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Abstract—As one of the fundamental issues in wireless sensor networks (WSNs), the sensor localization problem has recently

received extensive attention. In this work, we investigate this problem from a novel perspective by treating it as a functional dual of

target tracking. In traditional tracking problems, static location-aware sensors track and predict the position and/or velocity of a moving

target. As a dual, we utilize a moving location assistant (LA) (with a global positioning system (GPS) or a predefined moving path) to

help location-unaware sensors to accurately discover their positions. We call our proposed system Landscape. In Landscape, an LA

(an aircraft, for example) periodically broadcasts its current location (we call it a beacon) while it moves around or through a sensor

field. Each sensor collects the location beacons, measures the distance between itself and the LA based on the received signal

strength (RSS), and individually calculates their locations via an Unscented Kalman Filter (UKF)-based algorithm. Landscape has

several features that are favorable to WSNs, such as high scalability, no intersensor communication overhead, moderate computation

cost, robustness to range errors and network connectivity, etc. Extensive simulations demonstrate that Landscape is an efficient

sensor positioning scheme for outdoor sensor networks.

Index Terms—Wireless sensor networks, localization algorithm, Unscented Kalman Filter.

Ç

1 INTRODUCTION

RECENT years have witnessed explosive interest in
wireless sensor networks (WSNs) both from industry

and academia. It is believed that WSNs will revolutionize
the way in which we understand and construct complex
physical systems [18] and extend our sensory capability to
every corner of the world [12]. Future WSNs may consist of
hundreds to thousands of sensor nodes communicating
over a wireless channel, performing distributed sensing and
collaborative data processing tasks for a variety of vital
military and civilian applications [1]. In most applications,
it is important for the sensor nodes to be aware of their own
locations. The usefulness of sensed data without spatial
coordinates may be highly reduced. Location-aware sensors
may also help to highly enhance the efficiency of routing
protocols [30], [31] by reducing costly message flooding.
However, installing a global positioning system (GPS) [22]
receiver on each sensor node may not be a practical solution
for most applications because of the size, the battery, and
the cost constraints of sensor nodes.

Localization has been studied for many years as a

classical problem in many disciplines, including navigation

systems (VOR [54]) and GPS [22]), the robot localization
problem in mobile robotics [15], [24], [29], user location

identifying in cellular networks [16], [9], [10], and WLANs
[2], [43], [53]. However, solutions for the above problems

may not be directly applicable to networked sensors.

Recently, the sensor location discovery problem has
attracted extensive research efforts. It remains a challenging

problem, however, because several characteristics are

highly desirable for sensor localization schemes and need
to be satisfied simultaneously [12]:

1. The positioning algorithm should be distributed in
order to scale well for large sensor networks.

2. The localization protocol must minimize the com-
munication and computation overhead for each
sensor since nodes have very limited resources
(power, CPU, memory, etc.).

3. The positioning functionality should not increase the
cost and complexity of the sensor much since an
application may require thousands of sensors.

4. A location detection scheme should be robust. It
should work with sufficient precision in various
environments and should not depend on sensor-to-
sensor connectivity/density in the network.

Most research on sensor positioning exploits distance or

angle measurements from anchor nodes (with GPS or preset

location) or neighbors. When the percentage of anchor
nodes (among total nodes) is high enough that each node

has three anchor nodes (noncollinear) in its neighborhood,

then the localization problem is reduced to simple trigono-
metric calculations. To minimize the deployment cost,

however, researchers are more interested in solutions that
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assume only a small fraction of anchor nodes [3], [6], [7],
[14], [25], [47], [48] or even assume that they are anchor-free
[20], [44]. Location discovery for these cases has to rely
more on the node-to-node distance or angle measurements
and the problem itself, in effect, becomes a subset of the
geometric graph embedding problem [5], [17], [34], [44], [50]
or, more generally, a constrained optimization problem [3],
[14], [48]. However, obtaining the optimal solution (esti-
mated locations), in the context of sensor networks, is
challenging. Previous proposals have to make trade-offs
among accuracy, computation overhead, communication
overhead, scalability, and other issues. For example,
collecting all constraints (measurements) and resolving the
optimization problem centrally [14] may involve high
computation complexity, becoming usable only when the
application permits the deployment of a central processor to
perform location estimation [41]; on the other hand, some
distributed solutions (such as AFL [44], which uses a mass-
spring model for refinement) may not be able to avoid high-
volume interactive communications among neighbors.
Furthermore, localization methods based on neighborhood
measurement begin to perform acceptably only when the
node densities are well beyond the density required for network
connectivity [13].

In this work, we propose a novel sensor positioning
solution named Landscape. It is designed for outdoor
sensor networks. In Landscape, by introducing a mobile
location assistant (LA, which could be an aircraft, a balloon,
a robot, a vehicle, etc.), we investigate the localization
problem from a different perspective by taking it as a
functional dual of target tracking. Traditional tracking
problems utilize one or more static location-aware sensors
to track and predict the position (and/or velocity) of a
moving target. In Landscape, we let each location-unaware
sensor discover its position by passively observing a
moving location-aware LA (with a GPS or predefined
moving path). We resolve this functional dual problem by
utilizing an Unscented Kalman Filter (UKF)-based algo-
rithm [28]. One scenario frequently mentioned in the
literature is that sensor nodes are deployed by an aircraft
[38]. Landscape fits well with (but is not limited to) this
kind of sensor applications. We can simply let the aircraft
cruise several rounds above the sensor field, broadcasting
beacons periodically while flying. Each beacon contains the
aircraft’s current location. Sensors collect the beacons,
measure the distance between itself and the LA based on
the received signal strength (RSS), and individually “track”
its own position through the proposed UKF-based algo-
rithm. Landscape has significant benefits compared to other
localization methods for outdoor sensor networks:

. Landscape is a distributed and localized scheme. Each
node discovers its location with its own measure-
ments and calculations. It is applicable to large-scale
sensor networks.

. LA broadcasts beacons and sensor nodes listen
passively. There are no interactive intersensor commu-
nications involved in this process, which not only saves the
sensor’s energy, but also lessens the channel congestion.

. Landscape uses UKF-based algorithms that introduce only
moderate computational cost, compared to other

sequential techniques such as Monte Carlo-based
methods [15], [25], [29]. Landscape provides cost-
accuracy flexibilities. Each sensor node may use less
beacons (less computations) for a lower accuracy or
vice versa.

. Landscape is robust to range errors.

. Landscape is independent of network density and topology
and can be used for sensor networks deployed in
complex outdoor environments.

Extensive simulations have been conducted to study the
performance of Landscape. We have used MDS-MAP [51], a
state-of-the-art sensor localization approach, as the refer-
ence. Simulation results demonstrate the effectiveness and
advantages of Landscape.

The rest of this paper is organized as follows: The next
section presents related work. We describe our proposed
approach in Sections 3 and 4. The performance evaluations
of our proposed system are presented and discussed in
Section 5. We discuss some possible extensions to further
enhance the performance of Landscape in Section 6. Finally,
Section 7 presents our concluding remarks.

