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ABSTRACT Restructuring in power systems has resulted in the development of microgrids (MGs) as entities
that could be operated in grid-connected or islanded modes while managing the operation of their systems.
On the other hand, privatization and integration of independently operated distributed resources in energy
systems have caused the introduction of multi-agent structures. In this regard, new operational management
methodologies should be employed by the MG operator (MGO) to efficiently operate the system while
addressing the distributed nature of multi-agent structures. Accordingly, this paper aims to provide a new
algorithm to operate an islanded multi-agent MG utilizing the peer-to-peer (P2P) management concept; which
copes with the distributed nature of the system. Consequently, each agent would independently schedule its
respective local resources, while participating in the hourly P2P market scheme. Moreover, MGO manages
the power transactions among the agents. Furthermore, different types of power generation resources are
modeled in the proposed optimization scheme while scenario-based stochastic optimization, as well as the
condition-value-at-risk index, are deployed to address the uncertainty and the operational risk associated with
the operational optimization of renewable energies. Finally, the developed framework is implemented on a
10-bus-MG test system to investigate its effectiveness in the management of the system and also on a 33-bus-
MG test system to study its scalability.

INDEX TERMS Distributed energy resources, DERs, multi-agent microgrid, P2P operational optimization,
peer-to-peer management, renewable energies, stochastic optimization.

ACRONYMS

DER Distributed energy resource
MG Microgrid
MGO Microgrid operator
MAS Multi-agent system
P2P Peer-to-peer
MPC Model predictive control
CVaR Conditional value-at-risk
ESS Energy storage system
EV Electrical vehicle
PV Photovoltaic
WT Wind turbine
FC Fuel cell
MT Microturbine
CHP Combined heat and power
DG Diesel generator
CDF Cumulative distribution function

I. INTRODUCTION

Recently, the high integration of independently operated
distributed energy resources (DERs) as well as the local
systems’ concerns regarding the independency from the
upstream power grids have resulted in significant
transformations in the operation and planning procedures of
the local systems; i.e., microgrids (MGs). In this regard,
MGs, as entities thriving at a rapid pace, facilitate the
integration of the independently operated agents, which may
have different types of local resources and consumption
parameters, into power systems [1]. Although the expansion
of MGs brings lots of advantages for the entire power
system; it would result in the complexity in the energy
management of local systems, which should be handled in an
efficient manner [2].

The energy management methods that have been employed
in MGs could be classified into two general clusters of
centralized and decentralized approaches. In the centralized
methodologies, in order to manage the system, the MG
operator (MGO) runs a centralized optimization problem that
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contains all the operational information of the system gents.
Nevertheless, the decentralized approach enables each agent
to independently run its own optimization problem with
respect to its respective profits and objectives. Note that the
centralized approach provides the global optimum response
of the overall system, which would maximize the social
welfare of the system. However, with the introduction of
restructuring and privatization in power systems, there is a
significant preference to deploy decentralized operational
management approaches in energy systems. Furthermore, it
is noteworthy that the decentralized approaches would
address the privacy concerns of prosumers in the system [3],
[4]. As a result, new efficient decentralized management
approaches seem to be required in MGs by the expansion of
the multi-agent system (MAS) concept which includes
independent entities operating their respective resources [5],
[6].

In recent years, several management concepts are
employed by research works in order to develop
decentralized operational frameworks in power systems. In
this regard, implementing a decentralized peer-to-peer (P2P)
market framework for managing energy trading in an
islanded multi-agent MG seems to be an efficient and
applicable methodology. In such a framework, each agent
would be able to participate in the power market as a
buyer/seller while maximizing its respective profit.

The P2P structure has been taken into consideration by
many academic research works in order to facilitate the
operation of MASs in power systems from different
perspectives [7]. Reference [8] overviews several aspects
associated with implementing P2P structures in MGs in
order to discuss the challenging and critical points of the
concept by considering different layers of the system.
Authors in  [7] have developed two mechanisms for the P2P
market; i.e. “auction-based” and “bilateral contract-based”
markets. In the first mechanism, prosumers offer bids in the
market, while the distribution system operator clears the
market and announces the prices. Moreover, after clearing
the market, the prosumers have an opportunity to adjust their
bids, and this process is continued until the convergence
satisfaction. The second mechanism is similar to the first
step, however, there is a platform instead of the market
administration. In this platform, the offers are posted and
agreements occur. Reference [9] overviews some solutions
around decentralized P2P trading as well as its controlling
issues. Moreover, this paper proposes certain business
models for P2P structures and discusses some merits and
demerits of them. Authors in [10] have proposed a method
for the P2P trading market utilizing the double auction
concept. In this context, agents set their supply and demand
information, and finally strive to maximize their profit while
determining the market price. Furthermore, [11] eliminates
the role of central entities by implementing the P2P energy
market in MGs. In this paper, seven factors of a P2P market
that facilitates the efficient operation of the MG are also

analyzed. Moreover, a continuous double auction in the P2P
structure is taken into account in [12] in order to model the
power market; while [13] considers a hierarchical P2P model
structured in three levels; i.e. P2P transaction between nano-
grids in an MG, P2P transaction between MGs within a
multi-MG, and P2P transaction between multi-MGs.

