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Abstract—In this paper, a novel Vision-Based Measurement
(VBM) approach is proposed to estimate the contact force and
classify materials in a single grasp. This approach is the first
event-based tactile sensor which utilizes the recent technol-
ogy of neuromorphic cameras. This novel approach provides
a higher sensitivity, a lower latency, and less computational
and power consumption compared to other conventional vision-
based techniques. Moreover, Dynamic Vision Sensor (DVS) has
a higher dynamic range which increases the sensor sensitivity
and performance in poor lighting conditions. Two time-series
machine learning methods, namely, Time Delay Neural Network
(TDNN) and Gaussian Process (GP) are developed to estimate
the contact force in a grasp. A Deep Neural Network (DNN) is
proposed to classify the object materials. Forty-eight experiments
are conducted for four different materials to validate the pro-
posed methods and compare them against a piezoresistive force
sensor measurements. A leave-one-out cross-validation technique
is implemented to evaluate and analyze the performance of
the proposed machine learning methods. The contact force is
successfully estimated with a mean squared error of 0.16 N
and 0.17 N for TDNN and GP respectively. Four materials
are classified with an average accuracy of 79.17% using unseen
experimental data. The results show the applicability of event-
based sensors for grasping applications.

Index Terms—Vision-Based Measurements, Force Estimation,
Material Classification, Haptics, Dynamic Vision Sensor.

I. INTRODUCTION

HUMAN sense of touch comprises different receptors

to acquire a rich information about objects’ properties.

The receptors in the human skin evaluate the contact area

between the objects and body with respect to the applied

force, temperature, and pain sensation [1]. Besides the skin

receptors, other senses such as vision and audition assist

human to extract further properties such as shape, material

and hardness. Combining all of these acquired information

enables humans to perform gripping tasks for unknown objects

with a high degree of robustness. For instance, human can

grasp objects robustly without a prior knowledge of the object

properties such as weight, friction coefficient and materials [2].

Research works on tactile sensing involves measuring the
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contact force magnitude and direction, mapping the force

distribution, classifying the materials, and detecting slippage

by monitoring the physical properties of the contact area [3].

Different types of tactile sensors were developed to simulate

humans sense of touch for robotic hands [4]. A remarkable

progress has been made for various types of tactile sensors. A

capacitive sensor in [5] considers four capacitors to measure

the horizontal and vertical forces. Although the sensor can

measure the displacement in different directions, electronic

interference and sensor hysteresis are remained unsolved. An

application of object’s localization and orientation estimation

is demonstrated in [6] using piezoresistive force sensors. The

sensor is capable of localizing the objects with a high accuracy

while the estimation of the object orientation has a poor

resolution. Another piezoresistive sensor with high durability

and low hysteresis is developed in [7] to measure pressure

under cyclic loading. A magnetic tactile sensor is proposed

in [8] with capability of slip detection as well as estimation of

the contact force in three dimensions. Some other approaches

are utilizing the tactile sensors to extract further information

about the objects properties and classify the materials. For

instance, a piezoelectric multifunctional sensor is used to

acquire objects’ hardness by rolling over the sensor on the

objects surfaces [9].

A hybrid sensor in [10] composes of piezoelectric trans-

ducers, force sensor and inclinometer in order to classify

six different materials. An artificial finger with embedded

PolyVinyliDene Fluoride (PVDF) membrane and strain gauge

sensors are used to classify various materials [11]. Another

research is presented in [12], whereas two piezoresistive tactile

sensors are utilized to classify softness of vegetable using a

decision-tree machine learning technique. Other applications

of object classifications using different types of force sensors

and traditional machine learning algorithms such as Support

Vector Machines (SVM) are presented in [13], [14]. How-

ever, most of the aforementioned tactile sensors have limited

resolution, considerable hysteresis and high sensitivity to the

electromagnetic disturbances. This research focuses on optical

tactile sensing techniques including camera-based methods

that provide higher resolution, low hysteresis and resistant to

electromagnetic disturbances.

Optical sensors with transparent elastomer or rubber, wave

emitters and receivers have been developed for precise tactile

sensing applications [15], [16]. Wave emitters scatter the light

to the surface of the elastomer while receivers capture the

back-scattered beams from the surface. Study of the reflected
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beams regarding the interruption, phase, and magnitude ap-

prises the distribution of force on the surface. The main

advantages of this approach are immunity of the optical

sensors to high electromagnetic disturbances, providing a high

spatial resolution, flexibility and durability with high speed of

signal transmission. In earlier work in [17], the optical tactile

sensor is developed to measure the displacement and surface

roughness with a high spatial resolution using artificial neural

Networks. One of the main approaches in optical sensing

is to place optical fibers in the finger membrane and em-

ploy techniques like intensity modulation, Bragg grating, and

specklegram. In [18], a Fiber Bragg Grating (FBG) sensor is

proposed which has high sensitivity, but low spatial resolution

of 5mm. Another FBG-based tactile instrument is suggested

in [19] to map the force distribution with a minimum weight

sensitivity of 0.05 kg. A new class of optical tactile sensors are

presented in [20] considering PolyDiMethylSiloxane (PDMS).

A high sensitivity for measuring minimum weight of 0.005

kg is demonstrated practically. Furthermore, a technique is

offered to detect an objects’ shape and surface roughness with

the sensors. Most of the optical tactile sensors have a lower

spatial resolution compare to vision-based techniques.

Recent developments in visual technologies made cameras

available in smaller sizes, lower cost, and higher resolution.

