, (3.2~) 

4,’ is the vibrational eigenfunction for state n of arrangement 
yand vyn =fik,,,,/p, is the translational velocity for channel 
yn. [Note that wave functions in the bra symbol (1 of M- 
matrix elements are not complex conjugated unless it is indi- 
cated explicitly, e.g., in Eq. (3.2b) .] M is a matrix of 

(H - E) between an L * (square integrable) basis 
{xL (r,R)} that spans the interaction region 

CM), ‘,A = (xJH--EIxA). (3.3) 

In most work to date,5 we have chosen the L * basis to be a 

direct product of channel eigenfunctions {d,‘} and a transla- 
tional basis of distributed Gaussians 

xl = K(r,)u,(R,), (3.4) 

so that /z = ynynt, but we have noted several times”b’P5(c) that 
any L * basis that spans the interaction region is suffi- 

cient. MO is a rectangular basis of bound-free matrix ele- 
ments 

(Mo )~.,w = (x~l~--El@~jJ. (3.5) 

The essential task in the Kohn calculation is thus to compute 
the various matrix elements of (H - E) in Eqs. (3.2), (3.3), 
and (3.5), and then to solve the simultaneous linear equa- 

tions M-X = M, to obtain X-M - ‘*MO. 

We now choose the L 2 basis to be a two-dimensional 
(for this collinear A + BC system) DVR of the type dis- 
cussed in Sec. II. There is the question of which coordinate 
system should be used to define the grid and we have made 
the simplest choice we can imagine, namely a Cartesian grid 
in the normal modes of the transition state (see Fig. 3). We 
have in fact learned how to define a DVR in terms of the 
Jacobi coordinates of both arrangements’* -analogous to 
the basis sets [Eq. (3.4)] that we have used previously’- 
but the disadvantage of this is that the kinetic energy matrix 
would then be a full, nonsparse matrix. To retain the advan- 
tages of a sparse kinetic energy matrix, therefore, we choose 

the DVR for the L * basis in terms of one set of coordinates. 
(Hyperspherical coordinates are another set that could be 
used in this way to define the L ‘grid.) Again, our strategy is 
to lay down the DVR grid in very simple coordinates-so 
that the kinetic energy matrix will be simple and sparse- 
and then to adapt the grid to the shape of the specific poten- 
tial energy surface by discarding points through the energy 
cut-off criteria of Eq. (2.8). 

If {xi) and bj> denote the grid in the two Cartesian 
coordinates, then the L * matrix M is 

(M) ii i,i, = Hii i,j, - E6, Sj, 

= T,ieS,r + Tu6s,, + Siy Sip [ V(Xi,Yj 1 - E ] 9 

(3.6) 

2.3 

0.43& 
. 3.6 5.8 7.9 

R 

a 

10 

MINIMUM 

-0.00 

FIG. 3. The contour plot of the LSTH 
potential energy surface for the 
H + H, -+H, + H reaction in mass- 
weighted Jacobi coordinates. The points 
indicate the DVR grid in mass-weighted 
normal coordinates (x,y) of the transi- 
tion state. The larger grid (the smaller 
points, which also line underneath the 
larger points) results from cut-off pa- 
rameters V, = 4 eV and R,,, = 8 a0 

and the smaller grid (the larger points) 
is the one obtained with V, = 2 eV and 
R rnd” = 6a,. 

MAXIMUM 

4.50 
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TABLE II. Converged reaction probabilities for collinear 
H + H, (tt) -+H, (u’) + H at total energy E = 0.9678 eV for the LSTH po- 
tential surface. 

u-d P ,,' - ,. 

o-o 0.611 53 
o-l 0.236 13 
l-l 0.42200 

where the two one-dimensional kinetic energy matrices are 
of the form given by Eq. (2.1). The bound-free matrix M, is 

(3.7) 

i.e., one lets (H - E) operate on the free function 
Q,,,, (r,,R,) and then evaluates this at the coordinates 
( xi,y, ) . Thus no integrals are required to obtain M and M, 
in Eqs. (3.1), but the free-free matrix elements M, and 
M ,,, -matrices that are the size of the number of open chan- 
nels-are at present still evaluated by separate numerical 
quadrature. 