Reference [14] has developed a P2P energy market in
which the seller and buyer agents bid for the energy price
that they want to trade. In this regard, seller agents begin to
bid with the highest possible price and, as the algorithm
proceeds, they reduce their prices gradually; while the buyers
begin with the lowest price and then increase their offered
bids. This paper has implemented a willingness function to
model the effect of the time pressure associated with the
market closure, historical records, and supply/demand data
in the market. In the proposed market model in [15], the price
of energy is firstly determined based upon the bids of the
buyer and seller agents for the energy amount that they prefer
to trade. Then a Bayesian game is conducted between the
agents in order to ascertain the equilibrium point associated
with the energy exchanges between agents considering
DERs’ probability distribution. In addition, in [16], first, a
non-cooperative game is conducted among the seller agents
taking into account the energy demand of buyers in order to
determine the amounts of selling energy. Afterward, the
energy price is determined based on the proposed double
auction between buyers and sellers utilizing the results of the
non-cooperative game. In this regard, the obtained price
from the auction market stage is used in the non-cooperative
game and the results of the game are utilized in the auction
market, iteratively. Note that previous research works in [7]–
[9], [11]–[14], [16], [17] have not modeled the uncertainty
associated with the operational scheduling of agents in the
developed P2P market framework. Moreover, these works
primarily focus on limited local resources operated by
independent agents in the system. On the other hand,
utilizing a model predictive control (MPC) method in order
to improve the agents’ decision-making procedure as well as
the conditional value-at-risk (CVaR) function to model the
prediction risks of agents, have not been taken into account
in these papers. It is noteworthy that the developed models
in [18], [19] have merely considered the reactive power
management in the system. In this regard, authors in [18]
have utilized a distributed algorithm to limit the information
exchange between neighboring agents of the system.
Moreover, in [19], a compressive sensing technique is
employed to compress the massive data exchange in the
power system. Based on the above discussions, these
references have not implemented the P2P transaction in
energy systems, while this paper aims to model the P2P
active power exchange in a multi-agent microgrid. The
contributions of this paper can be also briefly rendered as the
following points.

 Implementation and study of different local
resources operated by independent agents
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considering the correlation between renewable
energies in P2P market optimization.

 Implementation of the uncertainty of the agents’
operational scheduling in the P2P market framework

 Implementation of the MPC method for a better
decision-making procedure by agents

 Implementation of the CVaR function for prediction
risk modeling

A simplified comparison of previously developed schemes
with the proposed model in this paper is presented in Table
1.

TABLE 1. Taxonomy of research works on P2P management of
Microgrids.
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[1] - ✓ - ✓ - -

[7]–[17] - ✓ ✓ - - -

[18], [19] ✓ - - - - -

This
paper - ✓ ✓ ✓ ✓ ✓

Based upon the previous discussions, this work aims to
develop a P2P market framework in an isolated multi-agent
MG in order to operate the system taking into account its
respective distributed nature. In the proposed approach,
agents strive to maximize their own profits, while MGO
evaluates the convergence as well as the demand-supply
balance in the system. Furthermore, a stochastic optimization
approach is employed in the proposed framework to address
the uncertainty associated with the renewable energy sources
(i.e., photovoltaic and wind power units) in optimization
models of independent agents. Note that meteorological
features are generally correlated in the geographical area
where the multi-agent MG is located. In this regard, the
Copula concept is taken into account to develop the scenarios
associated with the power generation by RESs in different
agents. Moreover, the MPC method is taken into
consideration with the aim of modeling the operational
characteristics of the future time intervals while optimizing
each agent’s operational scheduling in the current time
interval [20]. In this regard, agents operating energy storage
systems (ESSs) and electrical vehicles (EVs) would be able
to optimize their resource scheduling in an efficient manner.
Furthermore, the conditional value at risk (CVaR) concept is
deployed in the optimization formulation of agents in order

to address the risk associated with scenario-based stochastic
optimization conducted by each agent. Note that while the
previous research works have merely considered limited
resources; this paper strives to study the effect of different
kinds of power resources operated by independent agents in
the operational management of the system. In this regard, in
the proposed model, agents could manage a wide range of
DERs including photovoltaic (PV), wind turbine (WT), fuel
cell (FC), microturbine (MT), combined heat and power
(CHP), diesel generator (DG), as well as ESSs and EVs. It is
noteworthy that, in the proposed model, every agent would
independently run an optimization problem to decide about
its affairs such as the energy trades with other agents, power
generation, and charging/discharging of ESS/EV units.
Finally, the proposed algorithm would cope with the
distributed nature of the system which would address the
privacy concerns of independent agents in the system.

In this paper, the system modeling and respective pre-
assumptions in the proposed scheme as well as the Copula-
based scenario generation and mathematical model of
generation units in each agent are represented in Sections II.
A, II. B, and II. C, respectively. Moreover, modeling the cost
function of agents is discussed in Section II. D. Furthermore,
in Section II. E. the developed P2P market framework is
explained in detail and the methods utilized for the
convergence improvement are represented in this section.
Finally, the proposed model is implemented on a 10-bus MG
test system in order to discuss its effectiveness in Section III,
followed by the conclusion in Section IV.

II. METHODOLOGY

A. SYSTEM MODELING
In this work, MGs are considered to be operated as an MAS
owing to their alignment with the distributed nature of modern
MGs as well as privacy-preserving advantages. In MASs, it is
conceived that independent entities known as agents would
manage their resources with the aim of maximizing their
respective profits. Therefore, within an MAS framework, the
decision-making process is distributed between the agents; in
other words, the objectives of the agents may be different from
each other and also from the global objective of the society
[21]. In this regard, a simplified structure of multi-agent
microgrids considered in this paper is represented in Fig. 1. In
this respect, it is assumed that agents would be able to operate
different types of DERs in order to develop a general P2P
market framework.  Finally, regarding the system presented in
Fig. 1, the MG is assumed to be operated in an isolated mode.
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FIGURE 1.  A simplified model of the considered multi-agent microgrid.
Based on the expansion of power generation resources such

as renewable energies in local systems and intentions for
independency from the upper-level network, the MG’s agents
would desire to trade energy together in order to maximize
their profits. In other words, agents with an extra amount of
energy prefer to sell their surplus power; while other agents
want to purchase energy due to their energy shortages. This
condition could benefit both the buyers and sellers; therefore,
the development of local markets in MGs that facilitate the
power exchanges among the agents seems to be necessary for
modern energy systems. Consequently, in this paper, a new
P2P market framework is proposed to manage the power
trading among the independently operated agents which also
copes with the conditions of the MG. In this structure, it is
assumed that MGO would monitor the behavior of agents to
assure the proper execution of trades, exchanges, and
settlements in the market. In this paper, for the sake of
convenience in the modeling of the proposed framework, three
sets are considered for the agents, time intervals, and scenario
numbers as {1, 2, , }K k  , {1, 2, , }T t  , and

{1, 2, , }S s  , respectively. Hence, all over the context of
this paper, k, t, and s would present the index of the agent, time
interval, and scenario, correspondingly. In the next sections,
first, the Copula-base scenario generation procedure for
renewable energy sources is illustrated. Moreover, the overall
cost function of system agents is obtained based on the
mathematical operational modeling of their resources. Finally,
the proposed algorithm for implementing the P2P market
framework in the MG is presented considering the agents’
optimization problems.

