
International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.6, November 2018

DOI:10.5121/ijsea.2018.9602 11

A NOVEL EFFORT ESTIMATION MODEL FOR

SOFTWARE REQUIREMENT CHANGES DURING

SOFTWARE DEVELOPMENT PHASE

Jalal Shah, Nazri Kama and Nur Azaliah A Bakar

Department of Razak Faculty of Technology and Informatics, Universiti Teknologi

Malaysia, Kuala Lumpur, Malaysia

ABSTRACT

Software Requirements Changes is a typical phenomenon in any software development project. Restricting

incoming changes might cause user dissatisfaction and allowing too many changes might cause delay in

project delivery. Moreover, the acceptance or rejection of the change requests become challenging for

software project managers when these changes are occurred in Software Development Phase. Where in

Software Development Phase software artifacts are not in consistent state such as: some of the class

artifacts are Fully Developed, some are Half Developed, some are Major Developed, some are Minor

Developed and some are Not Developed yet. However, software effort estimation and change impact

analysis are the two most common techniques which might help software project managers in accepting or

rejecting change requests during Software Development Phase. The aim of this research is to develop a

new software change effort estimation model which helps software project manager in estimating the effort

for software Requirement Changes during Software Development Phase. Thus, this research has analyzed

the existing effort estimation models and change impact analysis techniques for Softwrae Development

Phase from the literature and proposed a new software change effort estimation model by combining

change impact analysis technique with effort estimation model. Later, the new proposed model has been

evaluated by selecting four small size software projects as case selections in applying experimental

approch. The experiment results show that the overall Mean Magnitude Relative Error value produced by

the new proposed model is under 25%. Hence it is concluded that the new proposed model is applicable in

estimating the amount of effort for requirement changes during SDP.

KEYWORDS

Software Change Effort Estimation, Software Requirement Changes, Function Point Analysis, Constructive

Cost Model and Software Development Phase.

1. INTRODUCTION

Software Project Management (SPM) has existed for years, but it still remains a great challenge

for software project team to produce successful software that fulfill its end user requirements

within the predicted time and cost [1]. Several studies have highlighted the importance of the role

of software project manager in project’s success or failure. Moreover, Software project manager

plays a vital role in a software development team and after all he is responsible for the success or

failure of the project [2]. According to, Lehtinen, et al. [3] a software project failure means an

identifiable failure in the cost, schedule, scope, or quality of the project. In addition, Kaur and

Sengupta [4] stated that the most common reasons for project failure are rooted in the project

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.6, November 2018

12

management process itself and, they have identified some estimation mistakes in their research

which are: unclear project goals, objectives, and project requirement changes during the project.

Therefore, a software project manager is always responsible in managing the Software

Requirement Changes (SRCs) and justifies the decisions that he has taken while accepting or

rejecting SRCs [5].

SRCs may occur at any phase of Software Development Life Cycle (SDLC)[6]. Accommodating

a huge amount of SRCs might increase the development time and cost of the software and

denying many software requirements changes possibly increase customer dissatisfaction[7].

However, a good change acceptance decision can help software project manager in managing

SRCs [8]. Kama and Halmi [9], [10] stated that there are two most related inputs that help

software project manager in an effective change acceptance decision for SRCs during SDP are: (i)

Change Impact Analysis (CIA) and (ii) Software Change Effort Estimation (SCEE) [11]. CIA is

the process of predicting the impact of SRCs on software artifacts and it also identifies the factors

that need to be modified to accomplish a Software Requirement Change (SRC). Alternatively,

SEE is a process that predicts the amount of work that is required to implement a software

requirement change [9, 12].

There are two types of effort estimation models which are widely used: (i) algorithmic-based

models and (ii) non-algorithmic-based models. Some of the most common algorithmic-based

models are: COCOMO II [13], Function Point Analysis [14] and Use-Case Points [15]. Whereas,

some of the non-algorithmic-based models are: Expert Judgement [16], Analogy Based

Estimation [17] and Delphi [18]. Although, several extensions of these models are developed to

estimate effort in Software Development Phase (SDP). However, there are not many studies to

estimate effort in SDP and still it remains an interesting task for software project managers to

estimate the amount of effort for SRCs in SDP [11, 19-21].

Although, [9] stated that the combination of CIA and SEE may improve the estimation accuracy

for SDP. At present, few studies [9, 11, 22] have been identified which used the combination of

CIA and SEE as an effort estimation model and provided better estimation results for SDP [9,

23].

This research presents a new Software Change Effort Estimation Model (SCEEM) that can be

used in measuring the amount of effort for SRCs during SDP. The new model identifies and

considers the related factors that contribute to the effort estimation for SRCs in SDP.

This paper is structured as follows: Section (2) presents related work, section (3) describes

proposed model, section (4) presents evaluation process and section (5) presents conclusion and

future work.

2. RELATED WORK

The five most related keywords involved in this research are Software Change Effort Estimation,

Change Impact Analysis, Software Development Phase, Function Point Analysis and

Constructive Cost Model II.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.6, November 2018

13

2.1. SOFTWARE CHANGE EFFORT ESTIMATION

Software Change Effort Estimation (SCEE) is the process of predicting that how much work and

how many hours of work are required to develop a software. Normally it describes in man-days

or man-hours unit [24]. Several SCEE models have been developed such as: Expert Judgement

[19, 25]; Estimation by Analogy [26]; Source Lines of Code [27] Function Point Analysis [28]

and Regression Analysis [19]. These models are dived in two categories: non-algorithmic based

software change effort estimation models and algorithmic based software change effort

estimation models.