IV. TEST CALCULATIONS FOR SOME COLLINEAR 
REACTIONS 

A. H+H, 

An obvious choice for the first test of the DVR S-matrix 
Kohn methodology described in Sec. III is the collinear 

H+H,+ H, + H reaction. Figure 3 shows a contour plot 
of the LSTH potential surface in mass-weighted coordinates. 
As described in Sec. III, a direct product grid is first laid 
down in the normal mode coordinates (x,y) of the transition 
state and the grid is then truncated by the energy cut-off 
criterion [the two-dimensional version of Eq. (2.8)]. The 

grid, the L 2 basis of the S-matrix Kohn approach, is also 
truncated at a value R,,, , the translational coordinate in the 
reactant and product valleys. 

Figure 3 shows the grid so obtained for two choices of 
the parameters V, and R,,, ; the larger grid (denoted by the 
smaller points) is obtained with V, = 4 eV and R,,, = 8 u. 
and the smaller grid (denoted by the larger points) with the 
values V, = 2 eV and R,,, = 6 a,. The larger grid gives 
extremely well-converged results, while the smaller grid is 
the smallest one which gives the reaction probabilities accu- 
rate to a few percent. 

The S-matrix Kohn calculation was carried out at a var- 
iety of total energies E and the convergence properties were 
essentially the same at all energies. We thus show the various 
convergence characteristics for a representative value 
E = 0.9678 eV, for which two vibrational states of H, are 
energetically open channels (in each arrangement). Table II 
gives the converged reaction probabilities for this energy. 
Figure 4 shows the relative error in the three reaction proba- 
bilities (O-0, O- 1 = 1 -+O and l-+ 1) as a function of (a) 
nB the number of grid points per de Broglie wavelength; (b) 
the energy cutoff V,; and (c) the asymptotic translational 
cutoff R,,, . nB the number of grid points per de Broglie 
wavelength is defined as 

-0.10 ” ” ” ” ” ” ” ” ” ” ” ” ” ” 
3.5 4.0 4.5 5.0 

(a) 
nB 
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FIG. 4. Convergence of the reaction probabilities (solid line O-O, long 
dashed line O- 1, and short dashed line 1 + 1) for the collinear reaction 
H + H, (u) + H, (v’) + H at a typical energy E = 0.9678 eV as a function 
of (a) n, the number of grid points per de Broglie wavelength [ Eq. (4.1) 1; 

(b) the energy cutoff V,; and (c) the channel radius cutoff R,,, . 
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n, = 2?r/(k,Ax) =2rr/(kYAy), (4.1) 0.02 

where k, = ,/m and k,, = dm i.e., Ax and 
Ay are chosen to be the same in mass-weighted coordinates. 0.00 

Figure 4 shows that convergence to a relative accuracy 
of - 1% is achieved with nB ~3.8, V, ~3.5 eV, and 2 

R max r 5.5 a,. This corresponds to a total of 22 1 grid points, :: 
a, 

which is only - 15% more than the number of conventional 
-0.02 

basis functions (e.g., - 24 translational functions X four vi- 
brational functions X two arrangements = 192) needed to 0 

achieve this level of convergence. This is clearly an extreme- 
z -0.04 

ly encouraging result, namely that the number of grid points 
: 

2 
required is not much larger than the number of basis func- 
tions. Were this to be true in general, the DVR procedure 
would clearly be the preferable way to go because it elimi- 
nates integral evaluation and because the DVR Hamiltonian 
matrix is so sparse and simple to construct. 

For this simple test, the free wave functions [ Eq. (3.2) ] 
were an undistorted incoming wave exp( - ikR) (multi- 
plied 3(d) by a smooth cut-off function to regularize it at 

R -+O), but it has been noted before5(c) that the L ’ basis can 
be reduced by using distorted free waves. Within the present 
methodology, this would allow one to use a smaller value of 
the parameter R,,, , thus reducing the size of the DVR grid 
for the L * space. This will clearly be a useful thing to do for 
challenging applications. 

-0.08 ’ . ’ * ’ ’ 

4.3 4.4 4.5 4.6 

-0.06 

FIG. 7. Convergence of the O-O and reaction probability for the 
Cl + HCI-CIH + Cl reaction at energy E = 0.375 eV as a function of n, 
the number of grid points per de Broglie wavelength [as in Fig. 4(a) for the 
H + H, reaction]. 

