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Abstract 

Background: Studies have shown that RNA secondary structure, a planar structure 
formed by paired bases, plays diverse vital roles in fundamental life activities and 
complex diseases. RNA secondary structure profile can record whether each base is 
paired with others. Hence, accurate prediction of secondary structure profile can help 
to deduce the secondary structure and binding site of RNA. RNA secondary structure 
profile can be obtained through biological experiment and calculation methods. Of 
them, the biological experiment method involves two ways: chemical reagent and 
biological crystallization. The chemical reagent method can obtain a large number of 
prediction data, but its cost is high and always associated with high noise, making it 
difficult to get results of all bases on RNA due to the limited of sequencing coverage. 
By contrast, the biological crystallization method can lead to accurate results, yet heavy 
experimental work and high costs are required. On the other hand, the calculation 
method is CROSS, which comprises a three-layer fully connected neural network. How-
ever, CROSS can not completely learn the features of RNA secondary structure profile 
since its poor network structure, leading to its low performance.

Results: In this paper, a novel end-to-end method, named as “RPRes, was proposed 
to predict RNA secondary structure profile based on Bidirectional LSTM and Residual 
Neural Network.

Conclusions: RPRes utilizes data sets generated by multiple biological experiment 
methods as the training, validation, and test sets to predict profile, which can compat-
ible with numerous prediction requirements. Compared with the biological experi-
ment method, RPRes has reduced the costs and improved the prediction efficiency. 
Compared with the state-of-the-art calculation method CROSS, RPRes has significantly 
improved performance.
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Background

RNA plays various important roles in the fundamental cellular processes and complex 

diseases, by means of transcription, replication, protein synthesis and gene expres-

sion regulation [1–4]. It usually binds to diverse proteins to participate in cell activities 

[5–7], and its structure determines its interaction and function [8, 9]. RNA possesses a 

three-tier structure, including the primary structure, secondary structure, and tertiary 

structure [10]. Of them, the primary structure is the base sequence, while the secondary 

structure is the planar structure formed through its own folding within the sequence, 

and the tertiary structure is formed in space by the interaction of secondary structural 

elements. Predicting secondary structure is an important basis for identifying the ter-

tiary structure and an important prerequisite for understanding the RNA mechanisms 

of various biological activities [11]. Unfortunately, it is challenging to predict the sec-

ondary structure of RNA with different lengths, and most of the existing calculation 

methods are limited by the length of RNA [12–14]. RNA secondary structure profile can 

record whether each base is paired with others. �e accurate prediction of RNA sec-

ondary structure profile not only helps to deduce the RNA secondary structure without 

length restriction [15] but also helps to identify the binding site of RNA, thus promoting 

the functional research of RNA.

RNA secondary structure profile can be obtained through the biological experi-

ment and calculation methods. Of them, the biological experiment approach involves 

two ways, namely, chemical reagent and biological crystallization. �e chemical rea-

gent method utilizes different types of probes to obtain the RNA secondary structure 

profile, which can be classified into several categories according to the different probe 

types. Parallel Analysis of RNA Structure (PARS) [16–18] employs the catalytic activ-

ity of two enzymes RNase V1 (able to cut double-stranded bases) and S1 (able to cut 

single-stranded bases) to distinguishes double and single stranded bases. Selective 2–

Hydroxyl Acylation analysed by Primer Extension (SHAPE) adopts the highly reactive 

chemical probes such as 1M6, NMIA(SHAPE) [19, 20], and NAI-N3 (icSHAPE) [21, 22] 

to characterize the RNA profile. Dimethyl sulfate (DMS) [23] uses the small size probe 

(CH3O)2SO2 to characterize RNA Profile. Although, the chemical reagent method can 

obtain a large number of prediction data, its cost is high and always linked with high 

noise, making it difficult to get results of all bases on RNA due to the limited of sequenc-

ing coverage [24]. �e biological crystallization method can extract RNA from cells 

for crystallization and then obtain RNA secondary structure profile by using nuclear 

magnetic resonance (NMR) or x-ray crystallography [25]. �e biological crystalliza-

tion method can obtain accurate results, but heavy experimental work and high costs 

are needed. In this regard, it is necessary to adopt the calculation method to predict 

RNA secondary structure profile. �e existing calculation method is CROSS [26], which 

creates a three-layer fully connected neural network and uses data generated from the 

biological experiment method as the training, validation, and test sets. In CROSS, each 

target base (the base will be predicted into profile) is processed into an RNA sequence 

with 13 bases, including 6 in the front and 6 in the rear of the target base, respectively. 