Furthermore, advancements of processors and computational

devices enabled the cameras to be considered as a VBM

instrument to measure physical properties, localization of the

objects, and to classify materials [21]. Camera-based tactile

sensors observe the contact area, object, and elastomer surface

to detect slippage and estimate the applied force. In earlier

work in [22], a camera is combined with a force sensor to

estimate deformation of the elastic object. A camera-based

tactile sensor is introduced in [23], which measures three-

dimensional force vectors on the contact area. Similarly, a

marked elastomer is embedded in the silicone membrane in

[24], to estimate force as well as friction coefficient of the

surface. Further, a vision-based sensor is developed in [25]

to evaluate multi-dimensional force vectors and the object

stick ratio. In [26], three states for the sensor have been

considered for non-contact detection, stick and slippage of the

object. Moreover, a camera, a textured elastomer and a light

diode are used in [27] to compute force magnitude and find

directions for several rigid and soft contacts. Other sensors

demonstrated the capability of vision-based sensors to deal

with deformable objects and detect slippage to feedback the

force controllers of the grippers [28]. In another approach [29],

a conventional camera is used to estimate force magnitude

and direction utilizing hemispherical markers. The markers are

located inside the elastomer with different colors to estimate

force magnitude and direction based on markers displacement.

Later on, this approach became more popular which reflects

the significant progress in camera-based tactile sensors [30]–

[33].

A different approach to reconstruct a 3D geometry map

in order to estimate force using Recurrent Neural Networks

(RNN) with a pair of cameras was presented in [34], [35].

Further, a stereo vision-based sensor is suggested in [36]

to estimate the contact force between tools and body tis-

sues for surgical applications. Another stereo vision-based

measurement instrument [37] inspects the automotive rubber

profiles. An interesting application of visuo-haptic sensors in

[38] allows the robot to measure the contact force and shape

considering a foam rod.

A hybrid method is developed in [39] which considers a

camera and a tactile sensor to classify materials considering

multimodal learning. Two methods are implemented to classify

17 different materials considering both supervised and unsu-

pervised learning. The best performance in both supervised

and unsupervised techniques are achieved through the Mean

Maximum Covariance Analysis (µMCA) with a high accuracy.

Most of the tactile sensors focus on force measurement un-

der stable and static conditions, i.e. without dynamic variation

of the applied forces. However, in many applications including

robotic grasping, applied forces may vary significantly and a

fast response is required to properly handle the grasped object.

Even-though many VBM instruments and hybrid techniques

have been contributing significantly in the field of tactile

sensing, no attention has been paid to utilize neuromorphic

vision sensors in this field. For the first time, in [40], we

proposed a vision-based sensor to detect incipient slip using

DVS which provides a low latency with low power consump-

tion. It is demonstrated that the sensor can detect incipient

slip in grasping applications with an average of 44.1 ms using

traditional image processing methods. The sensor successfully

detects the incipient slippage without a prior knowledge of

the objects properties or friction coefficients. Table I lists

a different techniques for tactile sensing and measurements

applications.

In this paper, a new dynamic-vision-based tactile sensor is

introduced. The sensor is based on a neuromorphic camera

which provides a higher time-resolution, a lower latency, less

computational cost and power consumption compared to other

vision-based techniques.

The contributions of this paper are as follow:

1) To the best of our knowledge, it is for the first time, a

Dynamic-Vision-Based approach is proposed to measure

the contact force and classify materials in a grasp using

a neuromorphic camera (DVS).

2) A Time Delay Neural Network (TDNN) and a Gaus-

sian Process (GP) are developed to find the correlation

between the triggered events and the contact force.

3) A Deep Neural Network (DNN) model is implemented

to classify materials based on the triggered events in a

single grasp.

The rest of the paper is structured as follows. Section

II describes the proposed event-driven sensor prototype. In

Section III, time-series models are designed to estimate force

in a single grasp. In Section IV, a DNN is developed to classify

different materials which is followed by the validation and

results in Section V. The results are analyzed and discussed

in Section VI. Finally, Section VII concludes the paper and

suggest future works.

II. EVENT-DRIVEN TACTILE SENSOR

Vision-based tactile sensors estimate the applied force on

the surface of the fingertip (silicone membrane) by observing
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Table I: A list of different tactile sensing techniques for various applications

Reference Sensors Purpose Specifications

[5] Capacitive Measure the the force vector (3D) •Low parasitic capacitance effect
•Resolution of 12.5 µm
•A considerable hysteresis

[13] Capacitive and actuators Object classification •Objects are varied in shape, size and stiffness
•High accuracy of object recognition
•Non-time series machine learning technique

[10] Piezoelectric transducers Classify materials •Time and frequency domain analysis
•Multiple environments performance
•High accuracy with static applied force threshold

[7] Piezoresistive Measure the pressure •High linearity factor
•100 cycles hysteresis
•Time analysis of the measurements

[6] Laser and piezoresistive Object recognition and orientation detection •High classification accuracy
•Limited orientation measurements
•Non-time series machine learning technique

[17] Optical fiber Measure displacement and surface roughness •Measuring range of ±(0.8 mm)
•Displacement error of ±(0.5 µm)

[20] Optical fiber Measure the force and shape detection •High sensitivity of 0.005 kg
•Latency of 600 ms
•Limited range of few grams

[30] Conventional camera Measure the force vector (3D) •High spatial resolution (4 mm)
•Low sampling rate of 30 FPS
•Static approach based on markers displacement

[31] Conventional camera Estimation of slippage angle and stick ratio •High spatial resolution
•Low sampling rate of 30 FPS
•Static approach based on markers displacement

[40] DVS Incipient slip detection •High spatial resolution
•Angular view of camera with 44.1 ms response time
•Traditional image processing algorithms

This
work

DVS Force estimation and material classification •High spatial resolution of 0.04 mm2

•Force measurement range of 0.15-3.7 N
•Sensitivity of 0.01 N
•Low computational cost and logical response time of 21 ms
•Maximum size of the contact region: 48x36 mm

the contact area directly or indirectly. Direct methods monitor

the contact area between the object and fingertip whereas

indirect approaches observe extra elements inside the fingertip.