Non-algorithmic models rely on learning, understanding and analyzing previous software projects

and may include past personal experiences. Two most common non-algorithmic SCEE models

are: Expert Judgement and Estimation by Analogy. Expert Judgement is a non-algorithmic SEE

model [17]. According to Sufyan, et al. [29] usually software development teams preferred to use

expert judgement effort estimation model instead of other estimation models because of its

flexibility and simplicity. Furthermore, they mentioned that it is not sure whether the estimation

results which are produced during this model are hundred percent accurate or not. Additionally, it

is also observed that unstructured expert judgment is extremely unpredictable. According to

Idri, et al. [26] and Sufyan, et al. [29], estimation by analogy predicts the amount of effort

required for new software projects. Whereas, for prediction of required effort it uses the statistics

of the similar software projects which have been developed earlier. Furthermore, they have stated

that because of simplicity and flexibility of analogy model it is used frequently as a hybrid model.

Whereas, in hybrid model, two or more SCEE models are combined for the reason to improve the

accuracy and performance such as particle swarm optimization (PSO), grey relational analysis

(GRA), artificial neural network (ANN), principle component analysis (PCA), and rough set

theory [30].

While, Algorithmic models are constructed based on fixed and predefined statistical and

mathematical equations. Some of the most common algorithmic-based SCEE models are: Source

Lines of Code, Function Point Analysis and Regression Analysis. Source Lines of Code (SLOC)

is the most ordinarily used metric to denote size of software during SEE in algorithmic methods

[27]. On the other hand, Hira, et al. [13] stated that estimating with SLOC is nearly impossible

until the complete development. Furthermore, they have stated that SLOC gives two different

estimation results for different programming languages, because the number of lines of code in

each language are different. Function Point Analysis (FPA) is also an algorithmic-based SCEE

model [31]. It is used for measuring the size and complexity of a software by calculating the

functionality, that system provided to its user [32]. While, in late 1970s Allan Albrecht

acknowledged that measuring effort estimation by SLOC is insufficient. For that reason, in 1979

he introduced FPA method [33].

Regression analysis is an algorithmic-based SCEE model and it has another way of calculating

effort estimation [34]. This model uses mathematical approaches for measuring effort estimation.

Furthermore, it uses two variables such as: (i) SLOC and (ii) FPA for software size measurement.

On the other hand, some regression analysis models use different parameters such as: operating

system or programming language for an independent variables [35]. The benefit of using

regression analysis model for effort estimation is its accuracy in measurement. Among other

regression analysis models the most famous one is Constructive Cost Model (COCOMO) II

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.6, November 2018

14

presented by Boehm [36]. Some earlier researchers have stated the significance of this method for

estimating effort [13, 37].

2.2. CHANGE IMPACT ANALYSIS

Change impact analysis (CIA) is the process of identifying potential consequences of a change, or

estimating what needs to be modified to accomplish a change [12]. The motivation behind CIA

research is to identify the implications of change on software artifacts. The change can be in any

form such as addition, modification or removal of existing or new software artifacts. Whereas, the

information of affected artifacts can help software project managers in taking effective decisions

regarding the change. As, Asl and Kama [38] stated that change impact analysis can helps

project managers in decisions making, that whether to accept or reject the change based on

predicted consequences.

Several CIA techniques have been developed such as: Use Case Maps (UCM) technique [39],

Class Interactions Prediction with Impact Prediction Filters (CIP-IPF) technique [38], Path

Impact technique [24], Influence Mechanism technique [37], and SDP Change Impact Analysis

Framework (SDP-CIAF) [40]. These techniques are divided into two categories named as: Static

Impact Analysis and Dynamic Impact Analysis. Static Impact Analysis (SIA) technique considers

static information from software artifacts to produce a set of possible impact classes. Some of the

common SIA techniques are: Use Case Maps (UCM) technique [39] and Class Interactions

Prediction with Impact Prediction Filters (CIP-IPF) technique [38]. Whereas, Dynamic Impact

Analysis (DIA) techniques considers dynamic information created by implementing the code to

generate a set of potential impact classes [9]. Some of Common DIA techniques are: Path Impact

technique [24] and the Influence Mechanism technique [37].

However, studies [24, 38, 39] shows that the integration of static and dynamic impact analysis as

a new approach. Foundational to this, a model is developed for SDP and named as SDP Change

Impact Analysis Framework (SDP-CIAF) [40]. Whereas, this framework has integrated SIA and

DIA techniques and they are considered partially developed classes. Furthermore, it utilizes

software artifacts such as requirement, design and class for impact analysis. In addition, the SDP-

CIAF model has two important processes which are: Developing Class Interactions Prediction

(CIP), and Performing Impact Analysis. The first process focuses to develop a CIP model by

using requirement and design artifacts; while second process identifies the possible affected

classes of the developed CIP model by using refinement techniques [41].

3. CONCEPTUAL FRAMEWORK

This research presents a new algorithmic-based Software Change Effort Estimation Model for

SRCs during SDP. Figure 1 shows the conceptual model of this research.