�ose bases are encoded by one-hot coding before they are input into the CROSS. 

Hence, each piece of data is encoded into a vector of 152. �ere are 52 neurons in the 

input layer, 20 in the hidden layer, and 2 in the output layer. Its relatively small network 
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space makes it hard to attain the expected performance. �erefore, it is necessary to pro-

pose a new time- and labor-saving calculation method to predict RNA secondary struc-

ture profile.

Results

In this paper, a novel end-to-end prediction method “RPRes” was proposed based on 

Bidirectional LSTM (Bi-LSTM) [27, 28] and Residual Neural Network(ResNet) [29, 30]. 

RPRes and CROSS had both similarities and differences. �e similarities were that both 

RPRes and CROSS were based on neural network, and the multiple data sets created by 

the biological experiment method were adopted for training, validation, and test; in this 

way, the characters of multiple biological experiment data sets were taken into account. 

�e differences were that, on the one hand, the network space of RPRes was larger than 

that of CROSS, so it extracted and learned more features; on the other hand, the input 

data of RPRes contained more context information so that each target base was more 

comprehensively learned. RPRes first extracted the features of all target base data trans-

mitted into the same format output based on a Bi-LSTM layer, and then a ResNet was 

used to classify the output of Bi-LSTM. During the method training, each of the data set 

was randomly divided into three sets: training set (80%), validation set (10%), and test set 

(10%). �e training set was used to train the model, the validation set was used to select 

the excellent model, and the test set was used to test the model performance. During the 

method test and comparison, the performance of RPRes was tested and compared by the 

test set of all the biological experiment data, and its generalization ability was tested and 

compared by the test sets of different types of biological experiment data.

Learning results and presentation

In this section, the learning results of RPRes were presented. �e data sets of human, 

mouse, zebrafish, PDB, and yeast were randomly divided into training (80%), validation 

(10%), and test (10%) sets. �e merged training set(contains all training sets of multiple 

biological experiment data sets) and merged validation set(contains all validation sets 

of multiple biological experiment data sets) were used to training and validation RPRes 

for 30 epochs. Figure  1 presents the accuracy and loss of each epoch in the experi-

ment. It can be seen that, although in the 10th epoch the curve fluctuated due to the 

sharp decline of the gradient, the overall accuracy of the merged validation set gradually 

increased and then stabilized, and the loss gradually decreased and then stabilized, indi-

cating that RPRes can successfully predict the RNA secondary structure profile.

Prediction results and comparison

In this section, the prediction results of RPRes were presented and compared with 

those of CROSS. To verify the performance of RPRes, we compared it with the state-of-

the-art method CROSS from two aspects, namely, the performance in the merged test 

set(contains all test sets of multiple biological experiment data sets) and the generaliza-

tion ability among the test sets of multiple biological experiment data sets. In the first 

aspect, the data sets of human, mouse, zebrafish, PDB, and yeast were randomly divided 

into training (80%), validation (10%) and test (10%) sets. �e merged training, validation 

and test sets were adopted to training, validation and test the model, respectively. �e 
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indexes of Accuracy, Sensitivity, Precision, F-score, and MCC [31] were used to compare 

RPRes and CROSS, then the receiver operating characteristic(ROC) curves were plot-

ted to present the predicted results of the two methods, and their area under the curve 

(AUC) values were compared. Accuracy was defined as the ratio of all the correctly pre-

dicted target bases to the total target bases, Sensitivity stood for the proportion of all 

the correctly predicted double-stranded bases to the total real double-stranded bases, 