B. Copula-based Scenario Generation Utilizing K-Means
Clustering Approach
In the developed P2P structure, stochastic optimization
modeling is employed to consider the uncertainty of
renewable energies in the operational optimization of
system agents. Nevertheless, as mentioned, the
uncertainty of renewable energies is initiated due to
their dependence on meteorological characteristics. Note
that the meteorological parameters are typically

correlated in the geographical area of the multi-agent
MG. In this regard, it is assumed that the MGO is the
responsible entity for the scenario generation of
renewable energies in each agent taking into account
their corresponding correlation. In this context, the
Gaussian Copula method is taken into consideration in
this paper to demonstrate the correlation between
power generation by renewable energies in system
agents. In this model, Copula functions enable the
formulation of multi-variable functions to show the
correlation between stochastic variables. As a result, the
three steps discussed in the following sub-sections are
taken into account in order to generate the scenarios
associated with the renewable energies in system agents.
1)  MODELING THE STOCHASTIC DEPENDENCE:
In the Copula-base modeling, rank correlation ( r ) is
taken into account to measure the stochastic dependence
among the respective decision variables. Consequently, the
rank correlation between the random variables X and Y with
the cumulative distribution functions (CDFs) of FX and FY is
modeled as below:

( , ) ( ( ), ( ))r X YX Y F X F Y  (1)
Where   is a function that measures the linear correlation
between ( )XF X  and ( )YF Y .

2)  MODELING THE COPULA-BASED CORRELATION:
    In this paper, the Gaussian copula function, i.e.,

1 2( , ,..., )NG u u u , is taken into consideration to develop the

multi-variable joint distribution 1 2( , ,..., )NF x x x  based upon
the CDF functions of its respective variables as below:

1 21 2 1 2( , ,..., ) ( ( ), ( ), ..., ( ))
NN x x x NF x x x G F x F x F x (2)

3) K-MEANS BASED CLUSTERING APPROACH:
In the third step, first, N scenarios are generated in the
domain of [0,1]N by utilizing the joint multiple-variable
function, which is represented in (2). After that, the inverse-
CDF function is taken into account to re-cast the variables to
their corresponding primary domains. Furthermore, the N
scenarios generated are partitioned into S categories, which
are considered as the final scenarios to conduct the P2P
management model. Note that the defined procedure in this
section is employed to generate the operational scenarios for
PV and WT units. Respectively, the correlation of solar
irradiance and wind speed could be considered to measure
the rank correlation as well as copula function formulation.
After finalizing the scenarios, each agent employs its
respective solar irradiance and wind speed in each of the
scenarios to measure the output power by its renewable
resources. It is noteworthy that, in the developed procedure,
the copula model and correlation analysis could be modeled
based on the accumulated power output of renewable
energies in the system agents. Consequently, the finalized
generated scenarios would show the power output by PV and
WT units in each agent and so could be effortlessly allocated
to the respective sources in the agent to conduct the agent
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operational optimization in the P2P management model. A
more detailed illustration of the strategy employed for
scenario generation as well as the clustering approach is
presented in [22].

C. MATHEMATICAL MODELING OF GENERATION
UNITS
1) OPERATIONAL COST OF PHOTOVOLTAICS/WIND
TURBINES:
Operational and maintenance costs of PVs and WTs should
be modeled by the agents in their respective cost functions
as follows [17]:

, , , , , , , ,( )pv pv pv pv
k i k i t s k i k i t sf P P       (3)

, , , , , , , ,( )wt w t wt wt
k i k i t s k i k i t sf P P       (4)

, , , ,, , , , ,pv pv wt wt
k i t s k ik i t s k iP P P P       (5)

In these equations, ,
pv

k if / ,
wt
k if   is the operational cost of

agent k’s PV/WT unit i. Moreover, , , ,
pv

k i t sP / , , ,
wt
k i t sP , ,

pv
k i /

,
wt
k i , and ,

pv
k iP / ,

wt
k iP  represent the power production by the

PV/WT at the time t and the scenario s, the maintenance cost
per unit of the power generation by PV/WT, and the maximum
possible amount of the power production by PV/WT,
respectively. It is noteworthy that notation i in (3)-(5) shows
the index of agent k’s PV/WT units.
2)  OPERATIONAL COST OF FUEL CELLS:
FCs conventionally consume some resources as their fuel
and produce some products along with electrical energy. In
this regard, a simple kind of FC combines oxygen and
hydrogen as input resources and produces water in addition
to electrical power [23]. Therefore, as long as an FC does not
run out of fuel, it would continue the generation process.
Respectively, the cost associated with the operation of FC
units is dependent on the fuel cost and so is modeled as
follows [17]:

, , , , , , , ,
,

( ) ( )
fc

fc fc fc fc
k i k i t s k i k i t sfcfc

k i

f P P
p





 


     (6)

, , , , ,
fc fc fc

k i k i t s k iP P P       (7)

Where, ,
fc

k if  and , , ,
fc

k i t sP  present the operational cost
associated with ith FC in the agent k as well as its power
generation at time t and scenario s. Moreover, fc , fcp , ,

fc
k i

, ,
fc
k i , ,

fc
k iP , and ,

fc
k iP  represent the fuel cost per 3m , power

produced per 3m of consumed fuel, the FC’s efficiency, the
maintenance cost per unit of , , ,

fc
k i t sP , and the minimum and

maximum limits of the power production by the FC unit,
respectively.
3)  OPERATIONAL COST OF MICROTURBINES:

MT units are high-speed small-scale gas turbines that could
be located in local systems and be operated by independent
agents. The energy produced by an MT is in a mechanical
form which would be transformed into electrical energy.
Consequently, similar to FCs, costs associated with the
operation of MTs are highly affected by their fuel costs. In
this regard, the cost function of ith MT unit of agent k could
be defined as below [17]:

, , , , , , , ,
,

( ) ( )
mt

mt mt mt mt
k i k i t s k i k i t smt mt

k i
f P P

p





 


     (8)

, , , , ,
mt mt mt

k i k i t s k iP P P       (9)

Where, ,
mt

k if , , , ,
mt
k i t sP , and mt  indicate the MT’s

operational cost, its power generation, and fuel price,
correspondingly. Furthermore, mtp , ,

mt
k i , ,

mt
k i , ,

mt
k iP , and

,
mt

k iP  correspondingly represent the generated power amount
per 3m of the fuel consumption, the MT’s efficiency, the
maintenance cost per unit of , , ,

mt
k i t sP , as well as the minimum

and maximum limits of MT’s power generation.
4)  OPERATIONAL COST OF COMBINED HEAT AND
POWER UNITS:
CHPs could simultaneously generate heat and electricity
which enables them to be more economical compared with
the MTs. In other words, utilizing the heat production of the
MTs results in the improvement of their efficiency as well as
decreasing their fuel costs. In this respect, the costs
associated with the CHP units could be formulated as follows
[17]:

,,
, , , , , , , ,

, ,

( )
( ) (1 )

chp emt
k k ik ichp chp chp chp

k i k i t s k i k i t smt mt b
k i k i

r
f P P

p

 


 

 
   

  

(10)

, , , , ,
chp chp chp

k i k i t s k iP P P                   (11)

Where, ,
chp
k if  and , , ,

chp
k i t sP  demonstrate the operational cost of

the ith CHP and its power generation. Moreover, ,
chp
k i , ,

chp
k iP ,

,
chp

k iP , kr , ,
chp
k i , ,

e
k i , and ,

b
k i  indicate CHP’s maintenance

cost per unit of , , ,
chp

k i t sP , the minimum and maximum limits of

CHP generation, the heat recovery factor, the total efficiency
of the CHP, as well as the CHP’s electrical efficiency and its
boiler’s efficiency, respectively. Finally, mt , mtp , and ,

mt
k i

are the parameters of the MT utilized in the optimization,
which demonstrate the fuel price, the generated power amount
per 3m of the fuel consumption, and the efficiency of the MT,
correspondingly.
5)  OPERATIONAL COST OF DIESEL GENERATORS:
DGs are a type of DERs that utilize diesel fuel to produce
electrical power. In this context, their relative operational
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costs could be obtained from the formulations stated below
[24]:

2
, , , ,

, , , , , , , ,
, ,, , ,

( )
( )

dg
k i k i t sdg dg dg dg

k i k i t s k i k i t sdg
k i k ik i t s

A P
f P P

B P C


 
  
  

   (12)

, , , , ,
dg dg dg

k i k i t s k iP P P     (13)

Where, ,
dg

k if , and , , ,
dg

k i t sP  are the operational cost of ith DG

unit, and its respective power generation; while ,
dg
k i , ,

dg
k iP ,

and ,
dg

k iP present the DG’s maintenance cost per unit of , , ,
dg

k i t sP
, as well as the minimum and maximum limits associated with
the DG’s power generation, respectively. Note that ,k iA , ,k iB

, and ,k iC are fixed constants declared by the manufacturer.

D.  MATHEMATICAL FORMULATION OF AGENTS’ COST
FUNCTIONS
This section aims to extract the overall costs of an agent and
model it by one compact function. In this context, all kinds of
costs associated with the operational management of an agent
are presented in the following subsections, and then an overall
function that models the cost of each agent while participating
in the P2P market model is presented.
1)  GENERATION COSTS OF AN AGENT:
In this paper, it is assumed that agents could operate six types
of distributed power generation units including PV, WT, FC,
MT, CHP, and DG. In this regard, the cost of an agent
associated with generation units is simply obtained by
summing generation units’ costs as follows:

, , , ,, , ( )
x
n

gen x x
k i k i t sk t s

x X i I

f f P
 

      (14)

Where, , ,
gen

k t sf  is the total generation cost, X presents the set
of generation types defined as  , , , , ,X p v w t fc m t c h p d g ,

and x
nI  shows the set of distributed generation units in agent

n.
2)  OPERATIONAL COST OF ENERGY STORAGE
SYSTEMS:
In the proposed scheme, it is considered that agents would be
able to possess ESSs to enhance their flexibility against high
prices in the system. This would also increase the overall
flexibility of the system [1]. In this regard, the operational
cost of ESSs and their relative constraints could be modeled
as (15) – (18) [25].

, , , ,
, , , , , ,
ESS ESS c ESS c ESS d ESS d

k t s k k t s k k t sf P t P t        (15)

, , , ,
, , , ,0 , 0ESS c ESS c ESS d ESS d

k t s k k t s kP P P P       (16)
, , , ,

, , 1 , , , ,
ESS ESS ESS c ESS c ESS d ESS d
k t k t k k t s k k t sS S P t P t         (17)

, , ,
ESS ESS ESS ESS ESS
k k cap k t k k capSL S S SL S     (18)

In these equations, , ,
ESS

k t sf , ,
, ,

ESS c
k t sP , ,

, ,
ESS d

k t sP , ,ESS c
k , and

,ESS d
k   show the operational cost of the ESS, its charging and

discharging amount, as well as the depreciated costs of the
charging and discharging of the ESS unit, respectively.
Moreover, ,ESS c

kP , ,ESS d
kP , ,

ESS
k tS , ,ESS c

k , and ,ESS d
k

correspondingly declare the maximum limit of charging and
discharging, energy level, and the charging and discharging
efficiency of the ESS unit. Finally, ESS

kSL , ESS
kSL , and ,

ESS
k capS

present the minimum and maximum energy level as well as
the capacity of the ESS unit, which are taken into account to
assure the optimal lifetime of the ESS unit. It is important to
note that in equation (17), , 1ESS c

k  , while , 1ESS d
k  .