Figure 1: Conceptual model of this research

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.6, November 2018

15

The CIA technique proposed in conceptual framework is the SDP-Change Impact Analysis

Framework (SDP-CIAF) by [40] and the SCEE model proposed in the conceptual framework is

the Constructive Cost Model II (COCOMO II) by [42]. The new SCEEM has combined these two

techniques to increase the accuracy of change effort prediction for SRCs during SDP. The input

variables of the SCEEM from SDP-CIAF are: change request type, unadjusted function points,

source code, and code development status. These inputs are the independent variables (IVs) of the

model. Whereas, the input variables from COCOMO II are: five scale factors and seven cost

drivers [42]. Additionally, the change request size is a mediating factor and one of the inputs into

the customized COCOMO II. The mediating factor positions between the independent variable

(IV) and the dependent variable (DV) and it mediate the effects of the IV on the DV [43]. Finally,

the estimated effort produced by the SCEEM as the dependent variable.

4. RESEARCH DESIGN AND METHODOLOGY

Research design plans the method and steps in conducting the research of collecting, analyzing

and interpreting the data using quantitative, qualitative or mixed method approach. In designing

the research, this research has focused on conducting research methodology specifically in

software engineering field. Recently, there are a lot self-reflection in software engineering

research, which have involved on what establishes a scientific discipline and discussion of

empirical software engineering research [43-45]. However this research has selected the inclusive

guidelines introduced by Wohlin and Aurum [45] in designing the research plan.

Wohlin and Aurum [45] Suggested decision points for designing a research, which may be put

together into a decision-making structure in designing a research as specified in Figure 2.

Figure 2. Research decision-making structure [45]

As shown in the Figure 2. That, there are eight (8) decision points which are dived into three (3)

phases. Furthermore, every decision point can be performed by using different methods [45].

Hence, this research has used the direction of Wohlin and Aurum [45] and outlined the research

decision-making structure of the research design as shown in Table 1.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.6, November 2018

16

Table 1. Research Design Decision

4.1. PROPOSED SOFTWARE CHANGE EFFORT ESTIMATION MODEL

Figure 3 shows the steps of the proposed Software Change Effort Estimation Model which have been

executed to estimate the required amount of effort for SRCs during SDP.

Figure 3. Software Change Effort Estimation Proposed Model

It initiates when a Software Requirement Change (SRC) occurs during Software Development

Phase (SDP) and the process of change request evaluation will take place. Later, the number of

Unadjusted Function Points (UFPs) will be counted using Equation 1[46, 47].

Equation 1. Unadjusted Function Points

Whereas;

• UFPs stands for Unadjusted Function Points

• ILF stands for Internal Logical Files

• EIF stands for External interface files

• EI stands for External Input

• EO stands for External Output

• EQ stands for External Inquiry

In the next step, the development status of the code (i.e. Fully Developed 100%, Major

Developed 75%, Half Developed 50%, Minor Developed 25% or Not Developed 0%) will be

analyzed through CIA technique and the size of software requirement change will be calculated

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.6, November 2018

17

using Equation 2. Finally, the estimated effort for a software requirement change will be

calculated in person per month unit by using COCOMO II [42] estimation model.

Equation 2. Software Requirement Change Size for Deletion or Modification Deletion

Whereas;

• CRS: stands for Change Request Size

• UFPs stands for Unadjusted Function Points can be calculated by Equation 1

• CR stands for Conversion Ratio can be calculated by [48]

• DSM: stands for Development State Multiplier see Table 2

Table 2. Code Development State Multiplier

4.2. EVALUATION FACTORS

The research has selected four evaluation factors during this research which are: (i) Subjects and

Case Selections; (ii) Data Collection; (iii) Evaluation Metrics; and (iv) Evaluation Design.

4.2.1. SUBJECTS AND CASE SELECTIONS

The subjects of the experiment are two groups of Master of Software Engineering students from

Universiti Teknologi Malaysia, Advanced Informatics School (UTM-AIS). Some of the team

members have more than five years of field experience in software development.

The case selections are based on the following criteria:

• Small size of software projects which implemented either Traditional or Agile

methodology.

• Software projects which are in the development states (requirement analysis, design,

coding, testing or deployment phase).

• Software projects that implemented in any programing language.

• The development phase duration from three (3) to six (6) months.

As a case selection four software projects have been selected which are: (i) Payroll System, (ii)

Vending Machine, (iii) On-Board Automobile and (iv) Software Change Effort Estimation

Prototype Tool. The Table 5.1 gives a brief description of the software projects which are

selected as case selection

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.6, November 2018

18

Table 3: Case Selection Software Projects

Project

ID

Project Name Overview

P1 Payroll System (PS) This system is developed for UTM, AIS.

The system is designed in such a way to

solve the different issues of existing

Payroll System which was being used

before in UTM AIS. In the new Payroll

System employee can perform the

following tasks such as: Login in the

system to create employee report and

maintain timecard. Whereas, Payroll

Administrator can perform the following

tasks such as: Login in the system to

maintain employee information, create

timecard and create administrative report.

Furthermore, the Payroll System also deals

with Bank System, System Clock, Printer

and Project Database for the financial

tasks.

P2 Vending Machine

Control System

(VMCS)

This system is developed for UTM, AIS.

The purpose of the system is to vend drink

cans. A Customer can perform the

following tasks such as: select drink or

cancel drink, pay the required amount for

the drink and can collect the remaining

amount if paid extra. Whereas, the

maintainer can perform the following tasks

such as: maintain the system, put the

drinks and can collect or put the cash in

the machine.