Precision was the proportion of all the correctly predicted double-stranded bases to the 

total predicted double-stranded bases, F-score indicated the weighted harmonic mean 

of Sensitivity and Precision, while MCC was an index used to measure the classification 

performance of binary classification. �eir corresponding formulas were shown below 

(Eqs. 1–5), where TP, TN, FP, and FN indicated True Positives, True Negative, False Pos-

itives, and False Negatives, respectively [32]. Figure 2 exhibits the comparison of perfor-

mance between RPRes and CROSS. Obviously, RPRes achieved the best performance 

as far as all the indexes were concerned. Figure 3 shows the ROC curves of RPRes and 

CROSS. Clearly, the AUC value of RPRes was greater than that of CROSS.

(1)Accuracy =
TP + TN

TP + TN + FP + FN

(2)Sensitivity =
TP

TP + FN

(3)Precision =
TP

TP + FP

Fig. 1 The accuracy and loss of training and validation sets, where the red and blue curves represent the 
accuracy of training and validation sets, while the violet and green curves represent the loss values of training 
and validation sets, respectively
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In the other aspect, the generalization ability of different methods was compared 

by cross-test among different test sets. To this end, the data sets of human, mouse, 

(4)F − score =
2 ∗ TP

2 ∗ TP + FP + FN

(5)MCC =
TP ∗ TN − FP ∗ FN

√
(TP + FP) ∗ (TP + FN ) ∗ (TN + FP) ∗ (TN + FN )

Fig. 2 Comparison of performance between CROSS and RPRes. The blue column stands for the performance 
indexes of RPRes, while the orange column represents the performance indexes of CROSS

Fig. 3 The ROC curves regarding the RPRes and CROSS predicted results, where the blue and orange curves 
represent RPRes and CROSS, respectively
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zebrafish, and PDB were randomly divided into training (80%), validation (10%), and test 

(10%) sets. Typically, all of the yeast data was created as a test set due to the small vol-

ume of yeast-related data. When one training set was applied to train the method, all of 

the validation sets were used to select the excellent model, and then all of the test sets 

were used to test the method. Tables 1 and 2 show the generalization accuracy of RPRes 

and CROSS. Clearly, the generalization accuracy of RPRes outperforms that of CROSS 

in most cases, except for the following datasets (human-yeast, mouse-PDB, and PDB-

mouse) where the accuracy of CORSS was greater than that of RPRes.

Discussion

RNA is a vital biological macromolecule involved in nearly all important life activi-

ties and complex diseases. �e RNA profile records whether each base is paired with 

others, which facilitates to deduce its secondary structure and binding site. �e tra-

ditional biological experiment methods for obtaining RNA profile is time-consuming 

and laborious, which can not meet the requirement of high-throughput data. In addi-

tion, the CROSS calculation method is a three-layer fully connected shallow neural 

network, whose relatively small network space may lead to its poor performance. 

�erefore, it is urgently needed to propose a new calculation method to accomplish 

profile prediction. In this paper, a novel end-to-end prediction method “RPRes” was 

proposed to predict RNA secondary structure profile based on Bi-LSTM and ResNet. 

Compared with the biological experiment method, RPRes only needed to input the 

data into the algorithm model to obtain the prediction results, which reduced the cost 

and improved the prediction efficiency. Compared with CROSS, RPRes, which had 

greatly improved network space and input data context, more efficiently extracted 

and learned the features of target base, thus improving its performance. To find the 

appropriate length of context, we intercepted different lengths of context sequence 

for target bases, including 149, 119, 89, 59, and 29. Figure 4 displays the accuracy and 