2 RELATED WORK

Sensor localization has attracted significant research effort
in recent years. Many approaches have been proposed. The
majority of them assume that a small fraction of the nodes
(called anchors, beacons, or landmarks) have a priori
knowledge of their locations. Most of them also follow a
common process for location discovery. The first phase is to
estimate the distances or angles to anchors or other
neighboring nodes, which is often called ranging. The
second phase is to estimate the positions based on the
ranging measurements. Some proposals have an optional
third phase, which is to refine the position estimation
utilizing the local [48], [51] or global information [51]. There
are different ways to categorize the existing approaches by
the techniques used in these phases. In this section, we give
a brief literature review. First, we classify the existing
methods into three groups according to the ranging
techniques (time of arrival/time difference of arrival
(ToA/TDoA), angle of arrival (AoA), and RSS); we use a
separate section to describe MDS-MAP-related algorithms
[51. Then, we take a glance at Bayesian techniques for robot
location estimations. Finally, we briefly discuss some
approaches that utilize mobile beacons.

2.1 Location Discovery with T(D)oA Measurement

RF ToA is a common technology used to measure distance
via signal propagation time. Since an RF signal travels
0.3 m/ns, using ToA requires precise clock synchronization
between the transmitter and receiver when one-way
measurement is used and, even when two-way measure-
ment (round-trip time) is taken, results may still be highly
biased by the timing inaccuracy caused by any processing
delays [41]. Multipath and nonline of sight (NLOS) are two
other sources of errors for ToA measurements. The most
basic localization system using ToA is the GPS [22], which
requires relatively expensive and energy-consuming elec-
tronics to precisely synchronize with a satellite’s clock [20].
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TDoA uses the difference between the traveling times of
two signals to estimate distance. For example, in AHLoS
[47], Savvides et al. measure the time difference between
two simultaneously transmitted radio and ultrasound at the
receiver. Generally, TDoA gives more accurate distance
estimations than ToA since the second medium (for
example, ultrasound) travels at a much slower speed,
making it not as sensitive to timing as ToA. However,
equipping ultrasound to a sensor node not only means
more cost and energy consumption but also requires nodes
to be densely deployed (ultrasound usually only propagates
to 20-30 feet), which makes it unsuitable for outdoor
applications.

�Capkun et al. [11] proposed a “GPS-free” positioning
scheme for mobile ad hoc networks which utilizes the ToA
method to measure the distances between each node and its
neighbors. AHLoS [47] is a well-known TDoA-based sensor
localization system in which nodes estimate their locations
by iterative multilateration and collaborative multilatera-
tion. Cheng et al. proposed TPS in [12], a novel time-based
positioning scheme for outdoor sensor networks which
utilizes the TDoA technique in a different way than the one
used by Savvides et al. In TPS, TDoA is used to measure the
time difference between two radios relayed through
different paths, instead of the time difference between one
radio and one ultrasound traveling through the same path.

2.2 Location Discovery with AoA Measurement

In AoA measurement, directive antennas or antenna arrays
are used to estimate the angle of arrival of the received
signal from a beacon node. The concept of AoA was
originally used in the VOR/VORTAC system [54] for
aircraft navigation. When used for sensor positioning, two
factors have to be considered: 1) AoA can be difficult to
measure accurately if a sensor is surrounded by scattering
objects [10] and 2) the required directive antennas or
antenna arrays for AoA measurement may become prohi-
bitive for tiny or cheap sensor nodes.

Niculescu and Nath proposed an AoA-based ad hoc
positioning system [38]. To avoid using directive antennas
or antenna arrays, each sensor node is equipped with two
ultrasound receivers placed at a known distance from each
other to calculate the angle of arrival, a technique devel-
oped by the Cricket Compass project [45] at the Massachu-
setts Institute of Technology. A directionality-based scheme
was proposed by Nasipuri and Li in [36] in which they
transferred the need for directive antennas from the sensors
to the anchors by a delicate design.

2.3 Location Discovery with RSS Measurement

RSS has been widely used as a distance measure in the
context of WSNs because of its simplicity. In the RSS
method, the measured received power and the known
transmitted power are used to determine the channel path
loss. Although the path loss is also affected by unpredict-
able shadowing and frequency-selective fading, the path
loss is highly correlated with the path length [40]. RSS-
based localization has been studied extensively [2], [3], [26],
[37], [40], [41], [43], [55]. An extreme case of the RSS method
is connectivity (or proximity) measurement, in which only
the information on whether or not two devices are

connected or “in-range” is used. The schemes based on
connectivity [6], [14], [20], [25], [35], [51] are often referred
to as range-free algorithms, which provide coarse-grained
localization only but show robustness in situations where
RSS is hard to estimate accurately, such as in complex
indoor or urban environments.

The ad hoc positioning system (APS) [37] first estimates
ranges based on DV-hop, DV-distance, or euclidean and
then applies trilateration to compute the location of each
sensor. Bulusu et al. [6] proposed a range-free algorithm. In
this work, anchors broadcast their positions to neighbors
that keep an account of all received beacons. Using this
proximity information, a simple centroid model is applied
to estimate the listening node’s location. He et al. [20]
proposed another range-free positioning scheme, called
APIT, in which the possible a target node resides is
narrowed down by a point-in-triangulation (PIT) test.

Patwari et al. [40], [41] studied the Cramer-Rao Bound
(CRB) for location estimation based on RSS measurement.
Whitehouse and Culler [55], [56] designed and evaluated an
ad hoc localization system called Calamari. They had an
important observation about RSS measurement: Although it
is well known that RSS is unreliable in complex indoor or
urban environments, many sensor network applications are
situated in ideal settings for measuring RSS, for example,
outdoors [55]. Furthermore, they showed in [56] that
calibration can be used to highly enhance the accuracy of
RSS measurements.

2.4 Multidimensional Scaling (MDS) for Localization

MDS [4] has recently been successfully used to resolve the
sensor localization problem [51], [26]. Originating from
psychometrics and psychophysics and often used as part of
exploratory data analysis or information visualization, MDS
can be seen as a set of data analysis techniques that display
the structure of distance-like data as a geometrical picture
[4] which nicely matches the sensor positioning problem.
Shang et al. proposed MDS-MAP to use MDS in solving the
sensor location problem in [51]. MDS-MAP is a centralized
algorithm which consists of three steps: 1) Compute the
shortest paths between all pairs of nodes in the sensor field.
The shortest path distances are used to construct the
distance matrix for MDS. 2) Apply classical MDS to the
distance matrix, retaining the first two (or three) largest
eigenvalues and eigenvectors to construct a 2D (or 3D)
relative map. 3) Given sufficient anchors (three or more for
2D and four or more for 3D), transform the relative map to
an absolute map based on the absolute positions of anchors.

MDS-MAP(P) [51] is a distributed version of MDS-MAP.
In MDS-MAP(P), individual nodes compute their own local
maps using their local information (the range of the local
map may contain one-hop or two-hop neighbors) and, then,
the local maps are merged to form a global map. If an
optional refinement process is used for the global map, the
algorithm is called MDS-MAP(P,R).