Some of the indirect methods use the markers inside the

silicone membrane and track the displacement of the markers

[30], [31], [41]. Due to the flexibility of the elastomer, the

markers are displaced when a force is applied to the object.

The contact force vector can be calculated based on the

elasticity theory considering the displacement of markers. In

[42], the force vector is formulated by assuming linearity and

uniformity of the elastomer.

Although camera-based tactile sensors provide a high resolu-

tion of the contact area, a low sampling rate (normally 30 FPS)

and limited dynamic range reduce the sensor performance

in unknown environments. To satisfy requirements for fast

grasping applications, it is essential to consider a sensor with a

higher sampling rate and sensitivity. Furthermore, processing

images is often involved with a lot of redundant pixels which

adds a further computational and memory requirements to the

system. Thus, the research in this paper considers an event-

based sensor with a high dynamic range and a low latency to

observe the contact area.

Asynchronous event-based cameras are bio-inspired sensors

that consider intensity changes (events) in the scene with pre-

cise timestamps and a high dynamic range. DVS is one of the

well known frame-free sensors with a high temporal resolution

of few microseconds [43], [44] which is significantly faster

than ordinary cameras. This vision sensor captures intensity

changes logarithmic ally at each pixel rather than capturing

the whole scene in a fixed interval. Each pixel compares the

current intensity value with the previous value repeatedly (in

microseconds). If the compared value exceeds a threshold

level, then the sensor fires either a positive or a negative event.

DVS has a resolution of 240×180 pixels with a latency of 12

microseconds for the mean of 20 events. The sensor streams

positive and negative events with precise timestamps and pixel

location (x, y). Moreover, DVS requires a lower power (4-15

mW) and memory compared to conventional cameras.

The threshold level of the events is a crucial parameter for

filtering noise and changing the sensitivity of the sensor. In

this work, several threshold levels are examined to balance

the noise level and sensitivity of the sensor. The relationship

between the triggered events and intensity changes is loga-

rithmic which is formulated in [43]. Equation 1 presents the

correlation of temporal contrast (TCON) and photo-current

(I). A threshold is considered for the temporal contrast to fire
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positive (higher intensity) or negative (lower intensity) which

can be modified to change the sensor sensitivity and filter the

noise.

TCON =
d(ln(I(t)))

dt
(1)

To establish the event-driven tactile sensor, a semi-transparent

silicone fingertip is located between the object and gripper.

When a force is applied on the object, the silicone deforms due

to the elasticity. Therefore, DVS captures the changes within

the contact area and triggers both positive and negative events.

The silicone membrane is molded with dimension of 4.0 ×
2.0 × 0.2 cm to cover the contact area between the gripper

plane and the object. The silicon properties and depth of the

fingertip have a significant impact on the sensor sensitivity and

the range of force estimation. Figure 1 illustrates a diagram of

the sensor including transparent grippers, a semi-transparent

silicone fingertip, DVS, and the object.

Figure 1: Event-based tactile sensor diagram

III. FORCE ESTIMATION

Camera-based approaches consider different techniques to

estimate magnitude and direction of the contact force. For

instance, the force magnitude and direction are estimated by

detecting the markers displacement in the elastomer using a

single frame-based camera [30], [31], [41]. On the other hand,

a number of researches investigate the force estimation using

geometrical reconstruction techniques [34]–[36]. Frame-based

stereo cameras are used to reconstruct a depth map within the

contact area to estimate magnitude and direction of the applied

force. In this paper, a novel event-driven (dynamic) method is

presented to estimate force by observing the intensity changes

within the contact area.

A. Concept

As mentioned in Section II, DVS fires either positive or

negative events depending on the intensity changes in the

scene. Since a semi-transparent silicone has an opaque surface,

the contact area is barely visible prior to the contact of an

object to the membrane. Due to the deformation of the silicone

membrane, the visible part of the contact area becomes larger

by applying more force, and intensity of the contact area

increases significantly.

Accordingly, an increase of the applied force triggers the

negative events while a decrease of the applied force triggers

positive events. In this paper, positive and negative events are

presented in green and red respectively.

Deformation of silicone under a pressure is highly non-linear

which depends on the type and size of the membrane as well as

the range of the applied force. Other factors such as direction

of force, shape of the contact area and temperature can affect

this relationship. Consequently, the correlation between events

and the contact force is highly non-linear considering the

following parameters: (i) The deformation of silicone mem-

brane [45]; (ii) The logarithmic relation between changes in

intensity and triggered events which is presented in (Equation

1).

To visualize the correlation of triggered events to the contact

force, events are accumulated over a time interval whereas

the applied force increases significantly. Figure 2 represents

the triggered events and image of the contact area where the

contact force is increased.

(a) (b) (c)

Figure 2: (a) Image of the contact area when a low amount

of force is applied. (b) Accumulation of events over a 40 ms

time window during a grip. (c) Image of the contact area when

a high amount of force is applied.

As it can be observed in Figure 2(b), events are triggered

in most regions of the contact area by applying force to the

object. On right bottom of the contact region, a number of

events are triggered due to the noise and a slight displacement

of the silicone membrane.