P3 On-Board Automobile

(OBA)

This system is developed for UTM, AIS.

The purpose of the system is to improve

the safety of vehicle driving over long trips

on motorways. A driver can perform the

following tasks such as: Activate/ De-

Activate, Auto cruise, Calibrate Speed,

Monitor Maintenance, Manage Fuel and

Trip. Whereas, the system informs driver

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.6, November 2018

19

of certain problems such as: engine

broken, oil filter change, over speed

indicator and refill fuel. In addition to the

above, the system will provide driver with

the average speed and fuel consumption

information.

P4 Software Change Effort

Estimation Prototype

Tool (SCEEPT)

This software is developed to automate the

implementation of new SCEEM. A user

can perform the following tasks such as:

calculate the total number of Unadjusted

Function Points, to know the development

state of change request, to estimate the

required amount of effort for any change

request. Whereas, the system will estimate

and display the following results to the

user such as: Total number of Unadjusted

Function Points, development status of

code for any change request, predicted

amount effort and the value of Magnitude

Relative Error between estimated effort

and actual effort.

4.2.2. DATA COLLECTION

During the Data Collection phase, the following documents are collected from each case selection

for the experiment.

• Change Request Form

• Software Requirement Specifications Document (If available)

• Software Design Document (If available)

• Source Code

• Progress Report (used for actual amount of effort)

The information from the above objects are collected and used as input to the Experiments to

evaluate the applicability of SCEEM for SRCs during SDP.

4.2.3. EVALUATION METRIC

A set of evaluation metrics are used for the assessment of the estimation results that are produced

by the SCEEM. The evaluation metrics are: (1) Magnitude of Relative Error (MRE); (2) Mean

Magnitude of Relative Error (MMRE); and (3) Percentage of Prediction, PRED (.25) [49, 50].

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.6, November 2018

20

MRE: It is a metric that is used for the estimation of absolute error of the estimated effort as

compared to the actual effort. Furthermore, it is used to calculate the rate of the relative errors in

both cases such as: over-estimation or under-estimation as shown in Equation 2 [49].

 MRE = ����	
��� ���������������� �������
	
��� ������

Equation 2. Magnitude of Relative Error

���� = 100
� � ���

!

"

Equation 3. Mean Magnitude of Relative Error

The MRE value is calculated for each change request individually because it helps the user in

knowing the deviation of the estimated effort as compared to actual effort from the new

developed SCEEM. Whereas, MMRE is calculated for all the change requests once after the

completion of MRE value for the selected software project. According to Jorgensen and

Molokken-Ostvold [49] the MMRE value has an indirect relationship with effort estimation’s

accuracy that is the lower MMRE value indicates the higher accuracy rate in effort estimation.

Percentage of prediction, PRED (.25) is percentage of estimates that fall within 25 percent of

the actual value. Furthermore, it states that that an estimation technique is acceptable if PRED

(0.25) is at least 0.75 [50]. Percentage of prediction relation is shown in Equation 4, where K

is the number of estimations where MRE value is less or equal to x and n is the total number

of estimations.

 PRED%x' = k/n

Equation 4. Percentage of prediction

4.2.4. EVALUATION DESIGN

The evaluation design organized in such way to answer Research Question “How much

applicable is the new Software Change Effort Estimation Model for SRCs during SDP?” by

performing experiment.

In this experiment the applicability of SCEEM is evaluated by estimating the change

implementation effort for SRCs during SDP to answer the RQ: “How much applicable is the new

software change effort estimation model for SRCs during SDP”.

The hypotheses of the evaluation are:

Ho: The SCEEM is not applicable to estimate the change effort for SRCs during SDP.

Ha: The SCEEM is applicable to estimate the change effort for SRCs during SDP.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.6, November 2018

21

4.2.5. DATA ANALYSIS AND PROCEDURE

The table is analyzed based on the project ID, change request ID, change request type, estimated

effort result, actual implementation effort and the magnitude of the relative error (MRE) between

the estimation effort and the actual effort for each change request. The description of each item to

be analyzed are described in Table 4.

Table 4. Data Analysis and Procedure

Accordingly, the data analysis procedure is conducted and after that the Mean Magnitude of

Relative Error (MMRE) and Percentage of Prediction, PRED are calculated. Once the MMRE

and PRED of the software projects are obtained, the overall MMRE value is evaluated to measure

the applicability of the SCEEM for SRCs during SDP. Similarly, the experimental results are

further analysed to examine the relationship between the MRE value and the change request type

categorization.

5. RESULTS AND DISCUSSION

Table 5 shows the results of the software projects which are selected as case selections, which

are: the estimated effort which is produced by SCEEM, actual implementation effort which is

recorded during the development of software requirement change(s) and MRE value (percentage

of discrepancy between estimated effort and actual implementation effort) sorted by the Project

ID and Change Request ID. A total number of 81 SRCs that have been introduced from the case

selection software projects during development phase; out of these 18 SRCs are introduced from

Project 1 (P-1), 20 changes are introduced from Project 2 (P-2), 22 from Project 3 (P-3) and 21

are introduced from Project 4 (P-4).