2.5 Bayesian Techniques for Robot Localization

Bayesian techniques have been widely investigated in the
context of robot localization [19], [24]. Recently, grid-based
Markov localization [8], particle filtering (PF, also known as
sequential Monte Carlo (SMC)) [15], and real-time particle
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filters [29] have been proposed and shown to be successful
for robot location estimation. These Bayesian techniques
generally require intensive computation power. There are
substantial differences between robot localization and
sensor node positioning. First, while robot localization
locates a robot in a predefined map, localization in sensor
networks works in a free space or unmapped terrain.
Second, while a robot can acquire accurate ranging and
orientation measurements to landmarks simultaneously
with relatively expensive equipment, small sensor nodes
cannot. Third, a robot has much more computation power
than a sensor node and is able to execute complicated
location algorithms.

While our work was in progress, we noticed an
interesting work done by Hu and Evans called Monte
Carlo Localization (MCL) [25]. Inspired by the techniques
used for robot localization, they first proposed to use the
SMC method for mobile sensor node localization. Our work
is different from theirs in several aspects: 1) MCL requires a
certain percentage of mobile anchors to work well and it is
designed for mobile sensor nodes. Landscape needs only
one mobile LA and is currently for static sensor networks.
2) MCL utilizes only proximity measurements, yielding
only coarse-grained location estimations. In contrast, Land-
scape exploits range measurements and is able to achieve
high accuracy. 3) SMC requires intensive computation
power; therefore, upgrading MCL to range measurements
might be impractical because that would further highly
increase the computation cost.

2.6 Utilizing Mobile Beacons for Localization

A preliminary version of this work has been published in
[58]. Recently, we have noticed that some other recent work
[32], [39], [46], [52], in parallel to our work, also exploit
mobile beacons for sensor localization.

Priyantha et al. proposed an approach called mobile-
assisted localization (MAL) [46], in which a mobile user
(roving human or robot) wanders through a sensor-
monitored area, collecting distance information between
the sensor nodes and itself; each node then utilizes the
distance constraints to “find” its own location. Differently
from our work, the work in [46] focuses on the “global
rigidity” problem, that is, how to acquire enough distance
measurements so that a “globally rigid” structure could be
built (thus, the location of a sensor node could be uniquely
identified); the calculation process (of utilizing the mea-
surements to find the sensor location) is not their focus.
Sichitiu and Ramadurai [52], Kushwaha et al. [32], and
Pathirana et al. [39] all share a similar idea of using a
location-aware mobile node to localize location-unaware
static nodes but exploit different algorithms for location
calculations. To minimize the effect of ranging errors, in all
of the approaches mentioned above, including the work of
Priyantha et al. [46], a sensor node utilizes only the beacons
in its close vicinity.1 To achieve this goal, a complex moving
strategy has to be planned so that all of the sensor nodes are
“covered” by enough beacons in their close vicinity.
Designing such a moving strategy is a challenging task
[46]; a complex moving trajectory through a sensor field

may also take a long time to finish and thus may introduce a
long delay in the location-finding procedure [39]. In
Landscape, however, thanks to the UKF-based algorithm,
many more beacons (tens to hundreds) could be utilized to
reduce the effect of ranging errors; the LA does not have to
visit the close vicinity of each sensor node. A simple moving
trajectory (as will be shown in later sections) will work well
enough for most applications.

3 LANDSCAPE LOCALIZATION METHODOLOGY AND

MODEL

3.1 Landscape Methodology

In this paper, we design our sensor localization system
Landscape with an LA, for example, an airplane, a mobile
robot, a vehicle, a balloon, etc. The LA can be the carrier
disseminating the sensor nodes. Our key idea is to treat the
sensor localization as a functional dual to the target tracking
problem. In target tracking, one (or more) location-aware
sensor node actively estimates the position (and, optionally,
velocity and acceleration) of a moving target based on the
measurable distances or AOAs, while the moving target
plays a passive role. As a functional dual, in Landscape,
each location-unaware sensor node utilizes the measured
RSS to estimate its own position, while the location-aware
LA actively propagates beacons. From this novel perspec-
tive, our Landscape system exploits the varying positions of
the LA and the corresponding sensor-to-LA distances to
dynamically determine the positions of sensor nodes.

Specifically, we determine the sensor localization based
on the RSS. An LA is equipped with a GPS or follows a
predefined path so that its instant positions are available. It
broadcasts messages via RF to the sensors. Each sensor is
equipped with a receiving antenna, which can measure the
RSS to dictate its distance to the LA. Then, the sensor
position is determined by solving the associated state
evolvement and observation dynamics of the positions of
the LA and the measured distances. In the following text,
we use bold letters to denote vectors or vector functions.
The superscript T represents the transpose. E½�� and V ar½��
denote the expectation and variance, respectively.

3.2 Landscape Localization Model

We define the state variable as the (unknown) 3D position
of a specific sensor node. The system state of the ith ði ¼
1; � � � ; IÞ sensor node at the nth ðn ¼ 1; � � � ; NÞ iteration is
xiðnÞ ¼ ½xi1ðnÞ; xi2ðnÞ; xi3ðnÞ�

T : Moreover, we have the
following dynamic state and observation equations:

xiðnÞ ¼ fðxiðn� 1ÞÞ þwiðnÞ;

yiðnÞ ¼gðxiðnÞÞ þ viðnÞ;
ð1Þ

where yiðnÞ is the observation vector at the nth iteration for
node i; fð�Þ and gð�Þ, respectively, are the state evolvement
and observation functions. fð�Þ may be linear or nonlinear
depending on application scenarios, whereas gð�Þ is usually
highly nonlinear. fwiðnÞg and fviðnÞg are the state and
observation noise sequences. We assume that fwiðnÞg and
fviðnÞg are zero mean and uncorrelated.

Here, let us consider the localization of static sensors,
where the positions of sensors remain unchanged after
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deployment. That is, the state dynamics fð�Þ governing the
sensor positions are simply the identity functions:

xiðnþ 1Þ ¼ xiðnÞ þwiðnÞ; ð2Þ

with fwiðnÞgmodeling the small positionperturbationdue to
the wind or other environmental effects. Our algorithm may
be extended tomobile sensors by incorporating time-varying
state dynamics, which is one of our future research lines.

The state dynamics on the LA are controlled or
programmed in advance. Equipped with an accurate GPS,
the LA knows its current location, which may be trans-
mitted through an RF signal to the sensors. The observation
vector will be the distance from the LA to a sensor node
(measured by the node). The following observation model
is used:

yiðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�xi1ðnÞÞ
2 þ ð�xi2ðnÞÞ

2 þ ð�xi3ðnÞÞ
2

q

þ viðnÞ:

ð3Þ

Here, �xi1ðnÞ ¼ xb
1ðnÞ � xi1ðnÞ, �xi2ðnÞ ¼ xb2ðnÞ � xi2ðnÞ,

�xi3ðnÞ ¼ xb
3ðnÞ � xi3ðnÞ, and xbðnÞ ¼ ½xb

1ðnÞ; x
b
2ðnÞ; x

b
3ðnÞ�

T

is the current 3D position of the LA, measured by using GPS

or controlled with a predefined path. viðnÞ models the

observation error due to the RF distance estimation

inaccuracy or LA position perturbations.