B. Grasping Procedure

The contact force estimation from DVS events can be

approached as a time series regression problem. A single grasp

can be divided into three main phases: (i) Grasping phase;

(ii) Holding phase; (iii) Releasing phase. The contact force

changes significantly in the grasping and releasing phases

while in the holding phase the force variation is related to

the vibration. This research aims to estimate the contact force

in both grasping and releasing phases without consideration of

the holding phase (vibration). The grasping phase includes the

first instance where the object touches the silicone membrane

and the applied force is increased until it reaches a constant

value (holding phase).At the first instance when the object

touches the membrane, a lot of negative events are triggered

due to the intensity changes in all of the correspondent pixels

of the contact area. Therefore, a first touch is determined when

the first significant number of negative events are triggered.

Once the contact is obtained, negative and positive events

represent the changes in the applied force and vibration of

the object. It is noteworthy to mention that after a certain
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amount of increase in force, the silicone membrane reaches

a saturation point where further increase of the applied force

does not deform the membrane. Hence, the sensor can estimate

a limited range of force which depends on the silicone

membrane properties which is a case for all the camera-based

tactile sensors with a silicone membrane.

In the holding phase, the applied force varies due to vibration

and noise which are not considered in this research. Finally,

in the releasing phase, the applied force is decreased which

leads to trigger positive events within the contact area. Figure

3 illustrates the normalized value of events and the measured

force in a single grasp over a time.

Both number of events and the measured force are framed

over 7 ms intervals. The framing process helps to differentiate

meaningful events and reduce the impact of noise over a longer

period. In an ideal grip, the grasping phase must include only

negative events. However, the object vibrates slightly in a short

amount of time to reach stability which causes triggering the

positive events. There is a trade-off between the filtering of

the unwanted events and the sensor sensitivity which can be

adjusted by changing the DVS threshold.
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Figure 3: Normalized value of the force which is measured by

a piezoresisitve force sensor (blue), number of negative events

(red), number of positive events (green) in a single grasp.

In Figure 3, the first peak in the negative events represents

the first touch of the object and the fingertip. The peaks

of the negative events indicate a significant increase of the

contact force. The threshold of the positive events are lower

than the negative events which makes the sensor to have a

higher sensitivity for the decrease of the contact force. In

an ideal grasp, only negative events are expected to trigger

by applying more amount of force. However, vibration and

instability of the grasp results in triggering positive events

as well as negative events. The first significant spike in the

releasing phase demonstrates a loss in the contact area which

leads to the object slippage.

To correlate the triggered events and the contact force, a

robust time-series learning technique is required to capture

the non-linear relationship over a time. In this work, TDNN

and GP models are chosen since these models are able to

model time-series data with non-linear relationship between

variables. Accordingly, the force values are measured by a

piezoresistive force sensor at each time interval to train and

test the machine learning methods. It should be noted that the

measured force values are used to train the models and the

accumulation of triggered events are considered as the inputs

to the models.

C. Time Delay Neural Networks

One of the well-known time-series machine learning models

is TDNN which is widely applied on speech recognition, text

recognition and regression problems [46]. The main advantage

of TDNNs is the ability to relate temporal sequences to each

other, enabled by their main characteristic, the delay nodes.

Number of delay nodes is a crucial parameter in TDNN

network which specifies a time interval to capture patterns of

a signal.

Another advantage of TDDNs is a faster training time

compared to Recurrent Neural Networks (RNNs) due to the

constant value of the delay nodes. The delay node in TDDNs

is often assigned to a short time to capture the relationship

of the current point with the previous observations. A

fixed and small number of time delay nodes helps to avoid

vanishing gradient problem which is a well-known problem

in traditional RNNs with long-term dependencies [47].

In this research, a variety of networks with different number

of hidden layers and neurons are tested to find the best

architecture. The events are accumulated over time to provide

a full memory of the sequences to the network which

improves the detection of global features. The accumulation

of positive and negative events are passed to the network

separately to identify decrease and increase of the contact

force respectively. Followed by the input layer, k fully-

connected hidden layers with n neurons in each layer are

considered to capture the non-linear relationship between the

events and the applied force.

The sigmoid activation function is assigned to all hidden

layers after some initial experimentation. A variety of

experiments are performed to find appropriate parameters for

the model to achieve a good performance. In Section V, a

variety of network architectures are analyzed comprehensively

to investigate the impact of the number of neurons and hidden

layers on the network performance. Figure 4 demonstrates

the deep TDNN network for the force estimation. A cost

function is defined based on the error of the estimated

force from events in comparison to the measured force

using a piezoresistive force sensor. To optimize the error

of the network, the cost function can be approached as a

minimization of the sum of squares of a non-linear function

(Equation 2) whereas F (x) represents the error function. One

common approach to solve a minimization problem is the

Levenberg-Marquardt (Equation 3). The Levenberg-Marquardt

uses the Gauss-Newton method to search for a direction in

order to decrease F (x) at each iteration. In Equation 3, the

Jacobian matrix and damping factor (non-negative scalars)

are denoted as (J) and (λ) respectively. Damping factor is

considered as 0.01 which is multiplied by an identity matrix

(I) to vectorize the parameter. The Levenberg-Marquardt

method searches the directions which is given by a solution
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Figure 4: A deep TDNN model with a time delay of three

nodes (21ms) to estimate force from accumulative events.

(pk).

min(f(x)) =
∑

i=1

F 2

i (x) (2)

(J(xk)
TJ(xk) + λkI)pk = −J(xk)

TF (xk) (3)

D. Gaussian Process

Gaussian Process (GP) is a stochastic modeling method to

predict and forecast variables based on combination of random

variables over the data points. A variety of kernels can be con-

sidered to fit a function with random variables corresponding

to the multivariate normal distribution [48]. The choice of the

kernels and hyper-parameters have a significant impact on the

model to estimate the function between inputs and outputs.