6. CI+HCI 
Figure 7 shows the convergence of the O-+0 reaction 

probability at total energy E = 0.375 eV as a function of the 
number of grid points per de Broglie wavelength, i.e., nB of 
Eq. (4.1). As for the H -/- H, reaction [cf., Fig. 4(a) 1, one 
sees that convergence is achieved with nB ~4.5. It is very 
encouraging to see that convergence with respect to this “di- 
mensionless grid spacing” is approximately the same for the 
very disparate examples treated in the paper. 

Heavy + light-heavy reactions have very unusual dy- 
namical features because of the mass disparities. Specifical- 
ly, the dynamics tends to violate the assumptions of transi- 
tion state theory quite strongly because the H atom hops 
back and forth between the Cl atoms several times during a 
reactive collision. It is thus of interest to see how well the 
present DVR version of the S-matrix Kohn method can de- 
scribe this kind of dynamics. 

We thus consider the prototype of this class of reactions 
Cl + HCl-+ ClH + Cl using the same LEPS potential ener- 1.0 

gy surface as Bondi et al. l9 in their quantum, semiclassical, 
and classical studies. Figure 5 shows the potential energy 
surface for the Cl + HCl reaction in mass-weighted coordi- 0.8 

nates with a typical DVR grid spacing superimposed on it. 
Results given by the present DVR S-matrix Kohn calcula- 
tion are shown in Fig. 6 for the 0 -+ 0 reaction probability as a 0.6 

function of energy, up to a value slightly above the u = 1 
channel of HCl. Agreement with the results of Bondi et al. is P 

excellent. 0.4 

1.6 

1.3 
0.2 

@jr 0.94 

0.59 0.0 
I 

o*234.5 
-I 

5.6 6.8 1.9 9 

R 

0.35 

FIG. 5. The contour plot of the LEPS potential energy surfaceof Ref. 19 for 
the Cl + HCl-CIH + Cl reaction in mass-weighted Jacobi coordinates. 
The points indicate a typical DVR grid. 
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FIG. 6. Reaction probability calculated for the Cl -+ HCI( u = 0) 
-CIH(u’ = 0) + Cl collinear reaction as a function of energy E. 
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V. CONCLUDING REMARKS 

The primary purpose of this paper has been to show that 
a set of grid points, i.e., a discrete variable representation 

(DVR), provides a very efficient and easy-to-use L * basis 
for the S-matrix version of the Kohn method for quantum 
reactive scattering. This is the first DVR scheme that has 
proved practical for reactive scattering calculations. An im- 
portant conclusion from these test calculations is that the 
number of grid points required for a comparable degree of 
convergence is only lo%-20% more than the number of 
conventional basis functions (e.g., channel eigenfunctions 
x distributed Gaussians) used in previous S-matrix Kohn 
calculations.5(a)-5(C) This is extremely encouraging with re- 
gard to the possibility of carrying out such calculations for 
more complex systems because a DVR avoids integral evalu- 
ation in order to obtain the Hamiltonian matrix and also 
because the Hamiltonian matrix is extremely sparse.” Qua- 
siadiabatic,g’“‘*9’b’ or other contraction schemes used with 
conventional basis functions can also be employed in an 
identical fashion with this DVR. 

The particular DVR we have devised is extremely sim- 
ple and has a universal character. The Hamiltonian matrix, 
and all aspects of the calculations, involve only the grid 
points themselves with no explicit reference to an underlying 
basis from which the DVR comes. It is clear that this partic- 
ular DVR can also be used readily for eigenvalue problems 
as well as the present S-matrix Kohn scattering calculations. 