3)  OPERATIONAL COST OF ELECTRICAL VEHICLES;
From the management point of view, EVs could improve the
flexibility of the system. Similar to ESSs, the operational
formulation of the EVs could be modeled as follows:

, , , ,
, , , , , ,
EV EV c EV c EV d EV d

k t s k k t s k k t sf P t P t        (19)

, , , ,
, , , ,0 , 0EV c EV c EV d EV d

k t s k k t s kP P P P       (20)
, , , ,

, , 1 , , , ,
EV EV EV c EV c EV d EV d
k t k t k k t s k k t sS S P t P t         (21)

, , ,
EV EV EV EV EV
k k cap k t k k capSL S S SL S     (22)

In the developed formulation, , ,
EV

k t sf  is the operational cost

of the EV unit; while ,
, ,

EV c
k t sP / ,

, ,
EV d

k t sP presents the
charging/discharging power during the time interval t .
Moreover, ,EV c

k / ,EV d
k  shows the depreciated cost of the

charging/discharging of the EV unit, and ,EV c
kP / ,EV d

kP
indicates the maximum limit of the power
charging/discharging. Moreover, ,

EV
k tS  demonstrates the

EV’s energy level, and ,EV c
k / ,EV d

k  shows the efficiency

of the EV unit charging/discharging. Finally, EV
kSL / EV

kSL

presents the minimum/maximum energy level of the EV unit,
and ,

EV
k capS  demonstrates the EV’s battery capacity. It is

noteworthy that, similar to ESSs, in equation (21), , 1EV c
k 

, while , 1EV d
k  .

In order to model the time periods that the EV unit is
connected to the grid, it is assumed that the agents arrive at
home at the time ar

kt  and exit at ex
kt . Furthermore, EVs could

merely be charged at home. Finally, as presented in (23) and
(24), it is presumed that the energy level of the EV’s battery
at ar

kt  is equal to ,EV ar
kSL , and the energy level at ex

kt  should

be equal to or greater than ,EV ex
kSL . It is noteworthy that in

the equations (19) to (22), ,
, ,

EV c
k t sP  and ,

, ,
EV d

k t sP  show the
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charging and discharging amount of the EV while the EV is
connected to the grid at home.

,
, ar

k

EV EV ar
kk tS SL    (23)

,
, ex

k

EV EV ex
kk tS SL    (24)

4)  MODELING THE POWER CONSUMPTION OF EACH
AGENT:
In the proposed framework, the power consumption by
agents’ demands is modeled with the utility function. In this
regard, the utility function presents the utility received by the
agents while consuming energy. Two main types of utility
functions exist for modeling the satisfaction that the agents
earn by energy consumption including the quadratic utility
function and logarithmic utility function. In this paper, a
quadratic utility function is utilized in order for quantifying
the utility of agents in which as an agent consumes more
energy, the utility acquired by him would be increased.
However, this utility increment would be decreased in higher
amounts of consumption and in very high amounts of
consumption the utility would be fixed. This is because when
an agent begins to consume energy, his satisfaction highly
increases but this increment of satisfaction diminishes
gradually with the increment of consumption, and from a
certain point, the increment of consumption has no effect on
satisfaction enhancement for the agent. Respectively, , ,

utility
k t sf

demonstrates the load utility function of the kth agent at time
t and scenario s could be obtained as follows [26], [27]:

,2
, , , , , , ,

, , 2
, ,

, ,

( ) 0
2

( )1
2

k tu u uk
k t k t s k t s k t s

kutility
k t s

k t k t u
k t s

k k

P P P

f

P






 
 


  

 
 


    (25)

, , , ,
u u u

k t k t s k tP P P     (26)

Where, , 0k t  is the parameter of consumption, 0k 

shows a predetermined constant parameter, and , ,
u
k t sP models

the power consumption which is considered to be between the
minimum limit of ,

u
k tP and the maximum limit of ,

u
k tP .

5)  TRADING COSTS OF EACH AGENT:
Agents could trade with each other in the P2P market
maximizing their profits with respect to their role; i.e., seller
or buyer. In this regard, in order to model the costs/profits
associated with the agents owing to their energy transactions,
it is assumed that ,

tr
j tf , ,j t , ,

pur
ij tP , and ,

s
j tP  represent the

cost associated with the energy trading of agent j at time t,
the power exchange price, the amount of power that agent j
purchases from agent i, and the amount of power that agent j
prefers to sell to other agents. In this regard, ,

tr
j tf could be

formulated as follows:

s
, , , , ,
tr pur
j t i t ij t j t j t

i K

f P P 


 
   
 
    (27)

Note that ,j t , ,
pur

ij tP , and s
,j tP are positive parameters.

Moreover, the power purchased by agent j (i.e., ,
pur
j tP ) could

be defined as follows:

, ,
pur pur
j t ij t

i K
i j

P P



    (28)

Finally, in the proposed model, as equation (29)
demonstrates, a system agent could not act as a seller and
buyer at the same time. It is noteworthy that the constraint
(29) is replaced by (30) in order to decrease the running time
of the optimization problem.

s
, , 0pur

j t j tP P     (29)

, , , ,
pur s pur s

j t j t j t j tP P P P      (30)

6)  OVERALL COST FUNCTION OF EACH AGENT AT THE
PRESENT TIME INTERVAL:
Agents need to sum all their costs up within a single equation
in order to be able to decide about their actions in the P2P
market. In this regard, the overall cost function of agent k at
the present time interval t (i.e., , ,

N
k t sf ) is derived as (31) by

adding all the sub-functions discussed in previous parts.

, , , , , , ,, , , ,
gen utilityN ESS EV tr

k t s k t s k t s k tk t s k t sf f f f f f        (31)

It is noteworthy that the optimization conducted by the
agent k for determining the resource scheduling at the current
time interval that the P2P market is running would result in
here-and-now decisions.
7)  MODEL PREDICTIVE CONTROL APPROACH:
In order to improve the decision-making process by each
agent, the MPC concept is employed in this paper. In this
regard, in the developed scheme, agents consider the kH
time intervals in their optimization problems to decide the
charging/discharging of their ESSs/EVs at the current time
interval [28]. In this context, each agent would consider (32)
to model the cost function at future time intervals.