Table 5. Case Selection Software Projects Experiment Results by SCEEM

Project

ID

Change

Request

ID

Change

Request

Type

SCEEM

Estimated

Effort

Man/Month

Actual

Effort

Man/Month

MRE

Value

P-1

CR-1 Addition 0.160354121 0.18 0.109144

CR-2 Addition 0.160354121 0.185 0.133221

CR-3 Addition 0.160354121 0.13 0.233493

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.6, November 2018

22

CR-4 Modification

Addition 0.160354121 0.188 0.147053

CR-5 Modification

Deletion 0.031671595 0.0329 0.037338

CR-6 Addition 0.224521764 0.302 0.25655

CR-7 Deletion 0 0 0

CR-8 Addition 0.224521764 0.199 0.12825

CR-9 Modification

Addition 0.160354121 0.18 0.109144

CR-10 Addition 0.160354121 0.23 0.302808

CR-11 Modification

Deletion 0.114525396 0.121 0.053509

CR-12 Deletion 0.071264793 0.068 0.048012

CR-13 Modification

Addition 0.160354121 0.179 0.104167

CR-14 Modification

Addition 0.224521764 0.2 0.122609

CR-15 Addition 0.224521764 0.35 0.358509

CR-16 Modification

Addition 0.224521764 0.188 0.194265

CR-17 Addition 0.160354121 0.134 0.196673

CR-18 Modification

Addition 0.224521764 0.295 0.238909

P-2

CR-19 Addition 0.156885278 0.19 0.174288

CR-20 Modification

Addition 0.156885278 0.22 0.286885

CR-21 Modification

Deletion 0 0 0

CR-22 Addition 0.156885278 0.18 0.128415

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.6, November 2018

23

CR-23 Modification

Addition 0.219664823 0.19 0.156131

CR-24 Deletion 0.097623735 0.09 0.084708

CR-25 Modification

Addition 0.156885278 0.13 0.20681

CR-26 Modification

Addition 0.219664823 0.18 0.22036

CR-27 Addition 0.219664823 0.199 0.103843

CR-28 Addition 0.156885278 0.13 0.20681

CR-29 Addition 0.219664823 0.188 0.16843

CR-30 Addition 0.156885278 0.14 0.120609

CR-31 Addition 0.219664823 0.188 0.16843

CR-32 Addition 0.156885278 0.13 0.20681

CR-33 Addition 0.156885278 0.22 0.286885

CR-34 Modification

Addition 0.156885278 0.142 0.104826

CR-35 Addition 0.156885278 0.18 0.128415

CR-36 Addition 0.219664823 0.188 0.16843

CR-37 Deletion 0.030986463 0.0322 0.037687

CR-38 Addition 0.219664823 0.288 0.237275

P-3

CR-39 Addition 0.156885278 0.188 0.165504

CR-40 Addition 0.318201597 0.18 0.767787

CR-41 Modification

Addition 0.318201597 0.355 0.103657

CR-42 Addition 0.318201597 0.2 0.591008

CR-43 Modification

Deletion 0.198004737 0.189 0.047644

CR-44 Addition 0.44553382 0.27 0.650125

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.6, November 2018

24

CR-45 Modification

Addition 0.318201597 0.28 0.136434

CR-46 Addition 0.318201597 0.4112 0.226163

CR-47 Modification

Addition 0.318201597 0.28 0.136434

CR-48 Modification

Addition 0.44553382 0.55 0.189939

CR-49 Modification

Addition 0.44553382 0.6 0.257444

CR-50 Addition 0.318201597 0.199 0.599003

CR-51 Modification

Addition 0.318201597 0.399 0.202502

CR-52 Addition 0.318201597 0.365 0.128215

CR-53 Addition 0.44553382 0.395 0.127934

CR-54 Deletion 0.44553382 0.413 0.078774

CR-55 Addition 0.44553382 0.55 0.189939

CR-56 Addition 0.318201597 0.388 0.179893

CR-57 Addition 0.318201597 0.2 0.591008

CR-58 Addition 0.44553382 0.55 0.189939

CR-59 Modification

Addition 0.44553382 0.435 0.024216

CR-60 Addition 0.318201597 0.412 0.227666

P-4

CR-61 Addition 0.190858823 0.21 0.091148

CR-62 Modification

Addition 0.136311946 0.155 0.120568

CR-63 Modification

Addition 0.136311946 0.155 0.120568

CR-64 Deletion 0.097354403 0.089 0.09387

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.6, November 2018

25

CR-65 Modification

Addition 0.136311946 0.177 0.229876

CR-66 Addition 0.190858823 0.3 0.363804

CR-67 Modification

Addition 0.190858823 0.218 0.124501

CR-68 Modification

Addition 0.136311946 0.154 0.114857

CR-69 Addition 0.190858823 0.245 0.220984

CR-70 Modification

Addition 0.136311946 0.155 0.120568

CR-71 Addition 0.367338762 0.345 0.06475

CR-72 Modification

Addition 0.136311946 0.158 0.137266

CR-73 Modification

Deletion 0 0 0

CR-74 Modification

Addition 0.190858823 0.222 0.140276

CR-75 Addition 0.190858823 0.231 0.173771

CR-76 Modification

Addition 0.136311946 0.18 0.242711

CR-77 Addition 0.136311946 0.17 0.198165

CR-78 Addition 0.136311946 0.2 0.31844

CR-79 Deletion 0.190858823 0.208 0.08241

CR-80 Addition 0.24779752 0.312 0.205777

CR-81 Addition 0.24779752 0.325 0.237546

The statistical analysis is conducted whereas, the histogram of the MRE values is generated to get

the basic ideas of the MRE values distribution produced by the SCEEM. Figure 4 shows the

histogram of the MRE Values produced by SCEEM.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.6, November 2018

26

Figure 4. Histogram of the MRE Values produced by SCEEM

The histogram shows that the distribution of the MRE value produced by SCEEM are

satisfactory. Whereas, the majority of the MRE values as shown in the histogram of SCEEM are

below 0.25 and a few MRE values are above 0.25. This is related to the negative relationship

between the MRE value and the effort estimation accuracy; the low MRE value indicates that the

accuracy of the effort estimation is higher. Also, note that there is N = 81 number of MRE values,

which specifies that there are no missing values in SCEEM.