4 LANDSCAPE STATE ESTIMATION VIA UNSCENTED

KALMAN FILTERING

Landscape aims at improving the sensor localization
accuracy by iteratively incorporating new information and
updating the position estimates with the current observa-
tions. For the system model defined in the previous section,
an online state estimation needs to be performed. Kalman
filters (KFs) and their variants have been designed for this
purpose, but their actual performance heavily depends on
the evolvement and observation equations, as well as the
nature of the noise sequences. Due to the nonlinearity of the
observation equation, which is the root sum of squares of
position differences, the standard KF is not suitable to our
applications.Neither is the extendedKF (EKF), the first-order
approximation to the nonlinear system that is often plagued
by the empirical linearization. For nonlinear observation
functiongð�Þ, theunscented transformation (UT) [33], [27] can
provide higher order approximations without calculating
any derivatives. It accurately captures the statistical mean
and variance up to the third order of the Taylor expansion of
gð�Þ for Gaussian noise or second order for arbitrary noise.
Even higher order approximations may be obtained with
extended algorithms [28]. These gains come with the same
order of calculations as the linearization. We develop our
Landscape system using UKF [27] with UT.

4.1 Unscented Transformation

UT has been developed to handle low-order statistics of
random vectors that undergo any nonlinear transform
u ¼ gðsÞ. The knowledge of higher order information can
also be partially incorporated into the sigma point set.
Generally, it is based on an observation that it is easier to
approximate a Gaussian distribution than an arbitrary

nonlinear function. Let Ds be the dimension of the vector
s, �s be the mean, and Ks be the variance matrix; the UT
calculates the first two moments in the following way:

1. Generate a set of sigma points

S ¼ fsk;Wk : k ¼ 0; � � � ; 2Dsg;

where sk are Ds-dimensional vectors and Wk are
weights associated with each sk. Especially, W0

denotes the weight on the mean point:

s0 ¼�s; W0 ¼ W0;

sk ¼�s þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ds

1�W0

Ks

s
 !

k

;

Wk ¼
1�W0

2Ds
;

skþDs
¼�s �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ds

1�W0

Ks

s
 !

k

;

WkþDs
¼

1�W0

2Ds
;

ð4Þ

where ðKÞk denotes the kth row or column of
matrix K, for k ¼ 1; � � � ; Ds. It can be observed that
P2Ds

k¼0 skWk ¼ �s.
2. Propagate the sigma points through the nonlinear

transformation uk ¼ gðskÞ, k ¼ 0; � � � ; 2Ds.
3. Calculate the mean and variance, �u and Ku, of the

transformed points:

�u ¼
X

2Ds

k¼0

Wkuk; ð5Þ

Ku ¼
X

2Ds

k¼0

Wkðuk � �uÞðuk � �uÞ
T : ð6Þ

By using this set of sigma points, UT provides a Gaussian
approximation to the distributions of predictive state and
observation vectors. This procedure can be used recursively
in a KF structure.

4.2 Unscented Kalman Filter

UKF embeds UT into the KF’s recursive prediction and

update structure. We consider a single sensor node with the

state vector xðkÞ, noise vector wðkÞ, observation noise vðkÞ,

and observation yðkÞ, k � 0. Notice that we have dropped

the subscript so that it can represent any sensor node to be

localized. We expand the state vector with the state and

observation noise xaðnÞ ¼ ½xT ðkÞ;wT ðkþ 1Þ;vT ðkþ 1Þ�T

and the observation vector with yaðkÞ ¼ ½yT ðkÞ;vT ðkÞ�T ,

k � 0. The resulting augmented state vector is of dimension

Da ¼ Dx þDw þDv, whereas the augmented observation is

of dimensionDy þDv. The state and observation models for

the augmented vector xaðnÞ at iteration n from (1) are

xaðnÞ ¼ faðxaðn� 1ÞÞ;

yaðnÞ ¼ gaðxaðnÞÞ;

n � 1:

ð7Þ
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UKF is implemented as follows [27]: First, we initialize with
xað0Þ ¼ ½xT ð0Þ;0, 0�T , Kað0Þ ¼ BlkDiagðK0; Q;RÞ, where Q
and R respectively are the variances for wðnÞ and vðnÞ,
BlkDiagðK0; Q;RÞ represents a block diagonal matrix with
K0, Q, and R on the diagonal, xað0Þ is the initial state value,
and Kað0Þ is the initial variance of the augmented state.

Then, we utilize the iterative structure of KF. The
nonlinear transformation is handled with UT. For the
nth iteration, n � 1, we have the mean and variance of the
augmented state vector at the previous iteration, �a

xðn� 1Þ
and Ka

xðn� 1Þ, as the input.
First, apply the sigma point procedure to the augmented

system (7). Construct an approximation of the state estima-
tion to get the sigma points fxa

kðnÞ;Wk : k ¼ 0; � � � ; 2Dag.
Notice that the subscript use indexes the sigma points for
the augmented state variables. This should not be confused
with the subscripts in (1) for indexing sensors.

Next, compute the predictive means and variances for
the state and observation vectors at time n, based on the
previous observations. This can be achieved by using the
KF prediction structure and UT is used to deal with the
nonlinearity and arbitrary distributions:

xa
kðnÞ ¼ faðxa

kðn� 1ÞÞ; ya
kðnÞ ¼ gaðxa

kðnÞÞ; ð8Þ

�a
xðnjn� 1Þ ¼

X

2Da

k¼0

Wkx
a
kðnÞ; ð9Þ

Ka
xðnjn� 1Þ ¼

X

2Da

k¼0

ðWkðx
a
kðnÞ � �a

xðnjn� 1ÞÞ

ðxa
kðnÞ � �a

xðnjn� 1ÞÞT Þ;

ð10Þ

�a
yðnjn� 1Þ ¼

X

2Da

k¼0

Wky
a
kðnÞ; ð11Þ

Ka
y ðnjn� 1Þ ¼

X

2Da

k¼0

ðWkðy
a
kðnÞ � �a

yðnjn� 1ÞÞ

ðya
kðnÞ � �a

yðnjn� 1ÞÞT Þ;

ð12Þ

Ka
xyðnjn� 1Þ ¼

X

2Da

k¼0

ðWkðx
a
kðnÞ � �a

xðnjn� 1ÞÞ

ðya
kðnÞ � �a

yðnjn� 1ÞÞT Þ:

ð13Þ

In the above equations, �a
xðnjn� 1Þ and Ka

xðnjn� 1Þ are the
predictive mean and variance, respectively, for the augmen-
ted state at time n, given the past observations up to time
n� 1. Similarly, the predictive mean and variance for the
augmented observation are �a

yðnjn� 1Þ and Ka
y ðnjn� 1Þ,

respectively. Moreover,Ka
xyðnjn� 1Þ is the predictive covar-

iance between the augmented state and the observation.
The update step uses the predictive means and variances

with the new observation yaðnÞ to compute the new state
mean and variance:

Wðnjn� 1Þ ¼ Ka
xyðnjn� 1ÞðKa

y ðnjn� 1ÞÞ�1; ð14Þ

�a
xðnÞ ¼ �xðn� 1Þ

þWðnjn� 1ÞðyaðnÞ � �a
yðnjn� 1ÞÞ;

ð15Þ

Ka
xðnÞ ¼ Ka

xðnjn� 1Þ

�Wðnjn� 1ÞKa
y ðnjn� 1ÞWT ðnjn� 1Þ:

ð16Þ

In the above equations, Wðnjn� 1Þ is a gain matrix. Now,
we have obtained the new mean and variance for the
augmented state, which may be used as the input to the
next iteration at time nþ 1.