Table 1 The generalization ability test of RPRes

Bold values indicate the better generalization accuracy of RPRes

Train Test

Human Mouse Zebrafish Yeast PDB

Human 0.9287 0.7866 0.6351 0.7938 0.5709

Mouse 0.7283 0.9452 0.6897 0.6895 0.5847

Zebrafish 0.6729 0.7291 0.8473 0.7443 0.5595

PDB 0.6526 0.7539 0.6234 0.5404 0.7952

Table 2 The generalization ability test of CROSS

Bold values indicate the better generalization accuracy of CROSS

Train Test

Human Mouse Zebrafish Yeast PDB

Human 0.8209 0.6608 0.6058 0.8111 0.5386

Mouse 0.6769 0.8870 0.6746 0.6829 0.5942

Zebrafish 0.6466 0.7017 0.8014 0.7108 0.5473

PDB 0.5784 0.7723 0.6135 0.5321 0.6588
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loss of different length contexts after training for 30 epochs. Clearly, the accuracy of 

different lengths context was close, but the loss value gradually decreased with the 

increase in length, suggesting the lower probability of overfitting and the higher gen-

eralization ability. �erefore, we cut 149 bases in the front and 149 bases in the rear 

of each target base, and used ‘N’ to pad the insufficient length sequences. Each target 

base was processed into the same format, as a result, the diversity of RNA sequence 

length did not affect RPRes.

In the learning process of RPRes, the accuracy of training and validation sets gradu-

ally increased, while the loss of both sets gradually decreased. In the last few epochs, 

the loss and accuracy of validation set tended to be stable, revealing that RPRes had 

stable performance and effectively predicted RNA secondary structure profile. In the 

process of method comparison, we compared RPRes and CROSS from two aspects. 

Firstly, we compared the performance of those two methods, trained and validated 

them using the same merged training and validation sets, and then compared the 

predicted results of the same merged test set. Specifically, their performances were 

measured by adopting five indexes: Accuracy, Sensitivity, Precision, F-score, and 

MCC and ROC curve. As observed from Figs. 3 and 4, RPRes increased the above five 

indexes by 12.20%, 22.13%, 12.91%, 17.59%, and 36.52%, respectively, and elevated the 

AUC value by 11.76%. Secondly, we compared the generalization ability of the two 

methods through the cross-test among different data sets. Tables  1 and  2 show the 

accuracy of RPRes and CROSS of different training sets. To conveniently display the 

specific improvements in the performance of each cross-test, Table 3 shows the per-

formance improvement of RPRes in various cross-tests. Obviously, the performance 

of RPRes was improved in most cross-tests, and it was reduced only in human-yeast, 

mouse-PDB, and PDB-mouse. Such performance degradation was mainly observed 

in the cross-tests of two different types of data, namely, chemical reagent and bio-

logical crystallization. �e main reason was that there were differences between the 

Fig. 4 The accuracy and loss of RPRes in the context of various lengths. The blue curve represents the 
accuracy in different length context, while the orange curve represents the loss in different length context
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distribution of these two types of data, and the network space of CROSS was smaller, 

leading to the less learning of different characteristics, so the performance of CROSS 

was better than that of RPRes in those cross-tests. �ere are many aspects to evaluate 

the performance of the neural network model, among which, the two most impor-

tant aspects are the performance of the same test set and the generalization ability 

of the cross-test set. RPRes was superior to CROSS in these two aspects, indicating 

that RPRes was effective and acceptable in predicting RNA profile. Two reasons might 

be mainly responsible for the superior performance of RPRes to CROSS. On the one 

hand, RPRes had a larger neural network space, which effectively learned and pre-

dicted the target bases. On the other hand, the training data (299 bases) were longer 

than those of CROSS (13 bases), which contained more features.

Conclusions

RPRes is a novel prediction method based on deep learning. �is method integrates var-

ious neural network technologies, and different technologies play different roles in its 

operation. For example, Bi-LSTM can extract the features of input data and integrate 

these data into outputs with the same format, making it convenient to identify them by 

the next layer network. ResNet classifies the output of Bi-LSTM into RNA profile. RPRes 

adopts diverse biological experimental data for learning and training, so it can learning 

the features of multiple different distribution data; as a result, the method is compatible 

with numerous prediction requirements. At the same time, compared with the biologi-

cal experiment method, this method greatly reduces the prediction cost and its perfor-

mance is improved compared with that of CROSS. �erefore, RPRes greatly contributes 

to predicting RNA secondary structure profile and studying RNA functions. Although 

RPRes is excellent in many aspects, it still has some defects. In future work, the per-

formance and generalization ability of RPRes will be further improved. Meanwhile, the 

RNA profile prediction is basic research, which can be adopted to promote research on 

predicting RNA secondary structure and binding site. In future work, we will apply RNA 

profile prediction in biological experiments, so as to guide biologists to obtain more 

accurate results and contribute to life science research.