Furthermore, the boxplot graph is generated to present the minimum, the lower quartile, the

median, the upper quartile and the maximum quartile of the MRE value produced by SCEEM.

The box of the plot is a rectangle which enclosed the middle half of the sample, with an end at

each quartile. A line is drawn across the box at the sample median (Chua, 2006). The boxplot

graph shows that the median value of MRE produced by the SCEEM is lower than .25. Figure 5

shows the Boxplot Graph of SCEEM.

Figure 5. Boxplot Graph of SCEEM

The boxplot graph shows that the median value of MRE produced by the SCEEM is lower than

.25. From the analysis, it is experimentally proven that the SCEEM gives higher accuracy in

estimating the change implementation effort for requirement changes during SDP.

Moreover, the Mean Magnitude Relative Error (MMRE) of each case selection software project

and overall case selection software projects are calculated. The evaluation focused on comparing

results between the estimated effort with the actual effort. The MMRE and Percentage of

Prediction, PRED (.25) are used as the comparison metric. According to [51], an acceptable

MMRE value (or error rate) for software effort estimation is 25% or (.25). Table 6 shows the

results of MMRE for each case selection software project and overall case selection software

projects.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.6, November 2018

27

Table 6. MMRE Results of all Case Selection Projects

The results of SCEEM are analyzed through statistical analysis by generating histogram, boxplot

graph and finally overall MMRE value of all case selection software projects are calculated. To

summarize, the experiment results which has been conducted to answer Research Question “How

much applicable is the new change effort estimation model for SRCs during SDP?”

The result shows that the overall MMRE value produced by the SCEEM is under .25. Thus, it is

concluded that the SCEEM is applicable in estimating the effort for requirement changes during

SDP. According to [51] an acceptable MMRE value for software effort estimation is 0.25 or 25

%. Hence, the analysis of this experiment rejects the Ho and accepts the Ha of the hypothesis.

6. CONCULSION AND FUTURE WORK

This research has proposed a new Software Change Effort Estimation Model which is the

combination of Effort Estimation and Change Impact Analysis. Whereas, for effort estimation

this research selected COCOMO II model and for Change Impact Analysis selected SDP-CIAF.

Using CIA technique in effort estimation model the proposed model generated very good results.

In Table 5 it is shown that for CR-7, CR-21 and CR-73 the MRE value is zero which means that

the effort estimation accuracy is 100%. This is possible only when the development status (i.e.

Fully Developed, Major Developed, Half Developed, Minor Developed and Not Developed) of a

software requirement change can be traced accurately. Whereas, Table 6 shows that the MMRE

value of each individual project and the overall project is less than 25% which means that the new

proposed model is applicable for effort estimation of SRCs during SDP [51].

The results of this research are the part and parcel of our ongoing research to overcome the

challenges of accurate effort estimation for SRCs during SDP. For future work, this research is

aiming to conduct an empirical study to check the effort estimation accuracy by comparing the

estimation results produced from existing effort estimation model such as: FPA and COCOMO II

with the new Software Change Effort Estimation Model.

ACKNOWLEDGEMENTS

This research project is under research university grant, Vote No K130000.3038.01M16 by

Universiti Teknologi Malaysia

REFRENCES

[1] H. Kerzner, Project management best practices: Achieving global excellence: John Wiley & Sons,

2018.

[2] M. Gupta and A. Kalia, "Empirical Study of Software Metrics," Research Journal of Science and

Technology, vol. 9, pp. 17-24, 2017.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.6, November 2018

28

[3] T. O. A. Lehtinen, M. V. Mäntylä, J. Vanhanen, J. Itkonen, and C. Lassenius, "Perceived causes of

software project failures – An analysis of their relationships," Information and Software Technology,

vol. 56, pp. 623-643, 6// 2014.

[4] R. Kaur and J. Sengupta, "Software Process Models and Analysis on Failure of Software

Development Projects," CoRR, vol. abs/1306.1068, 2013.

[5] M. Bano, S. Imtiaz, N. Ikram, M. Niazi, and M. Usman, "Causes of requirement change - A

systematic literature review," in Evaluation & Assessment in Software Engineering (EASE 2012),

16th International Conference on, 2012, pp. 22-31.

[6] J. Shah and N. Kama, "Issues of Using Function Point Analysis Method for Requirement Changes

During Software Development Phase.," presented at the Asia Pacific Requirements Engeneering

Conference, Melaka Malaysia, 2018.

[7] J. Shah and N. Kama, "Extending Function Point Analysis Effort Estimation Method for Software

Development Phase," presented at the Proceedings of the 2018 7th International Conference on

Software and Computer Applications, Kuantan, Malaysia, 2018.