For both applications in Sec. IV, the DVR was laid 
down in the rectilinear normal coordinates of the transition 
state. It is perhaps not surprising that this set of coordinates 
works well for the Cl + HCl reaction because for this heavy 
+ light-heavy case, these coordinates are very close to the 

reactant and product Jacobi coordinates (and also to hyper- 
spherical coordinates). It was not so obvious that these co- 
ordinates would work so well for H + H, because they differ 
substantially from the reactant and product coordinates in 
the asymptotic regions (see Fig. 3). It is gratifying to see that 
in fact they do work quite well also for the H + H, reaction. 
This supports our current thinking that it really does not 
matter much which coordinates one uses to lay down the 
grid, provided that it covers the space; the energy cut-off 
criterion [e.g., Eq. (2.8) ] then adapts the grid to the shape 
of the potential energy surface for the specific system being 
treated. This will be particularly important for complex sys- 
tems, where it would be very difficult to guess the “best” 
coordinate system intuitively. The conclusion from the pres- 
ent work is that one puts the grid down in the simplest co- 
ordinates possible-so that the kinetic energy matrix is sim- 
ple and sparse-and the energy cut-off criterion then adapts 
it to the shape of the given potential energy surface. 

The convergence tests for both the harmonic oscillator 
of Sec. II B and the two reactions in Sec. IV all suggest that 
reasonable accuracy is obtained with - four to five grid 
points per de Broglie wavelength. This thus provides a uni- 
versal rule of thumb for estimating the grid spacing, the pri- 
mary parameter that specifies this DVR. 

Further applications are of course necessary to see if all 

of these potential advantages will in fact be realized. 

1989 

APPENDIX A: A SIMPLE GENERIC DVR 

Consider a one-dimensional quantum system with coor- 
dinate x restricted to the interval (u,b). The kinetic energy 
operator is 

T= -&s (Al) 

and we consider first the case that the wave functions vanish 
at the endpoints a and b. The grid {xi} for the DVR is equal- 
ly spaced 

xi = a + (b - a)i/N, i= l,...,N- 1 (‘42) 

and the associated functions for a uniform grid are Fourier 
functions (i.e., particle-in-a-box eigenfunctions) 

4n 0) = (&)‘“sin[ nritJa)], n = l,...,N- 1. 

(‘43) 

Note that 4, (x0 =u) = 4, (x, = 6) = 0; there are thus 
N - 1 functions and N - 1 points. 

The DVR, or grid point representation of the kinetic 
energy is then given by 

Tii, = -$x~~‘~~(x~)&‘(x~.), 
n=l 
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(A4) 

where Ax = (b - a)/N is the grid spacing. With the above 
definitions, this becomes 

rz’sin($)sin($). (A5) 

The calculation is tedious, but the sum over n can be evaluat- 
ed analytically.*’ One obtains 

1 

sin2[r(i - i’)/2N] 

1 - 
sin2[di+ i’)/2N ] I 

MaI 

for i# i’ and 

’ 
* sin* (k/N) 1 (A6b) 

We now consider several specific cases. 

1. (- CO,CO) interval 

In this case, a + - CO, b -+ 03, so a finite grid spacing 
Ax = (b - a)/N requires that N- 00 also. With {xi} de- 
fined as in Eq. (A2), one also has i + i’+ co, but i - i’ is 
finite. Equation (A6) thus becomes 

__* cti/3, i = i’l 

Tii, = --&(-l)i-i* 
i#i’ ’ 

J 

(A7) 

and the grid is now specified more conveniently as xi = ihx, 
i = 0, f 1, + 2 ,... . 

2. (0, CO) interval 

This is appropriate for a radial coordinate r. In this case, 

a = 0, b-, 00 and also N+ CO, so that the grid spacing 
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Ar = (b - a)/N is finite. In this case, both i + i’ and i - i’ which is the same as that given by Meyer.” 
are finite and Eq. (A6) becomes 

i=i 

Tii, = &(---l)‘-’ 

I 
i#i’ ’ 

(A8) 

with 

ri = ihr, i = l,... . N-l 

Note that the matrix element vanishes if i or i’ = 0, i.e., the 
txlxi) = C 4, tx)$, txi> 

n=, 

Finally, we note that even though we have emphasized 
in the paper that Eq. (A7), e.g., has a universal character, 
being independent of my specific underlying set of basis 
functions, it is nevertheless possible to determine what set of 
basis functions corresponds to this infinite uniform grid. 
Thus, if ]xi) is the Dirac state for grid point i of the DVR [cf. 
Eq. (A2) 1, then the wave function for this state is 

origin r = 0 itself is not a point in the grid. 