With the same order of calculations as EKF, UKF can
approximate the second-order Taylor series expansion for
arbitrary distributions. In contrast, EKF can only approx-
imate the first order; therefore, UKF is much more accurate,
as demonstrated by many applications [27], [33]. Compared
to PF, UKF uses a deterministic set of sigma points instead
of a large number of particles. Thus, UKF can be
implemented in a well-controlled manner. Because of its
implementation simplicity and high accuracy, we exploit
UKF for state estimation in our Landscape system.

4.3 Unscented-Kalman-Filter-Based Localization
Algorithm

Fig. 1 outlines the UKF-based localization algorithm, which
is executed by all sensor nodes. As shown in the picture, the
algorithm has an optional calibration procedure, which
could be done before sensor nodes are deployed. The
purpose of the calibration is to improve the accuracy of RSS-
based distance measurements [56]. The core of the
algorithm is the iteration of state prediction and updating,
which could be done either online or offline. When the
iterations are done offline, each sensor node first collects all
of the observation pairs (each of which contains a beacon’s
position and its distance from the sensor node) and then
executes the UKF loops to update its location estimation,
exploiting the constraints increasingly added by each
observation pair. The offline version of the algorithm does
not have a time constraint2 on each iteration of state
prediction/updating; thus, it is more suitable for sensor
nodes that have lower computation power. However, each
sensor node needs to have several kilobytes of memory3 to
temporarily store the observation pairs, which is a reason-
able requirement for most sensor applications.

Since each sensor individually calculates its own loca-
tion, the computation complexity of Landscape is indepen-
dent of the network size. In another words, the computation
overhead is �ðnÞ (n is the number of sensors in the
network) in terms of the whole network or �ð1Þ in terms of
each sensor. Unlike neighborhood-measurement-based lo-
cation methods, where sensors usually communicate with
each other massively (for ranging measurements and for
exchanging location estimations to refine the results),
Landscape introduces zero intersensor communications.
Communication from sensor nodes to the LA is not needed
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2. The online version requires the iteration for one beacon be finished
before the next beacon comes.

3. As shown in a later section, for the example scenarios, 240 beacons are
sufficient for Landscape to work well. If we use 4 bytes to represent a
beacon’s (2D) location and 2 bytes to represent the distance from the beacon
to a sensor node, the observation pair for each beacon will consume
6 memory bytes to store. For 240 beacons, we need a total of 1,440 bytes.



as well. Considering communications usually are more
energy-consuming than computations, this is a very
attractive feature of Landscape.

4.4 Geometric Dilution of Precision (GDOP) and
LA’s Moving Strategy

Ranging error is one of the major factors that make the
sensor localization a challenging problem. Indeed, an
important advantage of Landscape is that multiple distance
measurements are effectively and elegantly utilized to
compensate for the effect of ranging error on the final
position estimation. Besides the ranging error, the geometry
of the structure induced by the beacons and each sensor
node may also influence the error of the position estimation.
The contribution to the estimation error due to geometry is
called GDOP [49]. In particular, for Landscape, the effect of
GDOP on the final position estimation has a large range.
Generally, it decides how fast the iterative estimations
converge to the true position. In the worst case, however, it
may lead to a totally different position (than the true one).
Fortunately, as we will see in the following paragraphs, by
choosing a simple moving strategy for the LA, not only can
such a worst-case situation be safely avoided, but also a fast
convergency to the true positions could be easily acquired.

The effect of GDOP is decided by two factors: the
moving trajectory of the LA and the initial value of the
position estimation (we call it initial position in the rest of
this paper).4 Fig. 2 illustrates five combinations of these two
factors in which cases A and B use a straight-line moving
trajectory, cases C and D use a circle moving trajectory, and
case E could be considered as a generalized format of

case C. Please notice that, instead of enumerating all kinds
of curved trajectories, we have used circle-shaped (cases C
and D) and arc-shaped (case E) trajectories as representa-
tives. A complex moving trajectory could be considered as a
concatenation of multiple arcs.

Obviously, for the straight-line moving trajectory used in
cases A and B, the geometry constructed by the mobile
beacons and a sensor node does not decide a unique
position for the sensor node—the node could be on either
side of the line while having the same distance measure-
ments. The estimated position is thus decided by the initial
position. Case A represents a situation in which the initial
position and the true position of a sensor node are on the
same side of the moving trajectory. For this situation, the
estimation will quickly converge to the true position. Case B
presents the contrary situation, in which the initial position
and the true position fall on different sides of the moving
trajectory. For this situation, the estimation will finally
converge to the mirror point of the true position, which is
actually the worst case for Landscape.

Differently from the straight-line moving trajectory, a
curved LA trajectory will always help sensor nodes to find
their unique locations. However, different initial positions
may lead to different converging speeds. If the initial position
happens to be on the same side as the true position (case C), a
sensor node will experience fast convergency (using fewer
beacons and less computation power), whereas, if the initial
position falls on the other side of the moving trajectory (case
D), it will still be able to converge to the true position but will
take a relatively longer process. The convergency speed of
cases C and D is compared in Fig. 3a through an experiment
which is configured as the following: In a 1;000� 1; 000 2D
sensor field, the LA’s moving trajectory is a circle with center
(500, 500) and radius 500;without losing generality, (300, 600)
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4. For simplicity, all sensor nodes could share the same initial value,
which could be broadcast to them by the LA.

Fig. 1. The UKF-based localization algorithm.



and (600, 1100) are chosen as the location of two sensor nodes

representing cases C and D; the initial positions for the two

sensor nodes are both set as (600, 600), which is at the same

distance from the two nodes; finally, we have assumed

10 percent ranging error in the RSS-based distance measure-

ments. As is clearly shown in Fig. 3a, case C converges

significantly faster than case D. The position error shown in

the figure is defined as the average distance from estimated

positions to true positions.
Case E in Fig. 2 could be considered as a generalized

format of case C in a twofold sense:

1. to simulate the situation that a portion of the beacons
are blocked by obstructions and

2. to simulate an arc-shaped moving trajectory.

Intuitively, the size of the angle � (in Fig. 2 case E) should

have a nonneglectable effect on the localization perfor-

mance. This has been verified through simulations shown

in Fig. 3b. Interestingly, using more beacons (LA moves

back and forth along the arc and broadcasts beacons) may

effectively compensate for the effect of GDOP. Furthermore,

as along as the angle, � is larger than �=2, the convergency

is not drastically slower than the case of a full circle ð2�Þ. In

real applications, the situation of a sensor node being

blocked from most directions is rare, if not impossible.