,
, , , , , , ,, , , , , ,

gen utility F purF ESS EV F
k h s k h s k h s h sk h s k h s k h sf f f f f P         (32)

Where, , ,
F

k h sf  shows the total cost of agent k at the future

time interval h and scenario s, ,
F
h s represents the predicted

energy price at the future time interval h, and ,
, ,
f pur

k h sP is the

amount of power that the agent k would purchase. Note that
,

, ,
f pur

k h sP could be either positive or negative. In this regard,

when ,
, ,
f pur

k h sP  is negative/positive, it means that the agent

wants to sell/purchase power at the future time interval h. It is
noteworthy that the agents would consider the predicted power
generation by PV and WT units, power consumption, and the
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,
F
h s at future time intervals. As mentioned, the scenarios

associated with the power generation by renewable energies
would be determined by the Copula method. Moreover, it is
possible that agents utilize various prediction methods such as
learning algorithms to amend their anticipations at future time
intervals [29]. Finally, note that, in this paper, scenario-based
stochastic optimization is taken into account in order to model
the uncertainty associated with these operational parameters
of future time intervals.

E.  IMPLEMENTING THE DEVELOPED P2P MARKET
FRAMEWORK
The overall flowchart of the proposed P2P market scheme
which would be conducted in a step-wise manner at each time
interval in order to manage the power transactions in multi-
agent MGs is presented in Fig. 2. In this regard, the proposed
algorithm would determine power exchanges among the
system agents at the respective time interval. In the developed
management scheme, first of all, agents should determine their
preliminary prices for the first time that the algorithm is run;
nevertheless, as the proposed procedure is conducted
iteratively, they would be able to amend the preliminary prices
in the future steps. The next steps of the flowchart would be
illustrated in the upcoming subsections. In the simulation of
the proposed model, without loss of generality, it is considered
that all of the agents are sellers at the first iteration and they
declare their selling prices. Nevertheless, note that s

,k tP  would
be equal to zero for buyer agents in the optimization problem
because buyers need purchasing power rather than selling it.
In other words, in order to simplify the application of the P2P
model in multi-agent systems, at the first iteration, agents
would be conceived as sellers, while they would amend their
role based on the operational condition of the system in the
future iterations. This role changing through the iterations is
more explained within the updating prices procedure
subsection of section E.

Agents initialize their prices

Having prices, agents run their own
optimizations (equation 36) to know

how much they want to buy or sell (an
agent cannot be both buyer and seller)

Sellers update their prices with respect
to supply and demand (equation 43)

Is the termination
criterion (equation 40)

satisfied?

Yes

Market is cleared

No

FIGURE 2.  The flowchart of the proposed P2P market in multi-agent
MGs.

1)  OPTIMIZATION PROBLEM OF THE AGENTS:

After the initialization step in the flowchart, agents should
run an optimization problem to decide about the scheduling
of their resources. Moreover, agents should determine their
roles as buyers or sellers and the respective amount of power
to be purchased/sold. Furthermore, as previously mentioned,
agents would consider future time intervals in order to utilize
the MPC approach. In this regard, a scenario-based
formulation is taken into account in the optimization
modeling of agents in order to model the uncertainty
associated with the prediction procedure. Respectively, each
scenario would be associated with a probability to be
employed in the optimization formulation. Therefore, if sp
indicates the probability of scenario s; the scenario-based
optimization problem would be defined as follows:

1

, , , ,
1

, ,
kt H

N F
s k t s k h s

s S h t

Min p f f k K t T
 

  

             
      (33)

Subject to the aforementioned constraints of (5), (7), (9),
(11), (13), (16) - (18), (20) - (24), (26), (30), and:

s
, , ,,

, , , , , , ,
, , , , , , , ,

, , ,

x
n

puru
k t s k tk tx

k i t s ESS c ESS d EV c EV d
x X i I k t s k t s k t s k t s

P P P
P

P P P P

s S k K t T
 

   
 
    

     

        (34)

 

,
, , , ,

, , , , , , ,
, , , , , , , ,

, , , 1, , 1

x
n

f puru
k h s k h sx

k i h s ESS c ESS d EV c EV d
x X i I k h s k h s k h s k h s

k

P P
P

P P P P

s S k K h t t H
 

  
 
    

        




    (35)

Where, equations (34) and (35) respectively present the
power balance constraints associated with the current time
interval t and the future time interval h of system agents.
2)  IMPLEMENTATION OF THE CVAR CONCEPT:
While modeling scenario-based stochastic optimization
could address the uncertainty of the decision parameters
associated with the future time intervals, the CVaR concept
is taken into account to address the risk associated with the
uncertainty of decision parameters. In this regard, based on
the CVaR definition, in the case of considering   as a pre-
determined parameter in the range of [0, 1], the expected
value of the profits less than (1 ) -quantile of the profit
distribution would be equal to CVaR. In this regard,
integrating this concept with the existing optimization
problem enables the agents to manage their risks toward the
uncertainty of decision parameters. As a result, the
optimization problem associated with system agents could be
formulated as follows:

, ,

1

, ,
1

, , ,

(1 )

, ,

1
1

k

N
k t s

t Hs F
s S k h s

h t

k t s k t s
s S

f

f
Min k K t T

v u

 

 


 


 



   
   
   
              

  
    

    

 



    (36)
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Subject to the aforementioned constraints of (5), (7), (9),
(11), (13), (16) - (18), (20) - (24), (26), (30), (34) and:

, ,

1
, , ,

, ,
1

, , ,k

N
k t s

t H
k t k t sF

k h s
h t

f

v u s S k K t T
f

 

 

 
 
         
 
  


    (37)

, , 0, , ,k t su s S k K t T          (38)

Where  is the risk aversion factor, ,k tv  is an auxiliary

variable, and , ,k t su is a non-negative variable for scenario s that

is the maximum of
1

, , , , ,
1

kt H
N F

k t k t s k h s
h t

v f f
 

 

 
   