3. (0,~) interval 

This is the case of a polar coordinate 19, for which the 
functions also vanish at the endpoints. In this case, Nis finite 
for a finite grid spacing. Since a = 0 and b = TT, Eq. (A6) 
reads 

T,. _ fi2 (- l)‘-’ 1 
II’ 2m 2 sin*[r(i- i’)/2N] 

1 - 
sin2[rr(i+ i’)/2N] I 

(A9a) 

for i# i’, and 

1 - 
sin’ ( d/N) 1 ’ 

Wb) 
with 

19~ =h/N, i= l,..., N- 1. 

Here the matrix element vanishes if i or i’ = 0 or N; i.e., the 
points 19 = 0 and n= are not points in the grid. 

4. (O,~P) interval 

This is the case of an azimuthal coordinate 4 and the 
boundary conditions in this case are that the wave function is 
periodic. This case has been treated by Meyer” some time 
ago, but for completeness we show briefly how the present 
methodology applies to it. The appropriate basis functions 
are 

in+ 

@n(4)=&, n=Q~t Lf291tN (AlOa) 

and the 2N + 1 distinct grid points are 

#i=iA, i= 1 
2N+ 1 

,...,2N + 1. 

The matrix of the kinetic energy operator in the DVR is thus 

T,, = gAq5 i n2 
ei”( 4i - 4jt 1 

2p (All) 
,,= -N 

Differentiating Eq. (Bl ) twice and setting x = 0 [and 
utilizing the fact that the grid points are given by Eq. (B4) ] 
gives 

f”(0) = - &[2h lj+ i (fk +f-k)+ 
k=l 

and a calculation similar to that above gives 

Tii, =g ( - l)i-i’ 

L N(N+ 1) 
2 ) 

i=i 

X 

I 

cos;rr(i - i’)/2N + I] 

1 
? (A121 

2 sin2[r(i- i’)/2N+ l] ’ 
i#i’ 
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N = 1 and 2, e.g., give the three- and five-point results, re- 
spectively, 

for the finite Fourier expansion of Eqs. (A2)-( A3), or more 
specifically, 

(A14) 

This sum can, as before, be evaluated analytically, and when 
one takes the limit (b - a) + cc), N-D CO, (b - a)/N = Ax, 
the result is 

(XlXi) =sin[%-(x-xi)/Ax]/[rr(x-xi)]. (A15) 

This wave function has the properties that it is l/Ax for 
x = xi and zero for x = xi,, i’ # i and has the limit S( x - xi ) 

as Ax+O. Furthermore, precisely this same result [Eq. 
(A 15 ) ] is obtained from the infinite order Lagrangian inter- 
polation polynomials utilized in Appendix B. That is Eq. 
(A 15) does not rely on the fact that we utilized a finite Four- 
ier basis and then took the infinite limit in order to derive it; 
it is a general result independent of the basis used. Equation 
(A15) thus makes it possible to have a complete wave func- 
tion from a DVR calculation, so that one can obtain values of 
the wave function at coordinates other than at the DVR grid 
points. 

APPENDIX 6: INFINITE ORDER FINITE DIFFERENCE 

The (2N + 1 )-order Lagrangian interpolation formula 
for a functionf(x) is** 

f(x) = ,i,fk ,-ii_:(~)~ (Bl) 

wheref, = f(xk ) and where the prime on the product means 
that the factor I= k is omitted. We consider the case of 
equally spaced grid points 

x,=kAx, k=O,fl,..., +N, (I321 

and wish to evaluate the second derivative of f(x) at the 
central grid point x,, = 0, i.e., f” (0). 

(B3) 
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f”(O)r -J- h2 [vi - ti +f-l)] 

and 

f”(O)= - &&-fti +f4)++L+s-*)]. 

In the limit N- CO, one has 

= - 2( - l)k, (B4b) 

so that the infinite order result is 

f”(O) = -7-$[f,d/3+ 2 cfk +f-,) 2(;21)k]. 
k=I 

(B5) 

The coefficients in Eq. (B5) are compared in Table I with 
several low order finite difference coefficients to indicate the 
nature of the convergence to the infinite order limit. 
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