Besides the situation where beacons are blocked by

obstructions, a sensor node could also intentionally drop

beacons to save energy. Obviously, a viable dropping

strategy is todropbeacons randomly, insteadof continuously

dropping beacons from some specific directions. Indeed, our

simulations revealed that randomly dropped beacons have a

lighter influence than continuously dropped ones.
A simple but effective moving strategy for the LA could

be designed based on the above observations: The LA

simply follows a circle encompassing the sensor field; it can

hover for several rounds if necessary. All sensor nodes

could share the same initial position value—the center of

the circle, which can be estimated by the LA and then

broadcast to sensor nodes. Such a strategy has been used in

our performance evaluations, as shown in Fig. 5.

4.5 The Cramer-Rao Lower Bound (CRLB) of
Estimations

We study CRLB to investigate how well Landscape

performs in location estimations. To compare with our

simulation results, we consider sensors deployed over a

planar area. For a single sensor node to be positioned, its

position ½x1; x2�
T is our parameter. The known positions of

the LA are xbðkÞ ¼ ½xb
1ðkÞ; x

b
2ðkÞ�

T , k ¼ 1; � � � ; N . The ob-

served distances using RSS between the LA and the

ZHANG ET AL.: A NOVEL DISTRIBUTED SENSOR POSITIONING SYSTEM USING THE DUAL OF TARGET TRACKING 253

Fig. 2. GDOP versus LA’s moving strategy and the sensor’s initial position.

Fig. 3. The effect of GDOP on the convergency. (a) Case C versus Case D. (b) Case E: the effect of �.



unknown sensor are yðkÞ ¼ �ðkÞ þ vðkÞ, where �ðkÞ is the

true distance

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 � xb
1ðkÞÞ

2 þ ðx2 � xb
2ðkÞÞ

2

q

;

and vðkÞ is measurement noise, k ¼ 1; � � � ; N . Now, denote

d ¼ ðyð1Þ; � � � ; yðNÞÞT , � ¼ ð�ð1Þ; � � � ; �ðNÞÞT , a n d

v ¼ ðvð1Þ; � � � ; vðNÞÞT . We assume that fvðkÞgNk¼1 are

independent white Gaussian noise with zero mean and

variance V arðvðkÞÞ ¼ �2�2ðkÞ, where �2 is a constant,

k ¼ 1; � � � ; N . Denote by �v the var iance of v,

�v ¼ Diagð�2�2ð1Þ; � � � ; �2�2ðNÞÞ. We have the p.d.f. of d:

pðdÞ ¼ ð2�Þ�N=2j�vj
�1=2

expf�ðd� �ÞT��1
v ðd� �Þ=2g;

where j�vj is the determinant of �v. CRLB is the inverse of

the Fisher information matrix (FIM), which is

JS ¼ E½rðln pðdÞÞ�½rðln pðdÞÞ�T :

We found that

JSði; iÞ ¼ ð��2 þ 2Þ
X

N

k¼1

ðxi � xb
iðkÞÞ

2�ðkÞ�4; i ¼ 1; 2;

JSð1; 2Þ ¼JSð1; 2Þ ¼ ð��2 þ 2Þ

X

N

k¼1

ðx1 � xb
1ðkÞÞðx2 � xb

2ðkÞÞ�ðkÞ
�4:

ð17Þ

We denote CRLB by CS , which is ðJSÞ�1. Now, we

compare the experimental result of Landscape with the

calculated CRLB. The experiment is conducted using the

same configuration as the Case C shown in Fig. 3a. We

denote by V̂ the variance matrix yielded in our experiments

for the estimated ½x1; x2�
T . The results for CSði; jÞ and

V̂ ði; jÞ, i; j ¼ 1; 2, are plotted in Fig. 4, which shows that our

experimental results closely match the CRLB.

4.6 Implementation Issues

In this section, we address several practical issues related to

the implementation of Landscape in real applications:

. Beacon’s transmission power. When employing the
simple moving trajectory discussed in Section 4.4,
the distance from the LA to a sensor node varies and,
sometimes, it could be a large value. To ensure that

beacons are reachable to as many nodes as possible
(so that beacons are maximally utilized), using a
high transmission power to broadcast beacons may
be necessary. We assume that, in real applications,
the LA does not have the stringent energy constraint
that a sensor node has.

. Sensor node’s initialization strategy. In Landscape’s
UKF-based algorithm, the initialization of several
parameters may influence the performance. Fortu-
nately, as we will see in Section 5, Landscape allows
us to use a fairly flexible initialization strategy.

. Energy saving. Landscape introduces zero intersensor
communication overhead, which saves significant
energy for sensor nodes, compared to neighbor-
hood-measurement-based approaches. As pre-
viously discussed, a sensor node could further
reduce energy consumption by intentionally drop-
ping a portion of beacons. A sensor node could
individually decide the dropping percentage based
on its remaining energy and the location need (fine-
grained or coarse-grained).

. Further improvements. Besides RSS measurement,
some other ranging techniques may also be incorpo-
rated into Landscape. We discuss this issue in
Section 6.

5 PERFORMANCE EVALUATIONS

5.1 Evaluation Scenario

A simple scenario is used in our simulations. We consider a
square sensor field (1;000� 1;000) that has (0, 0), (0, 1000),
(1,000, 1,000), and (1,000, 0) as its four corners. Unless
explicitly specified, 200 sensor nodes are uniformly and
randomly deployed in the sensor field. We let an aircraft or
a balloon be the LA. As shown in Fig. 5, the LA hovers over
the sensor field on a 2D plane parallel to the sensor field,
moving around following a circular track with (500, 500) as
the center and 700 as the radius. The height of the airplane
is a constant value, for which we used 100 ft. The LA
periodically broadcasts beacons to sensor nodes. Each
beacon contains the transmitting power of this beacon and
the LA’s current location. In this scenario, the location of the
LA at time step n ðn � 1Þ is simply

xb
1ðnÞ ¼ c1 þRLA cosð2�=beacons per round � ðn� 1ÞÞ;

xb
2ðnÞ ¼ c2 þRLA sinð2�=beacons per round � ðn� 1ÞÞ;

xb
3ðnÞ ¼ c3;

ð18Þ
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Fig. 4. Experimental results of Landscape versus CRLB.

Fig. 5. Evaluation scenario.



where c1, c2, and c3 are 500, 500, and 100, respectively, and

RLA is 700. We assume that the LA broadcasts the same

number ðbeacons per roundÞ of beacons in each round.
We assume that distance measurements are corrupted by

Gaussian noise [3], [51]. A random noise is added to the true

distance as follows:

d̂ ¼ d � ð1þ randnð1Þ � range errorÞ; ð19Þ

where d is the true distance, d̂ is the measured distance,

range error is a value between [0, 1], and randnð1Þ is a

standard normal random variable.

5.2 Evaluation Metrics and Parameters

We code Landscape in Matlab for simulation purposes. To

make our proposal comparable to other positioning

schemes, we have interfaced our algorithm to the localiza-

tion simulation toolkit designed as part of the Calamari

project at the University of California, Berkeley [57]. We

selected MDS-MAP, a state-of-the-art localization method,

as a reference in the performance evaluations. Three

performance metrics are generally considered for sensor

localization:

. Accuracy. The accuracy of sensor positioning is
usually presented by the average distance from
estimated positions to true positions.