As mentioned in Section II, the triggered events and intensity

changes in the scene have a logarithmic relationship. On the

other hand, the silicon membrane behaves non-linearly over

different contact forces. Therefore, we consider the Automatic

Relevance Determination (ARD) squared exponential covari-

ance kernel to build a robust model in order to find a highly

non-linear correlation between events and the contact force.

Equation 4 presents the kernel function whereas xi,xj are two

inputs, σf is the signal standard deviation, and θ represents

the parameterized version of the covariance function. Each

predictor (m) can have a different length scale (σm) whereas

m = 1, 2, · · · , d.

k(xi, xj |θ) = σ2

fexp[
−1

2

d∑

m=1

(xim − xjm)

σ2
m

] (4)

One of the most important hyper-parameters in a GP model

is the length scale (σm) which affects the model performance

significantly. In order to optimize the length scale, a Bayesian

optimization technique is performed over 10 iterations to find

the best length scale. Afterwards, the length scale with the best

performance is selected and replaced in the kernel function.

To improve the GP performance to estimate force in a grasp,

timestamps are also passed to the GP model as an input. In

other words, the GP model considers positive events, negative

events, and time to estimate the contact force.

IV. MATERIAL CLASSIFICATION

Acquiring information about the object properties such as

material, friction coefficient, stiffness and weight facilitate the

grasping process. This research proposes a novel technique to

classify objects materials using DVS events from the grasp-

ing and the releasing phases. In the proposed classification

method, the input consists of two features (accumulation of

positive and negative events) for all the sequences of each

grip for different materials. Figure (5) illustrates accumulation

of events for different materials in a single grasp considering a

similar range of applied force. It can be observed from Figure

0 22 50 100 123 144

Timestamp

0

500

1000

1500

2000

2500

3000

A
c
c
o

m
u

la
ti
o

n
 o

f 
P

o
s
it
iv

e
 E

v
e

n
ts

Material 1

Material 2

Material 3

Material 4

Grasping

Phase

Holding

Phase

Releasing

Phase

(a)

0 23 50 100 123 144

Timestamp

0

0.5

1

1.5

2

2.5

3

3.5

4

A
c
c
u

m
u

la
ti
o

n
 o

f 
N

e
g

a
ti
v
e

 E
v
e

n
ts

104

Material1

Material2

Material3

Material4

Grasping

Phase

Holding

Phase
Releasing

Phase

(b)

Figure 5: Four different materials are considered in a single

grasp with a similar range of the contact force. (a) Accumu-

lation of positive events. (b) Accumulation of negative events.

(5) that the accumulation of negative and positive events are

distinguishable for different stiffness in a similar range of the

applied force. The objects and the silicone membrane deform

differently for each material during the grasping phase and the

releasing phase. The number of positive and negative events

follow different patterns for each object. Other factors such

as background noise and shape of the contact area affect the

number of events.

A Deep Neural Network (DNN) model is developed to classify

materials considering the grasping and releasing phases. The

network consists of k fully-connected hidden layers and n

neurons in each layer. The sigmoid activation function is se-

lected for all the layers after initial experiments. Furthermore,
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a soft-max function is used in the output layer to classify

different materials. The Scaled Conjugate Gradient (SCG)

back-propagation method is used to train the network. Figure

6 demonstrates the architecture of the proposed network for

the material classification.

Figure 6: A DNN model for material classification

V. VALIDATION AND RESULTS

This section describes the validation of the proposed models

for force estimation and material classification. Detailed in-

formation on the experimental setup, data collection, synchro-

nization process, as well as experimental results are provided

in the following sections.

A. Experimental Setup And Data Collection

The experiments are designed to grasp four objects with

different Young’s modulus: (i) Foam; (ii) Rubber; (iii) Sili-

con; (iv) Steel. All the objects are formed in a same shape

(hexagon) and dimension (0.75×0.65×3.55) cm. To increase

the contrast with an opaque surface of the silicone membrane

and eliminate the effect of light reflection for different mate-

rials, all the objects are colored in black. Since the objects are

in the same shape and color, the classification method only

relies on the elasticity of the objects rather than the objects

texture or color.

The gripper consists of a static and a dynamic transparent

finger. In each experiment, each object is gripped and a

constant pressure is applied to hold the object for 700 ms.

Then, the gripper returns to the starting position to release

the objects. The DVS sensor is located in a distance of 5 cm

from the static finger to minimise the noise and capture the

changes in the contact area. A lens with 4.5 mm focal length

is mounted on the camera which can be adjusted regarding

the size of the objects. The linear horizontal field of view

of the lens corresponds to 9.8 cm in 10 cm distance. In this

setup, each pixel of the scene corresponds to 0.04 mm2 area

on the silicon surface. Consequently, the maximum sensing

region is 48x36 mm which can be changed by use of different

lens, changing the camera position and silicone thickness. On

the dynamic finger, a piezoresistive force sensor (FlexiForce-

A201) is located to measure the contact force.

The dynamic finger is controlled by a servo motor (AX-12A

Dynamixel) using a micro-controller (Arduino) to control the

gripper acceleration and position. The force is applied to the

object by the dynamic finger with an angle of 15◦ with respect

to the z-axis. Figure 7(a) demonstrates the experimental setup:

The DVS observes the contact area through a static finger of

the gripper. Figure 7(b) illustrates the contact area from the

view of the DVS.

(a)

(b)

Figure 7: (a) Experimental setup includes the piezoresistive

force sensor, DAVIS 240C, AX-12A Dynamixel servo motor,

and two transparent finger. (b) The image of the contact area

from the DVS point of view.