Materials and method

Data collection and processing

In this paper, multiple biological experiment data sets were selected as the training, val-

idation, and test sets. Typically, the chemical reagent method data sets were obtained 

from two technologies, namely, PARS and icSHAPE, which covered the zebrafish [16], 

Table 3 The improvement of RPRes compared with CROSS in the generalization test

Train Test

Human (%) Mouse (%) Zebrafish (%) Yeast (%) PDB (%)

Human 13.13 19.03 4.83 − 2.13 5.99

Mouse 7.59 6.56 2.23 0.96 − 1.59

Zebrafish 4.06 3.90 5.72 4.71 2.22

PDB 12.82 − 2.38 1.61 1.55 20.70
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yeast [17], human [21], and mouse [21] genome-wide data. In addition, the biological 

crystallization method data set(PDB) was obtained from relevant literature [25], which 

contains 4667 RNA sequences. Since the original data can not be directly used as the 

input of RPRes, it is necessary to process those two types of data into the mature data.

�e zebrafish and yeast data sets were obtained by the PARS technology. �is tech-

nology scored each base in RNA according to the experimental results, where the 

positive values indicated double-stranded bases and the negative values indicated sin-

gle-stranded bases. We sorted each base in RNA in line with the scores, and selected 

the five lowest values as the single-stranded target bases, whereas the five largest val-

ues as the double-stranded target bases. For zebrafish data, 53964 RNA sequences with 

557425 target bases were screened, including 246853 double-stranded bases and 310572 

single-stranded bases. For yeast data, 3196 RNA sequences with 34977 target bases were 

screened, including 18095 double-stranded bases and 16882 single-stranded bases.

�e human and mouse data sets were obtained by the icSHAPE technology in chro-

matin, nucleoplasm, and cytoplasm, respectively, where some bases were scored both 

in vivo and vitro. Notably, the score of double-stranded base was close to 0, while that 

of single-stranded base was close to 1. During data screening, we screened target bases 

in chromatin, nucleoplasm, and cytoplasm, respectively. In human data, we selected at 

least three consecutive bases with available scores as the candidate bases. �e double-

stranded target base was defined as base with the scores of 0 both in vivo and vitro, while 

the single-stranded target base was base with the scores greater than 0.9 both in vivo 

and vitro. �ose three target base sets were combined as the final human target bases 

after removing the duplicate data. In mouse data, we also selected at least three consecu-

tive bases with available scores as the candidate bases. However, due to the inconsistent 

data among chromatin, nucleoplasm, and cytoplasm of mouse, there were certain dif-

ferences in the parameters selected by those three data sets. In chromatin and nucleo-

plasm, double-stranded target base was base whose two consecutive base scores were 0 

both in vivo and vitro, while single-stranded base was base whose two consecutive base 

scores were greater than 0.9 both in vivo and vitro. In nucleoplasm, double-stranded tar-

get base was defined as base with the scores of 0 both in vivo and vitro, while single-

stranded base was base whose scores were greater than 0.9 both in vivo and vitro. �ese 

three target base sets were then integrated as the final mouse target bases after removing 

the duplicate data. For human data, 6221 RNA sequences with 399174 target bases were 

screened, including 263334 double-stranded bases and 135840 single-stranded bases. 

For mouse data, 11361 RNA sequences with 778032 target bases were screened, includ-

ing 257969 double-stranded bases and 520063 single-stranded bases.