[8] J. Shah and N. Kama, "Extending Function Point Analysis Effort Estimation Method for Software

Development Phase," in Proceedings of the 2018 7th International Conference on Software and

Computer Applications, 2018, pp. 77-81.

[9] Kama and M. Halmi, "Extending Change Impact Analysis Approach for Change Effort Estimation in

the Software Development Phase," in WSEAS International Conference. Proceedings. Recent

Advances in Computer Engineering Series, 2013.

[10] N. K. Jalal Shah, Saiful Adli Ismail, "An Empirical Study with Function Point Analysis for Software

Development Phase Method," presented at the 2018 7th International Conference on

Software and Information Engineering (ICSIE 2018), Cairo, Egypt, 2018.

[11] D. Kchaou, N. Bouassida, and H. Ben-Abdallah, "Change effort estimation based on UML diagrams

application in UCP and COCOMOII," in 2015 10th International Joint Conference on Software

Technologies (ICSOFT), 2015, pp. 1-8.

[12] D. Kchaou, N. Bouassida, and H. Ben-Abdallah, "UML models change impact analysis using a text

similarity technique," IET Software, vol. 11, pp. 27-37, 2017.

[13] A. Hira, S. Sharma, and B. Boehm, "Calibrating COCOMO® II for projects with high personnel

turnover," presented at the Proceedings of the International Conference on Software and Systems

Process, Austin, Texas, 2016.

[14] A. Hira and B. Boehm, "Function Point Analysis for Software Maintenance," presented at the

Proceedings of the 10th ACM/IEEE International Symposium on Empirical Software Engineering

and Measurement, Ciudad Real, Spain, 2016.

[15] L. M. Alves, A. Sousa, P. Ribeiro, and R. J. Machado, "An empirical study on the estimation of

software development effort with use case points," in 2013 IEEE Frontiers in Education Conference

(FIE), 2013, pp. 101-107.

[16] H. Rastogi, S. Dhankhar, and M. Kakkar, "A survey on software effort estimation techniques," in

Confluence The Next Generation Information Technology Summit (Confluence), 2014 5th

International Conference -, 2014, pp. 826-830.

[17] K. Usharani, V. V. Ananth, and D. Velmurugan, "A survey on software effort estimation," in 2016

International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), 2016,

pp. 505-509.

[18] R. Britto, V. Freitas, E. Mendes, and M. Usman, "Effort Estimation in Global Software Development:

A Systematic Literature Review," in 2014 IEEE 9th International Conference on Global Software

Engineering, 2014, pp. 135-144.

[19] A. Idri, M. Hosni, and A. Abran, "Systematic literature review of ensemble effort estimation," Journal

of Systems and Software, vol. 118, pp. 151-175, 8// 2016.

[20] M. d. F. Junior, M. Fantinato, and V. Sun, "Improvements to the Function Point Analysis Method: A

Systematic Literature Review," IEEE Transactions on Engineering Management, vol. 62, pp. 495-

506, 2015.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.6, November 2018

29

[21] B.Chinthanet, P.Phannachitta, Y. Kamei, P. Leelaprute, A. Rungsawang, N. Ubayashi, et al., "A

review and comparison of methods for determining the best analogies in analogy-based software

effort estimation," presented at the Proceedings of the 31st Annual ACM Symposium on Applied

Computing, Pisa, Italy, 2016.

[22] S.Basri, N.Kama, F. Haneem, and S. A. Ismail, "Predicting effort for requirement changes during

software development," presented at the Proceedings of the Seventh Symposium on Information and

Communication Technology, Ho Chi Minh City, Viet Nam, 2016.

[23] M.Shahid and S.Ibrahim, "Change impact analysis with a software traceability approach to support

software maintenance," in 2016 13th International Bhurban Conference on Applied Sciences and

Technology (IBCAST), 2016, pp. 391-396.

[24] S.Basri, N.Kama, and R. Ibrahim, "A Novel Effort Estimation Approach for Requirement Changes

during Software Development Phase," International Journal of Software Engineering and Its

Applications, vol. 9, pp. 237-252, 2015.

[25] O.Fedotova, L.Teixeira, and H. Alvelos, "Software Effort Estimation with Multiple Linear

Regression: Review and Practical Application," J. Inf. Sci. Eng., vol. 29, pp. 925-945, 2013.

[26] A.Idri, F.a. Amazal, and A. Abran, "Analogy-based software development effort estimation: A

systematic mapping and review," Information and Software Technology, vol. 58, pp. 206-230, 2//

2015.

[27] M.Kaur and S.K. Sehra, "Particle swarm optimization based effort estimation using Function Point

analysis," in Issues and Challenges in Intelligent Computing Techniques (ICICT), 2014 International

Conference on, 2014, pp. 140-145.

[28] N.K. b. Jalal Shah*a, Amelia Zahari, "AN EMPIRICAL STUDY WITH FUNCTION POINT

ANALYSIS FOR REQUIREMENT CHANGES DURING SOFTWARE DEVELOPMENT

PHASE," in ASIA International Multidisciplinary Conference 2017, Johor Bharu, 2017.

[29] B.Sufyan, K. Nazri, H. Faizura, and A. I. Saiful, "Predicting effort for requirement changes during

software development," presented at the Proceedings of the Seventh Symposium on Information and

Communication Technology, Ho Chi Minh City, Viet Nam, 2016.

[30] V.K. Bardsiri, D.N.A. Jawawi, A. K. Bardsiri, and E. Khatibi, "LMES: A localized multi-estimator

model to estimate software development effort," Engineering Applications of Artificial Intelligence,

2013.