B. Force Sensor and Synchronization

A piezoresistive force sensor of FlexiForce A201 type

is used as a tactile sensor to validate the proposed event-

based sensor. The force sensor has a response time < 5
µs, percentage error ± < 3%, hysteresis < 4.5% of full

scale and is adjusted to measure forces from 0 − 111 N.

Moreover, experiments are performed for a range from 0 to 3.7
N. This range is selected based on the saturation of silicone

deformation. The force sensor is covered by a silicone layer

in order to mimic the same friction coefficient on both sides
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of the objects.

A Light-Emitting Diode (LED) is used to synchronize the DVS

camera and the force sensor. In each experiment, the LED is

turned on and after few milliseconds off prior to the grasp.

When the LED is turned off, the time is recorded by the micro

controller to start recording the force measurements. This time

is also detected by the DVS by finding a significant spike

of negative events (LED OFF) in the scene. Afterwards, the

artificial frames are constructed by accumulation of positive

and negative events during 7 ms window. Each experiment is

divided into the grasping phase (from the 1st frame to 22nd

frame), the holding phase (from 23rd frame to 122nd) and the

releasing phase (from 123rd frame to 144th frame).

The measured force varies significantly due to the vibration

and movement of the dynamic finger. A third order median

filter is applied to smoothen the force values and filter the

noise. Figure 8 illustrates the distribution of force over 48

experiments each of them is captured for all timestamps.

As shown in Figure 8, the contact force decreases significantly
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Figure 8: Each row represents an experiment over 144

timestamps whereas the color indicates the contact force at

each point. The dotted green lines show the signal clipping

boundaries for the grasping, holding and releasing phases

during the releasing phase. Since the force sensor is mounted

on the dynamic plane and it is covered by a silicone layer, the

measured contact force is small but non-zero.

C. Force Estimation

This section presents and analyzes the results of the pro-

posed models for the force estimation. The most common

approach to evaluate a machine learning method is to partition

the data into training and test subsets. The model design and

hyper-parameters are tuned to achieve the highest performance

on the test set. The training set is given to the machine

learning method to find appropriate hyper-parameters in order

to minimize the error. The test subset (unseen data) is not

involved in the training process. A significant disadvantage of

this approach is that researchers changes the model design and

hyper-parameters based on the assessment on the test subset.

Therefore, the test subset is in-directly involved in the design

of the method which makes a bias in this process.

Another approach is to divide the dataset into three different

partitions (training, validation and test). The validation set

assists the training process to stop when the network reaches

the saturation point, and therefore, it reduces the time of the

training process. Afterwards, the hyper-parameters are opti-

mized on the validation set. An appropriate machine learning

model and kernels can be selected by considering the method

performance on the validation set. Finally, the test subset only

is used to report the performance of the network rather than

finding the optimum model and hyper-parameters.

In this paper, the data is divided into three subsets: 87.5% for

training (forty-two experiments), 10.4% for validation (five

experiments) and 2.1% for test (one experiment). The five

experiments in the validation set are selected randomly from a

wide range of forces to make sure that all possible values of the

applied force are covered. Furthermore, an exhaustive leave-

one-out cross-validation method is deployed to test each ex-

periment individually over 48 folds. The leave-one-out method

provides a comprehensive evaluation by testing the models on

all of the experiments individually.

The TDNN error is calculated over all the folds (48 folds)

and the average of Mean Squared Error (MSE) is calculated

to compare different network architectures. To find the optimal

architecture, number of neurons and hidden layers are varied.

All the weights in the network are initialized randomly and

biases are set to zero at the first place. The networks are

trained in parallel on a CPU with double precision (Corei7-

8700 6cores) using MATLAB neural network toolbox. Table

II demonstrates the average MSE over all folds for different

number of hidden layers (k) and neurons (n). The lowest

k/n n=5 n=10 n=15 n=20 n=25 n=30 n=35 n=40

k=1 0.23 0.19 0.18 0.19 0.20 0.18 0.16 0.16
k=2 0.21 0.19 0.16 0.17 0.17 0.17 0.17 0.17
k=3 0.19 0.20 0.18 0.18 0.16 0.17 0.17 0.17
k=4 0.20 0.19 0.16 0.17 0.18 0.17 0.17 0.15

k=5 0.20 0.16 0.20 0.18 0.18 0.16 0.17 0.16

Table II: Mean Squared Error of the estimated force(N) on the

validation set whereas the lowest error is highlighted in bold.

validation error (0.15 N) is achieved through a network with 4

hidden layers and 40 nodes. Since the validation experiments

are chosen from a wide range of forces, it is expected to

achieve a generalized model for the force estimation. Note

that choosing different experiments for the validation partition

changes the performance of the network. Table III presents the

average MSE over 48 folds for the sequences of the unseen

experiments. The average MSE is highlighted for the proposed

Table III: Mean Squared Error of the estimated force(N) on the

test set whereas the error of the proposed network architecture

is illustrated in bold.

k/n n=5 n=10 n=15 n=20 n=25 n=30 n=35 n=40

k=1 0.16 0.24 0.15 0.22 0.19 0.16 0.24 0.15
k=2 0.17 0.16 0.16 0.16 0.17 0.18 0.15 0.35
k=3 0.18 0.18 0.16 0.17 0.16 0.16 0.16 0.16
k=4 0.18 0.17 0.16 0.16 0.16 0.17 0.19 0.16

k=5 0.18 0.16 0.24 0.17 0.20 0.15 0.24 0.18
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network architecture which is the second best accuracy overall.

Similar performance of the network for both validation and test

partitions indicates a good generalization of the network.