�e original data obtained from the biological crystallization method contained a large 

number of unknown bases and redundant sequences. To eliminate the adverse effect on 

RPRes performance, RNA sequences containing unknown bases were removed and CD-

HIT [33] was utilized to remove redundant sequences with identity greater than 80%. 

Finally, 502 RNA sequences were retained, which contained 225723 target bases, includ-

ing 94750 double-stranded bases and 130973 single-stranded bases.

�e profile of each target base was closely related to its context sequence. Based on the 

experimental results, we cut 149 bases in the front and 149 bases in the rear of each tar-

get base into a piece of data, and padded the insufficient length with ‘N’. In this way, each 
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target base was made into a piece of data with the same length of 299 bases. Besides, 

these bases were encoded by one-hot coding, so that each piece of data was encoded as a 

4299 matrix. Table 4 presents the rules of one-hot encoding.

Method

RPRes was a comprehensive deep learning model that included Bi-LSTM [27, 28] and 

ResNet [29, 30]. RNA stands for the long-distance context-dependent sequential data, 

whose profile is closely related to the RNA context information. It is necessary to access 

the context features of each target base to predict its profile. LSTM is a special type of 

recurrent neural network, which can record the information of long-distance depend-

ence of data. Hence, the Bi-LSTM was selected as the first layer in the model, extracted 

the context information of target base and its own information as the output with the 

same format, which facilitated the classification of the next layer network. ResNet is 

a modified deep convolution neural network, which combines the input data and the 

mapping data into the output data by using the shortcut connection, so that each layer of 

the network can contain real input data, which can effectively reduce the phenomenon 

of overfitting by the increase of layers. Hence, the ResNet was selected to classification 

of Bi-LSTM output. Figure 5 displays the pipeline of the model. During model running, 

when the original data were processed into mature data ( 4 ∗ 299 matrixes), they were 

used as the model input. A layer of Bi-LSTM was utilized to encode the mature data 

into output with consistent format, and then a ResNet was used to classify the Bi-LSTM 

encoded data.

Bi-LSTM: Recurrent neural network (RNN) has been widely used in the research on 

text, audio, video, and other sequential data [34, 35]. When RNN is adopted to process 

sequential data, the output of neurons in a given moment serves as the input of neu-

rons in the next moment; therefore, RNN can effectively utilize the context information. 

However, the traditional RNN has limited memory ability, which will lose its ability to 

learn information in the context with the increase in sequence length, making it easy 

to fall into gradient vanishing. LSTM, a special type of RNN, can solve the problem of 

gradient vanishing by introducing the gate mechanism; consequently, it outperforms 

Table 4 Bases and one-hot coding conversion rules

Bases One-hot

A 1000

C 0001

G 0100

U 0010

N 0000

Fig. 5 The Pipeline of the model consisting of three parts, including data preprocessing, Bi-LSTM, and 
ResNet. Those three parts cooperate with each other to predict RNA sequence as the RNA profile
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the traditional RNN in representing context information and extracting long-distance 

dependency features from the sequential data. �ere are three gates in LSTM, includ-

ing input gate, forget gate, and output gate. �e input gate decides the new information 

to be stored in the cell state, the forget gate decides the information to be thrown away 

from the cell state, while the output gate decides the information to be used as output 

based on the cell state. Figure 6 is the diagram of LSTM cell, which can be implemented 

as follows (Eqs. 6–10):

where σ represents the logistic sigmoid function, whereas i, f, o, and c stand for the input 

gate, forget gate, output gate, and cell vector, respectively, and all of these factors are at 

the same dimension as the hidden vector h. Meanwhile, w denotes the weight matrices 

while b indicates the bias vectors.

In this paper, a one-layer Bi-LSTM was utilized to extract the context features of all 

target base data, which consisted of the forward and backward networks. �e forward 

LSTM (512 hidden nodes) processed target sequence from left to right, whereas the 

backward LSTM (512 hidden nodes) processed target sequence in the reverse order. 

�erefore, two hidden state sequences were obtained, including one from the forward 

network and the other one from the backward network. Moreover, Bi-LSTM concate-

nated the forward and backward hidden states of each base, and the concatenate state 

(1024 nodes) of target base was the output. Figure 7 shows the diagram of Bi-LSTM.