[31] F.Ferrucci, C. Gravino, and L. Lavazza, "Simple function points for effort estimation: a further

assessment," presented at the Proceedings of the 31st Annual ACM Symposium on Applied

Computing, Pisa, Italy, 2016.

[32] A.J. Albrecht, "AD/M productivity measurement and estimate validation," IBM Corporate

Information Systems, IBM Corp., Purchase, NY, 1984.

[33] P.Vickers and C. Street, "An Introduction to Function Point Analysis," School of Computing and

Mathematical Sciences, Liverpool John Moores University, Liverpool, UK, 2001.

[34] S.Sabrjoo, M Khalili, and M. Nazari, "Comparison of the accuracy of effort estimation methods," in

2015 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI), 2015,

pp. 724-728.

[35] V.Anandhi and R. M. Chezian, "Regression techniques in software effort estimation using cocomo

dataset," in Intelligent Computing Applications (ICICA), 2014 International Conference on, 2014, pp.

353-357.

[36] B.W. Boehm, Software Cost Estimation with Cocomo II: Prentice Hall, 2000.

[37] S.Basri, N. Kama, and R. Ibrahim, "COCHCOMO: An extension of COCOMO II for Estimating

Effort for Requirement Changes during Software Development Phase," 2016.

[38] Asl and Kama, "A Change Impact Size Estimation Approach during the Software Development," in

2013 22nd Australian Software Engineering Conference, 2013, pp. 68-77.

[39] B.Sufyan, K. Nazri, A. Saiful, and H. Faizura, "Using static and dynamic impact analysis for effort

estimation," IET Software, vol. 10, pp. 89-95, 2016.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.6, November 2018

30

[40] N.Kama and F.Azli, "A Change Impact Analysis Approach for the Software Development Phase,"

presented at the Proceedings of the 2012 19th Asia-Pacific Software Engineering Conference -

Volume 01, 2012.

[41] N.Kama and F.Azli, "A Change Impact Analysis Approach for the Software Development Phase," in

2012 19th Asia-Pacific Software Engineering Conference, 2012, pp. 583-592.

[42] B.W. Boehm, R. Madachy, and B. Steece, Software cost estimation with Cocomo II with Cdrom:

Prentice Hall PTR, 2000.

[43] J.W. Creswell, Research design: Qualitative, quantitative, and mixed methods approaches: Sage

publications, 2013.

[44] R.De Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson, M. Litoiu, et al., "Software engineering

for self-adaptive systems: A second research roadmap," in Software Engineering for Self-Adaptive

Systems II, ed: Springer, 2013, pp. 1-32.

[45] C.Wohlin and A. Aurum, "Towards a decision-making structure for selecting a research design in

empirical software engineering," Empirical Software Engineering, vol. 20, pp. 1427-1455, 2015.

[46] D.Garmus and D. Herron, "Function Point Analysis: Measurement Practices for Successful Software

Projects pdf," 2001.

[47] J.J.Cuadrado-Gallego, P. Rodriguez-Soria, A. Gonzalez, D. Castelo, and S. Hakimuddin, "Early

Functional Size Estimation with IFPUG Unit Modified," in Computer and Information Science

(ICIS), 2010 IEEE/ACIS 9th International Conference on, 2010, pp. 729-733.

[48] Q.S.Management. (2018). Function Point Languages Table. Available:

http://www.qsm.com/resources/function-point-languages-table

[49] M.Jorgensen and K. Molokken-Ostvold, "Reasons for software effort estimation error: impact of

respondent role, information collection approach, and data analysis method," IEEE Transactions on

Software engineering, vol. 30, pp. 993-1007, 2004.

[50] V.Nguyen, B.Steece, and B. Boehm, "A constrained regression technique for COCOMO calibration,"

in Proceedings of the Second ACM-IEEE international symposium on Empirical software

engineering and measurement, 2008, pp. 213-222.

[51] S.-J. Huang, N.-H. Chiu, and L.-W. Chen, "Integration of the grey relational analysis with genetic

algorithm for software effort estimation," European Journal of Operational Research, vol. 188, pp.

898-909, 2008.

AUTHORS

Jalal Shah, he is pursing PhD in the field of Software Engineering from Universiti

Teknologi Malaysia. He has more than 8 year of teaching & research experience. He

is currently working in the area of Software Effort Estimation. He has also published

& presented papers in refereed journals and conferences.

Nazri Kama, He is an Associate Professor at Universiti Teknologi Malaysia (UTM)

specializing in software engineering. He graduated in Bachelor in Management

Information System from Universiti Teknologi Malaysia. Later, he obtained a

Master Degree from the same university in Real-time Software Engineering. In

2011, he received a Doctorate in Software Engineering from the University of

Western Australia in Australia

Nur Azaliah Abu Bakar, PhD is a Senior Lecturer at Advanced Informatics

Department, Razak Faculty of Technology and Informatics, Universiti Teknologi

Malaysia. She graduated with a Bachelor (Information Technology) in Information

Systems Engineering from Multimedia University (MMU) Malaysia (2000). She

then obtained her Masters in Information Technology from Universiti Teknologi

Mara (UiTM) in 2004. In 2017 she was awarded a Doctor of Philosophy degree in

Information Technology (Enterprise Architecture) by Universiti Teknologi Malaysia.