Figure 9 illustrates the multilayer TDNN response (red) and

the measured force (ground truth) for an experiment tested

on unseen data considering leave-one-out cross-validation

method. As it can be observed, the estimated force follows

the measured force pattern with a high accuracy during the

grasping phase whereas the estimated force drops to a steady

level. In the beginning of the releasing phase, the object loses

all of the contact area with the fingertip which leads to a

significant spike in number of triggered positive events. After

this moment, a slight number of events are fired which in-

dicates environment noise. Therefore, the network recognizes

the frames that the object is not in contact with the fingertip

and it remains steady. Since the force sensor is mounted on the

dynamic plane of the gripper, the measured force is affected

by noise due to the motion of the gripper in the releasing

phase. Moreover, the force sensor hysteresis adds a further

delay to the measured force over the time. Consequently, the

amount of measured force is decreasing slower over the time

rather than a sharp drop at the first frame of the releasing

phase. To evaluate the proposed GP model, the same folds as
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Figure 9: Measured force and estimated force for the TDNN

model on the unseen experiment during the grasping phase (a)

and the releasing phase (b).

TDNN are considered to allow the comparison of models. The

Bayesian optimization is performed on each fold individually

over ten iterations to tune the hyper-parameters. Figure 10

illustrates the estimated force by the GP model for the unseen

experiment in one of the folds. The avaraged MSE of 0.17 N

is achieved through the time-series GP method. The response

of this technique appears to be able to estimate the force in the

grasping phase with a high accuracy. In the releasing phase,

the GP response decreases with a slight slope compare to

the measured force in this selected fold. Since the number of

triggered events are close to zero in the releasing phase, the GP

method learns to estimate the measured force by considering

the force values as a function of time. Figure 11 illustrates the

averaged MSE and standard deviation for the estimated force

on the all folds at each timestamp for both TDNN and GP.

To calculate the sensitivity of the sensor, the estimated force

values on the test experiments are considered over all folds.

Flexible piezoresistive sensors often have a lower accuracy

and high level of noise within the low range of the applied
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Figure 10: Measured force and estimated force by GP model

on the unseen experiment during the grasping phase (a) and

the releasing phase (b).

(a) (b)

Figure 11: Red and blue lines present the average MSE of

the estimated force over all folds at each timestamp during the

grasping phase (a) and the releasing phase (b). The standard

deviation of MSE is presented by a highlighted area over the

average of MSE.

force [49]. Therefore, all the data points with the force value

of less than 0.2 N are eliminated for the purpose of sensitivity

calculation. The minimum value of changes in the estimated

force for all the points over 0.2 N is determined for each

fold individually. Finally, the minimum value of changes in

the estimated force is averaged over all folds. The TDNN

and GP models provide the sensitivity of 0.01 N and 0.02

N respectively. The TDNN model provides a slightly better

sensitivity due to the high number of parameters which allow

the network to learn a highly non-linear relationship between

the contact force and events.

D. Material Classification

Obtaining further information about the objects facilitates

the grasping tasks. The elasticity of the objects is one of the

key factors in differentiate objects. The proposed classification

model classifies the objects with different Young’s modulus

considering the grasping and releasing phases. As mentioned

in Section V-A, the objects are considered with same size and

shape to eliminate these features in the classification process.

Furthermore, all the objects are covered with a layer of

black colour to minimize effect of light reflection and objects

texture during the experiments. Therefore, our classifier is

fed with fewer features which makes the classification task

harder to learn a highly non-linear relationship between objects

materials and the events independent of size, shape, location,
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texture and color. The experiments are repeated for each

material as the following: Foam (11), Rubber (9), Silicone

(14), and Steel (14).

Four experiments are chosen for the validation set and leave-

one-out cross validation is implemented to evaluate the classi-

fication network accuracy. Table IV represents accuracy of the

network for different numbers of hidden layers and nodes. The

Table IV: Accuracy of the material classification on the

validation data

k/n n=5 n=10 n=15 n=20 n=25 n=30

k=1 80.21 76.56 83.33 84.38 85.94 83.85
k=2 70.31 81.25 84.38 85.94 86.98 90.10
k=3 64.06 77.60 81.77 85.42 86.98 88.54
k=4 67.19 77.60 78.65 84.38 84.90 89.06
k=5 60.42 68.75 76.56 81.25 86.46 90.10
k=6 60.94 69.79 74.48 81.77 85.42 86.46

highest accuracy for the validation set is achieved through two

models with 30 nodes. A higher number of neurons and hidden

layers might lead to achieve a better result while increases the

training and testing time significantly. Therefore, the network

with 2 hidden layers (k=2) and 30 neurons (n) is selected

to classify materials. Table V illustrates the accuracy of the

proposed network for the unseen experiments over 48 folds.

Table V: Accuracy of the material classification model on the

unseen data (test set)

k/n n=5 n=10 n=15 n=20 n=25 n=30

k=1 70.83 68.75 62.50 70.83 62.50 68.75
k=2 58.33 62.50 68.75 75.00 60.42 79.17
k=3 50.00 58.33 56.25 72.92 72.92 77.08
k=4 60.42 58.33 72.92 68.75 60.42 75.00
k=5 50.00 45.83 54.17 62.50 68.75 72.92
k=6 39.58 58.33 66.67 58.33 70.83 75.00

The highest accuracy (79.17%) for the unseen test data

stands for the proposed network. Figure 12 demonstrates the

confusion matrix for these experiments considering leave-one-

out cross-validation method.

As observed in Figure 12, the rigid material (Steel) has

the highest accuracy with only one error over all folds.

The classification of soft materials with a closer Young’s

modulus is a more challenging process. The results indicate

an average accuracy of 73.3% for Foam, Rubber and Silicone.