. Computation overhead. In Landscape, each sensor
individually estimates its position; thus, its computa-
tion complexity is�ðnÞ per network (n is the number
of thenodes) or�ð1Þpernode,which is sameasMDS-
MAP(P) [51]. However, tomake the comparisonmore
illustrative, we compared the CPU time used by these
two algorithms. All simulations are conducted on a
DELL Precision M50 (1.8 GHz mobile Pentium 4-M
processor, 256 Mbytes DDR SDRAM) laptop with
Matlab 7.0 installed. Both simulations are conducted
with the Calamari simulation toolkit [57] and the
execution time is averaged over each node.

. Communication overhead. Communications are
generally more energy consuming than computa-
tions [42]. Since Landscape introduces zero inter-
sensor communication overhead in the localization

procedure, we skip this metric in our simulation
results.

Since MDS-MAP(P,R) generally achieves better accuracy
than MDS-MAP(P) at the cost of a higher computation
overhead, we choose MDS-MAP(P,R) as the reference when
evaluating the accuracy, whereas MDS-MAP(P) is used as
the reference when investigating the computation overhead.

In the following sections, we vary the parameters, such
as the range error, density, number of beacons, etc., to
investigate their effect on performance. The influence of the
initialization strategy will also be discussed.

5.3 Result versus Range Error

In this section, we investigate the performance of Land-
scape against various range errors. To compare with MDS-
MAP(P)/MDS-MAP(P,R), whose position estimation accu-
racy highly depends on intersensor connectivity, we have
varied connectivity values by adjusting the radio range ðRÞ
of the sensor nodes. For the simulation of Landscape, we let
LA broadcast 15 beacons per round and, in total, send out
240 beacons (in 16 rounds). Ten anchor nodes were used for
the simulation of MDS-MAP(P)/MDS-MAP(P,R). Experi-
ments were conducted under four different range errors,
namely, 5 percent, 10 percent, 15 percent, and 20 percent.
The results are shown in Fig. 6, in which Fig. 6a compares
the position error of Landscape and MDS-MAP(P,R), while
Fig. 6b illustrates the CPU time used by Landscape and
MDS-MAP(P). As is clearly shown in the figure, Landscape
outperforms MDS-MAP in accuracy for all of the cases
while, at the same time, using much less CPU time.
Landscape keeps a constant value of about 0.22 sec CPU
time for each node, whereas that of MDS-MAP(P,R) grows
fast when connectivity is increased to enhance estimation
accuracy.

5.4 Result versus the Number of Beacons

In this section, we investigate how the number of beacons

influences the performance of Landscape. As expected, the

accuracy of Landscape increases with the number of

beacons it uses for position estimation (the number of

iterations of the UKF-based algorithm is equal to the

number of beacons used). However, more beacons not only

increase the cost of the LA but also introduce more
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Fig. 6. The effect of range error: Landscape versus MDS-MAP. (a) Position error. (b) CPU time.



computation overhead for each sensor node. On the other

hand, if a node has only enough power to support a specific

number of computation iterations (in the UKF-based

algorithm), we want to know which strategy is better, a

small number of beacons per round with more rounds or a

large number of beacons per round with fewer rounds. In

this group of experiments, we varied the value of both

beacons per round and total beacons from 15 to 480. As is

shown in Fig. 7a, with a fixed beacons per round value, the

positioning error decreases if we use more beacons.

However, it is worthwhile noting that, after 120, the

accuracy increases slowly with total beacons; with a fixed

total beacons value, however, a smaller value of

beacons per round yields slightly higher accuracy than a

larger one. The computation cost increases linearly with

total beacons, almost independent of the value of

beacons per round, which is demonstrated in Fig. 7b. The

simulation gives us helpful information from two aspects:

1) A sensor node prefers the LA to send a moderate number

of beacons per round and 2) sensor nodes can individually

make trade-offs between accuracy and computation cost by

using a specific portion (or all) of the beacons. The range

error was set as 10 percent in this group of experiments.

5.5 Result versus Network Irregularity

In this section, we use a simple case to demonstrate the

robustness of Landscape to network irregularity. We

assume that there is a lake in the middle of the sensor

field. The lake is of round shape, having a radius of 400 and

(500, 500) as its center. Two hundred sensor nodes are

randomly deployed over the sensor field around the lake.

The localization results of Landscape and MDS-MAP(P,R)

are demonstrated in Fig. 8, in which Fig. 8a shows the

original map of the sensors, Fig. 8b shows the result of

MDS-MAP(P,R), and Fig. 8c shows the result of Landscape.

In the figures, small circles represent the original location of

sensor nodes, while small arrows point to the estimated

positions. As is clearly shown in the figures, MDS-

MAP(P,R) does not work well for the case, although the

average connectivity of the network is as high as 32.97,

whereas Landscape gives very good position estimations

for all of the sensor nodes.

5.6 Result versus Initialization Parameters

Initialization parameters often have nonneglectable effects

on the performance of KFs. For Landscape, we have the

following four parameters to initialize:

1) initial position xð0Þ,
2) initial position variance K0,
3) variance matrix R for distance measurement noise,
4) variance matrix Q for state noise.

As discussed earlier, a simple strategy is to choose the

center point of the LA’s moving trajectory as the initial

position for all sensor nodes. Therefore, we have
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Fig. 7. The effect of the number of beacons. (a) Accuracy. (b) CPU time.

Fig. 8. The effect of network irregularity: Landscape versus MDS-MAP. (a) Original map. (b) Result of MDS-MAP(P,R). (c) Result of Landscape.



xð0Þ ¼ ðland size=2; land size=2Þ; ð20Þ

K0 ¼ Diagð½ðland size=2Þ2; ðland size=2Þ2�Þ; ð21Þ

where land size is the size of the sensor field. Since we

are considering static sensor nodes, the state noise has

small variances. Although it is rather simple to cull the

parameters for Q, the initialization scheme for R could

be challenging. We introduce a scaler called the

measurement noise variance scaler to investigate the influ-

ence of R on the performance of our algorithm. The

expressions of R and Q are

R ¼ððRLA � 2 � range errorÞ2

�measurement noise variance scalerÞ;
ð22Þ

Q ¼Diagð½process noise variance;

process noise variance�Þ;
ð23Þ

where ðRLA � 2 � range errorÞ2 is actually the upper

bound of R, so the scaler takes values smaller than one.

Fig. 9a shows the effects of variance parameters on

accuracy. As we can see, although the value of

process noise variance does not have a significant impact

on the results, measurement noise variance scaler does

have a nontrivial influence on the accuracy. However, as

shown in Fig. 9a, as long as the scaler for measurement

noise variance lies in the broad interval of [0.1, 0.00001], its

impact on the accuracy is negligible. As a result, we can see

that the initializations of R and Q are fairly flexible.
Unless explicitly specified, all of the simulations pre-

sented in this work are conducted using the initialization

scheme quantitatively described by (20)-(23). Moreover, we

have chosen 0.0001 and 0.01 for process noise variance and

measurement noise variance scaler, respectively.
When it is difficult to accurately locate the center point of

the LA’s moving trajectory, we may use an estimated center

point as the initial position in our algorithm. Assuming that

the estimation on the center point has Gaussian noise, the

initial position will be defined as follows:

x̂ð0Þ ¼ ðland size=2; land size=2Þ

þ randnð1; 2Þ � initial position noise;
ð24Þ

where initial position noise decides how large the noise is

when estimating the position of the center point. Fig. 9b

demonstrates the effects of initial position noise on the

final accuracy of Landscape. The simulations were con-

ducted under different range errors. As we can see in

Fig. 9b, compared to the influence of the range error, the

impact of the initial position error on accuracy is much less

significant.