 
 

  and zero

[30].
3)  UPDATING PRICES PROCEDURE:
After the optimization step in the developed market
algorithm presented in Fig. 2, agents update their prices
considering the overall supply and demand requests in the
market; which is formulated as follows:

s
, , , ,( 1) ( ) ( ) ( ) ,d

k t k t k k t k tl l P l P l k K               (39)

In this equation, , ( )k t l  demonstrates the price of agent k in

iteration l, , ( )d
k tP l  shows the total demand that is requested

from the agent k in iteration l, and k  is the convergence
factor. In this context, agents could independently determine
their respective k . As it is shown in (39), whenever an
agent’s total demand is greater/lower than its total supply, its
price increases/decreases. As mentioned, s

, ( )k tP l  would be
equal to zero for buyer agents. Therefore, according to
equation (39), their price values would continuously be
increased in the next iterations. Thus, since the price values of
these agents are higher than the seller agents’ prices in the
upcoming iterations, the total purchase amount from these
agents would be decreased gradually and reaches to zero.
Consequently, buyer agents would have high price values and
no one would purchase energy from them. This shows how
buyer agents are managed in the proposed scheme; while their
roles were automatically selected as sellers at the beginning of
the proposed algorithm.
It is noteworthy that the determination of k is dependent on
every agent’s own strategy for the price updating process and
there is no limitation on it. As k  gets greater values, the
deviations of price values increases but the accuracy of the
optimum price values decreases. In this model, it is assumed
that the agents choose lower values for k when the iteration
number is low and increase it gradually when the iteration
number grows.
4)  THE TERMINATION CRITERION:
Simply, in case the changes in prices of all the agents are
negligible with a criterion of ( ) compared with the prices

of the previous iteration, the algorithm would be considered
as converged and the iterative model would be terminated.
In this regard, this criterion could be formulated as:

, ,( 1) ( ) ,k t k tl l k K          (40)

F.  CONVERGENCE IMPROVEMENTS
In order to amend the price convergence, some methods have
been devised to be applied in the proposed algorithm. In this
context, these methods are described in the rest of this section.
1)  LIMITATIONS OVER THE CHANGES IN THE POWER
PURCHASES AND PRICES:
In the proposed algorithm, as presented in (41), it is assumed
that agents could merely change their purchase amounts in a
limited range compared with the scheduling in the previous
iteration of running the P2P market model. In this regard,
agent j could alter its respective power purchase from agent
i between two limits which are equal to P  percentage lower
and higher than its power purchase amount in the previous
iteration [31].

, , ,(1 ) ( ) ( 1) (1 ) ( ),pur pur pur
P ij t ij t P ij tP l P l P l j K           (41)

Similarly, in order to prevent the abrupt changes in the
price values, every announced price would not be allowed to
fluctuate more than   percent of the announced price in the
previous iteration; which is formulated as follows:

, , ,(1 ) ( ) ( 1) (1 ) ( ),k t k t k tl l l k K                (42)

2)  LEARNING PROCESS:
Implementing the learning process in the price updating
stage causes the (39) to be developed to (43) which takes into
account the prices announced in the previous w iterations to
improve the convergence.

 s
, , , ,

1

, ,

( 1) (1 ) ( ) ( ) ( )

( ),

d
k t k k t k k t k t

l

k k i k t
i l w

l l P l P l

i k K

   

  


 

      

  
    (43)

Where, k  and ,k i are the learning factor of agent k, and its

weighting factor for , ( )k t i , respectively. Note that the

learning factor is always in the range of  0,1  and models the
impact of the prices of the previous iterations [31].

III. CASE STUDY

In this section, two case studies are investigated: a 10-bus
system for the sake of evaluating the proposed P2P market
model within an islanded MAS and another 33-bus system in
order for studying the scalability of the model. In this regard,
a computer with 32 GB RAM and Core(TM) i7-4770
3.40GHz CPU is used in order for running a simulation
written with MATLAB language utilizing a constrained
nonlinear minimizer solver under the name of “fmincon”
which is available in the optimization toolbox of MATLAB
R2019a software.
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Case 1: 10-bus system
In this case study, the proposed structure is applied to a 10-bus
MG in order to analyze its effectiveness in the operational
management of islanded multi-agent MGs utilizing a P2P
market framework. In this simulation, it is assumed that the
market is running hourly to determine the power exchanges
between agents which are connected to each bus of the system.
The test system and the considered local resources for each
agent are presented in Fig. 3. Note that the operational
characteristics of the local resources and pre-assumptions for
implementing the P2P power market in the multi-agent test
system are presented in [32].

FIGURE 3.  The 10-bus test system utilized in the simulation study.

The simulation is done for 24 hours of a sample day
considering 0.7   and 0.2   in order to investigate the
effectiveness of the developed model in the operational
management of the multi-agent test system.  Considering the
mentioned assumptions, the results of the simulation are
represented in the rest of this section. Noted that the
expected results of implementing the proposed model
are presented and demonstrated in this section. In this
regard, the summation of all the power exchanges between
agents during the 24 hours of the day is shown in Fig. 4 as a
chord diagram. This diagram shows the P2P graph of the
obtained results in the market, in which almost all of the
agents are trading energy with each other during the 24
hours. The Chord diagram of power exchanges is also
depicted at hour 15 in Fig. 5. Moreover, agents 2, 4, 6, and 9
are selected to study their power trading status for 24 hours
in Fig. 6. Accordingly, based on the obtained results, agent 2
is a buyer and agent 4 is a seller agent at all hours of the day;
while agents 6 and 9 are buyers at some hours and sellers at
the other hours of the day.

The average prices of the seller agents during the 24 hours
of running the hourly P2P market framework are also
demonstrated in Fig. 7. Regarding Fig. 7, the average prices at
hours 2, 4, 8, 21, and 23 are higher than the other hours while
running the P2P market model. This is based on the fact that
the total supply power of seller agents is lower than the total
requested power by buyer agents at these time intervals, which
results in higher prices at these time intervals. Note that owing
to the islanded operational mode of the MG, requested power

by agents should merely be supplied by local power generation
resources.

FIGURE 4.  Chord diagram of total power exchanges between the agents
during the 24 hours in kW.

FIGURE 5.  Chord diagram of power exchanges between the agents at
hour 15 in kW.