As mentioned in Section I, many approaches consider multiple

force sensors to classify materials and objects. A similar

neural network approach is implemented over all folds to

classify materials with different Young’s modulus using the

force sensor measurements instead. The best network indicates

accuracy of 50% on the unseen data which is 29.17% lower

than the accuracy of the event-based proposed sensor.

VI. DISCUSSION

The proposed TDNN achieved slightly higher accuracy

than the GP model. The delay nodes in TDNN enable the

modelling of temporal coherence of the sequences through

a time window. As regards to Figure 11, both TDNN and
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Figure 12: Confusion matrix for the material classification

over the all folds with overall accuracy of 79.17%
.

GP methods identify the start of the the grasping and the

releasing phases faster than the tactile sensor due to the force

sensor hysteresis and experimental setup. The estimated force

by TDNN drops rapidly to a low steady level, indicating the

low latency of this method. Interestingly, this phenomenon is

evident through most of the experiments. Figure 13 illustrates

the same behaviour of the TDNN in a different fold.
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Figure 13: Responses of the estimated force and the measured

force (ground truth) considering two different folds.

Unlike the TDNN, the GP response shows a slight decrease

during the releasing phase. Even though the triggered events

in this phase is close to zero, the GP model estimates the force

as a function of time. Therefore, the GP model has a lower

error than the TDNN where the number of the triggered events

are low. However, the actual contact force must drop rapidly

when the object releases. Since the force sensor is mounted on

the moving gripper, the measured force includes noises until

the gripper stops. Moreover, the force sensor hysteresis leads

to have a considerable delay to measure the real contact force

when the force varies significantly in a short amount of time.

As presented in Figure 11, the MSE of TDNN is lower than

the GP model in the grasping phase. Although the GP model

has a better response for the last 8 timestamps whereas the

measured force are not correlated with the triggered events,



2019 11

this part of the releasing phase represents only noise since the

object is not in contact with the gripper.

In this work, we consider a measurement range between

0.15-3.7 N for our sensor based on observations and initial

experiments. We initially conducted experiments for 0-6 N

and the proposed models are performed to estimate the force.

Based on the selected silicone membrane, it is observed that

the sensor was able to capture contact area changes for the

contact forces up to 3.7 N. The silicone membrane properties

such as stiffness, shape, and thickness as well as DVS thresh-

old can be altered in order to change the measurement range

of the sensor.

In order to compare our sensor with others, we consider

main parameters of the sensors such as sensitivity, range and

latency. In [27], a resolution of 0.05 N for a maximum range

of 7 N is presented whereas each frame takes 55 ms to capture.

Even though our proposed sensor currently has a lower range

of measurements, we achieved a lower latency 21 ms which

makes our sensor suitable for real-time applications. It is

worthy to mention that some vision-based force measurement

sensors such in [50], are designed for precise applications with

high resolution in µN-mN range. However, the sampling rate

of 30 FPS and high computational cost of processing coloured

images will increase the response of time of the vision-based

sensors.

The proposed classification model achieves a accuracy of

79.17% on the unseen test data considering the leave-one-

out cross-validation method. Most of the miss-classifications

are between the soft materials with a close Young’s modulus.

In [11], the average accuracy of 95%is presented to classify

different materials. The sensor includes strain gauges and

PVDF sensors embedded in the fingertip. The materials have a

different texture which provides further information to sensors

in order to classify the materials.

The proposed event-based sensor is the first-ever attempt to

utilize event-based cameras to estimate the contact force and

classify materials. There is clearly a high potential to achieve

better accuracy results, similar to the mentioned vision-based

sensors. The main advantages of the proposed sensor com-

pared to other vision-based techniques as follows:

1) Events are captured in a high time-resolution of few

microseconds. In contrast, the sampling rate of conven-

tional cameras is normally 30 ms which is significantly

higher than event-based cameras. Therefore, our pro-

posed event-driven sensor demonstrates shorter latency

than what could be achieved by conventional cameras.

2) Event-driven cameras have a lower power consumption

compare to the conventional camera. Moreover, captur-

ing and processing images require high computational

power and memory requirements whereas neuromorphic

cameras provide intensity changes in binary representa-

tion.

3) The proposed sensor does not require any markers inside

the silicone membrane. Therefore, the fingertip can be

easily changed by replacing a new transparent silicone

membrane.

In addition, our proposed TDNN solution for the event-

based force estimation seems to have a much lower hysteresis

than the piezoresistive force sensor, despite the fact that it has

been trained using data from the force sensor.

VII. CONCLUSION AND FUTURE WORK

In this paper, a novel event-driven tactile sensor is proposed

to estimate the contact force and classify different materials in

a grasp. A deep TDNN model with time delay of 3 nodes, four

fully-connected hidden layers, and 40 neurons at each layer

is implemented to estimate force measurements. The TDNN

estimates the contact force with the averaged MSE of 0.16 N

during the grasping and the releasing phases of an unseen grip.

Moreover, a time-series GP model is developed which achieves

the averaged MSE of 0.17 N. The results indicate a promising

relation between the triggered events and the contact force

variation, especially if one takes into account that the source

of the estimated errors may come from the hysteresis of the

piezoresistive force sensor that was used to provide the ground

truth.

Forty-eight experiments are performed on four different mate-

rials with a similar dimension and different Young’s modulus.

A multilayer neural network is suggested to classify materials

in a single grasp using events only. The proposed network

achieves a accuracy of 79.17% on the completely unseen

experiments, almost 30% higher accuracy compared to the

piezoresistive sensor.

For future work, we aim to increase the sensor sensitivity

and accuracy by performing advanced time-series machine

learning algorithms and using different types of force sensor

with a higher accuracy and sensitivity.
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