(6)it = σ(Wxixt + Whiht−1 + Wcict−1 + bi)

(7)ft = σ(Wxf xt + Whf ht−1 + Wcf ct−1 + bf )

(8)ct = ft ⊙ ct−1 + it ⊙ tanh(Wxcxt + Whcht−1 + bc)

(9)ot = σ(Wxoxt + Whoht−1 + Wcoct + bo)

(10)ht = ot ⊙ tanh(ct)

Fig. 6 The diagram of LSTM cell, i(t) , f(t) , o(t) , and c(t) are input gate, forget gate, output gate, and cell state, 
respectively
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ResNet: Deep convolutional neural networks [36] have been extensively utilized in the 

recognition and classification of two-dimensional data. It has been proved that the depth 

of deep convolutional neural network is of crucial importance, which helps to enrich 

the features and improve the accuracy [37]. However, the accuracy of convolutional neu-

ral network does not always increase with the increase of depth; instead, it may decline 

when the accuracy reaches saturation. When the convolutional neural network reaches 

saturation, to maintain its saturation accuracy if a new layer is added, the new layer must 

be an identity mapping layer: H(x) = x , which will result in the degeneration of deep 

network into a shallow network. Unfortunately, with the increase in layers, gradient van-

ishing or explosion may be encountered [38], making it difficult to fit the new layer into 

identity mapping. Hence, improving the depth of neural network alone can not meet the 

requirement of research. ResNet solves this problem effectively by means of the short-

cut connection between the input conv layer and the output conv layer of each residual 

block [29]. Generally, ResNet contains a certain number of residual blocks, which are 

the core components of the ResNet model. Figure 8 [29] shows the schematic diagram 

of the residual block. In the residual block, the input is denoted as x, the mapping of the 

residual block is F(x), and the output H(x) = F(x) + x . In ResNet, when the network 

reaches saturation, F(x) is learning equal to 0, so the residual block becomes an identity 

map, which is much easier than the learning H(x) = x in the ordinary convolution net-

work [29]. In the process of backpropagation, the partial derivative of H(x) is shown in 

the following formula (Eq. 11).

Fig. 7 The diagram of Bi-LSTM. When RNA sequence is input into Bi-LSTM, two state vectors are obtained 
for each base. The concatenate vector of the target base is the output. The green and brown vectors are the 
states of Forward LSTM and Backward LSTM, respectively, where the dimension is 1 ∗ 512

Fig. 8 The schematic diagram of residual block. x is the input, F(x) stands for the mapping of residual block, x 
identity is the shortcut connection, and F(x) + x represents the output of the residual block
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As observed, the result of partial derivative is close to 1. In this way, ResNet solves the 

problem of gradient vanishing and explosion, which reduces the training difficulty of 

neural network.

In this paper, ResNet involved three types of residual blocks, which had the same 

kernel of 3 ∗ 3 , and the dimensions of the kernel were 16, 32, and 64, respectively. 

Figure 9 displays the schematic diagram of ResNet. It was observed from the figure 

that, the output ( 1 ∗ 1024 ) of Bi-LSTM was first transformed into two-dimensional 

data ( 32 ∗ 32 ) and then used as the input data of ResNet. In ResNet, a convolution 

neural network with 16-dimension 3 ∗ 3 convolution kernel was preferred to calculate 

the output data of Bi-LSTM, and the output contains 16-dimension 32 ∗ 32 data. Sec-

ondly, the residual blocks were used to calculate the output. �e dimensions of con-

volution kernels of these residual blocks were 16, 16, 32, 32, 64, and 64, respectively. 

�erefore, the output of residual blocks was the 64-dimension 32 ∗ 32 data. �ere-

after, the global average pooling layer was employed to pool the output data of the 

residual block into a 1 ∗ 64 vector. Finally, a fully connected layer was adopted to clas-

sify the output of residual block into the RNA secondary structure profile.
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