6 FURTHER IMPROVEMENTS UTILIZING NEW

OBSERVATIONS

At the current stage, Landscape aims at the applications of

outdoor sensor networks. RSS measurement in an outdoor

environment is usually more reliable than that in an indoor

environment. Whitehouse and Culler have also shown [56]

that calibrations can be used to greatly enhance the accuracy

of RSSmeasurement. However, calibrating a large amount of

sensor nodes could be expensive and time consuming.

Furthermore, we should not assume that sensor networks

are always deployed in a friendly environment where link

qualities are good and there is no interference. The above

consideration has motivated us to exploit possible mechan-

isms to further enhance the robustness of Landscape.

A natural and direct extension of Landscape is to

incorporate other observations in Landscape’s UKF-based

state estimation algorithm, that is, to add a second

dimension to the observation vector described in (1). We

discuss two such extensions in the following sections.

6.1 Utilizing the TDoA Observation

This extension originated from the following question:

Since, so far in Landscape, beacons are utilized indepen-

dently, can the variance of beacons also be utilized for

location estimation? Fortunately, the answer is yes and we

have defined a new observation to exploit such an idea.

This new observation is TDoA-based; however, it is slightly

different than those TDoA measurements discussed in

Section 2. We define this observation as the difference

between the traveling time (from the LA to a sensor node)

of two consecutive beacons. We discuss the details in the

following text.

ZHANG ET AL.: A NOVEL DISTRIBUTED SENSOR POSITIONING SYSTEM USING THE DUAL OF TARGET TRACKING 257

Fig. 9. The effect of the initialization strategy. (a) Accuracy versus variance parameters. (b) Accuracy versus initial position noise.



The traveling time for the nth beacon observed by the
ith sensor node is described by the following equation:

tiðnÞ ¼ ððTirðnÞ �DirðnÞÞ � ðTsðnÞ þDsðnÞÞ;

where TsðnÞ are the timestamps of the nth beacon stamped
before it is sent out by the LA, DsðnÞ is the system delay
between the time spot where the nth beacon is stamped and
the time spot where it is physically sent out through the
antenna of the LA, TirðnÞ is the time spot where the
nth beacon is received and stamped by the ith sensor node,
and DirðnÞ is the system delay between the time spot when
the nth beacon reached the antenna of the ith sensor node
and the time spot where it is stamped. Similarly, the
traveling time for the ðn� 1Þth beacon observed by the
ith sensor node is described by the following equation:

tiðn� 1Þ ¼ ððTirðn� 1Þ �Dirðn� 1ÞÞ

� ðTsðn� 1Þ þDsðn� 1ÞÞ:

The time difference between the two traveling times for the
two consecutive beacons is defined as

�tiðnÞ ¼ ðððTirðnÞ �DirðnÞÞ � ðTsðnÞ þDsðnÞÞÞ

� ððTirðn� 1Þ �Dirðn� 1ÞÞ � ðTsðn� 1Þ þDsðn� 1ÞÞÞ:

The above equation can be rewritten as follows:

�tiðnÞ ¼ ððTirðnÞ � TsðnÞÞ � ðTirðn� 1Þ � Tsðn� 1ÞÞÞ

� ðDirðnÞ �Dirðn� 1ÞÞ � ðDsðnÞ �Dsðn� 1ÞÞ:

Dirð�Þ and Dsð�Þ could be seen as constants (for each sensor
node) with noise. Thus, we have

�tiðnÞ ¼ ððTirðnÞ � TsðnÞÞ � ðTirðn� 1Þ � Tsðn� 1ÞÞÞ

þ vitðnÞ;

where vitðnÞ is the zero-mean noise process describing the
variance of systemdelay at the LA and sensor nodes.�tðnÞ is
calculatedbyeach sensornode.Tsð�Þ is basedon theLA’s local
timer and Tirð�Þ is based on the ith sensor node’s local timer.

The following observation model is used for �tiðnÞ:

�tiðnÞ ¼ ðyiðnÞ � yiðn� 1ÞÞ=cþ vitðnÞ;

where c is the constant of the speed of electromagnetic
radiation and yið�Þ is the distance observation described in
(1) and (3).

One advantage of this extension is that no time
synchronization (neither intersensor nor sensor to LA) is
needed. However, a timestamping resolution (not accuracy)
at the nanosecond level is needed. This could be achieved
through some hardware support, for example, phase-locked
loop (PLL)-based technologies. This extension introduces
neglectable extra computation overhead (about 1 percent)
but is able to effectively enhance the robustness of Land-
scape to ranging errors.

The preliminary results of this extension were reported
in [59], in which we call this extension Landscape(T).
Fig. 10 illustrates the enhancement of Landscape(T) over
Landscape versus range error (for RSS-based distance
measurements) and time measurement error (for TDoA
measurements). In the simulations to generate this figure,
we used the same configuration as that described in

Section 5.1. An error model similar to (19) was used to dilute
the time measurements. As shown in Fig. 10, the higher the
range error, the more significant the enhancement of Land-
scape(T) over Landscape is,which is a favorable feature to us.
Although the enhancement decreases when the time mea-
surement error increases, Landscape(T) is still able to
effectively alleviate position errors even when the time
measurement error is as high as 80 percent.

6.2 Utilizing the Bearing Observation

Bearing observations, also known as angle of arrival (AoA)
measurements, could also be integrated into the Landscape
scheme. Like what we did with the TDoA observation,
incorporating bearing observation is just adding another
dimension to the observation vector. The extension is
straightforward and no significant extra computation over-
head will be introduced. However, to acquire bearing
observations, each sensor needs to be equipped with
directive antennas or antenna arrays, which may be
impractical with current technologies, considering the size
and cost constraints of sensor nodes. We leave this as future
work for now, expecting future progress in antenna
technologies will make it possible.

7 CONCLUSIONS AND FUTURE RESEARCH

DIRECTIONS

This paper investigates the sensor localization problem
from a new prospective by treating it as a functional dual of
target tracking. We propose an online estimation method
called Landscape for sensor localization utilizing an LA.
The state information is obtained using UKF. Landscape has
several favorable features such as high scalability, no
intersensor communication overhead, moderate computa-
tion cost, robustness to range errors and network con-
nectivity, etc. The effectiveness and advantages of
Landscape have been demonstrated through analysis and
evaluations.

In our future research, we will extend the localization of
a static sensor network to that of a slow-moving sensor
network. The performance of Landscape will be studied
theoretically. We shall also investigate location-aware
protocols for enhanced resilience and network capacity.
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