FIGURE 6.  Purchasing/selling power by agents 2, 4, 6, and 9 during 24
hours.
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FIGURE 7.  Average prices of sellers during 24 hours.
In the rest of this section, agent 8 is taken into account to

inspect its operational scheduling during the 24 hours. In this
regard, Fig. 8 indicates power generation by WT and FC of
agent 8. Regarding the obtained results, the FC unit would not
generate power at hours 12 and 16. This decision is rational

due to the fact that 8,1
8,1

¢( ) 6.38
fc

fc
fc fc kwL





 


; while,

according to Fig. 7, only the power prices at hours 12 and 16

are lower than
¢6.38

kw
. Moreover, Fig. 9 demonstrates the

power consumption of agent 8, while the charging/discharging
of ESS and EV during 24 hours are shown in Figs. 10 and 11,
respectively.

FIGURE 8.  Power generation by WT and FC of agent 8.

FIGURE 9.  Power consumption of agent 8.

FIGURE 10.  Charging/discharging of ESS unit of agent 8.

FIGURE 11.  EV charging/discharging in agent 8.
The proposed model is also conducted considering 0  ,

0.8  , and 1   to study the effect of the risk factor in the
developed operational management procedure. In this regard,
Fig. 12 presents the proportional profit earned by agent 8 in
hours 4, 16, and 21 considering different values of  .
Regarding the obtained results, the total profit of agent 8
decreases as   increases; which means as the agent becomes
more risk-averse, its respective profit would be decreased. In
other words, the decrease in the agent profit would decrease
the agent’s risk associated with the uncertain parameters.

FIGURE 12.  Relative comparison of total profit of agent 8 considering
different risk factors.

Additionally, in order to investigate the convergence status
of the proposed algorithm, the iterative announced prices by
seller agents 4, 5, 6, and 9 in hour 15 are presented in Fig. 13.
Regarding Fig. 13, all of the prices are approximately
converged to 8.15¢; which is reasonable based on the
competition among seller agents. In fact, if a seller agent
increases its price to a higher value, the buyers would decrease
their power purchasing amount from the agent. Moreover,
lower prices will not be the optimum price for the agent taking
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into account the generation costs and other agents’ benefits.
Therefore, the seller agent strives to set its price to a value that
is lower than the other sellers’ prices marginally. Hence, as the
results show in Fig. 13, all the prices are converged to almost
the same value.

FIGURE 13.  Convergence status in hour 15.

Case 2: 33-bus system
   In the previous case study, the proposed model has been
successfully tested on a small 10-bus MG and its various
simulation results have been analyzed to show its
effectiveness in the P2P management of the system. In this
case study, in order to study its scalability, the model has been
run on a 33-bus MG. The MG is assumed to be isolated from
the upper-level network and 32 different agents are connected
to the grid. The considered local resources for each agent of
the test system are shown in Table 2. It is noteworthy that the
operational data of the test system is presented in [32].

TABLE 2. Local resources of agents

Local resources AGENT NUMBERS

PV 1, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 21, 22, 23,
25, 27, 28, 30, 31, 32

WT 4, 5, 6, 8, 13, 14, 15, 17, 22, 23, 24, 26, 31, 32
FC 1, 6, 8, 10, 15, 17, 19, 24, 26, 28
MT 2, 11, 20, 29
CHP 4, 5, 7, 13, 14, 16, 22, 23, 25, 31, 32
DG 3, 9, 12, 18, 21, 27, 30
ESS 1, 8, 9, 10, 17, 18, 19, 26, 27, 28
EV 1, 6, 8, 10, 15, 17, 19, 24, 26, 28

   In the rest of this subsection, the related results are presented
assuming 0.7   and 0   . It should be noted that the
study results are conducted for the 13th hour as a random
sample of 24 hours of a day. In this regard, Fig. 14. shows the
chord diagram of agents’ power exchanges at the 13th hour.
Note that the energy exchanges less than 2 kW are omitted
from Fig. 14 for the sake of simplicity. Moreover, Fig. 15
demonstrates the amount of energy purchased by buyers and
the amounts of sold power by sellers, simultaneously. Based
on the obtained results, the total amount of sold power is equal
to the total amount of purchased power by buyers.

Furthermore, Fig. 16 indicates the selling price of three sample
seller agents (i.e., 4th, 14th, and 27th agent) at hour 13 in all
iterations, which have converged greatly to approximately
8.18¢/kw. The convergence status can be also inferred from
Fig. 15, in which the balance of total sold and purchased power
is approved. These results show the ability of the proposed
model in the P2P management of multi-agent MGs.

FIGURE 14.  Chord diagram of power exchanges between the agents at
13th hour in kW.

FIGURE 15.  The amount of energy exchanged between buyers and
sellers in kw.
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FIGURE 16.  The price of sample sellers in various iterations.

   Additionally, the power generated by PV, WT, and other
types of generation units (which are indicated by X) for each
agent are represented in Fig. 17. Moreover, the power
consumption by different agents is also shown in Fig. 17. It is
noteworthy that X can be FC, MT, CHP, or DG according to
the local resources of each agent.

FIGURE 17.  Generation and consumption amounts of agents at 13th

hour.

IV. CONCLUSION
Based upon the current restructuring trend in power systems,
MGs with multi-agent structures would play a key role in the
integration of independently operated local resources into
power systems. Accordingly, in this paper, a new framework
based on the P2P concept is developed in order to optimize
the power exchanges among agents in an islanded MG. In
this regard, agents would optimize the operation of different
types of distributed power generation sources while
participating in the P2P market organized by the MGO.
Moreover, stochastic optimization is employed in the
optimization model developed for each agent in order to
address the uncertainty associated with the decision
parameters, whereas the CVaR index is taken into account to
model the risk associated with the scenario-based
optimization modeling.

The proposed P2P framework is implemented on a 10-bus
MG test system with a multi-agent structure in order to analyze
its application in the operational management of MGs with
distributed nature. Finally, the simulation results show the
ability of the proposed approach in the operational
management of the multi-agent islanded MGs while
addressing the privacy concerns of the independent agents.
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