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A novel enthalpy formulation for multidimensional 
solidification and melting of a pure substance 
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Abstract. This paper presents a new finite-difference formulation of the 
multidimensional phase change problems involving unique phase change 
temperature. The solutions obtained with this formulation show that the 
problem of "waviness" of the temperature histories encountered with the 
conventional enthalpy formulation is now removed. The formulation 
derived provides a simple method for "local" tracking of the interface 
using the enthalpy variable in a novel way. During the solution of the 
finite-difference equations, the present formulation obviates the need for 
"book-keeping" of the phase-change nodes, and hence allows solution of 
the equations by tridiagonal matrix algorithm. It is argued that the benefits 
of enthalpy formulation can be extended to phase-change problems 
involving convection by solving the equations of motion on non-staggered 
grid. 

Keywords. Enthalpy formulation; multidimensional phase-change pro- 
blems; finite-difference method. 

1. Introduction 

1.1 The problem considered 

There is hardly any engineering product that, during its manufacture, does not 
undergo a process of solidification and melting at some stage, Engineering processes 
such as casting, welding, surface alloying, dip forming, crystallisation etc. involve 
phase-change. The process of freezing and thawing is of interest in preservation of 
foods. The phenomenon of "permafrost" is concerned with changes in load-bearing 
capacity of soils in very cold environments. The principle of latent heat transfer is 
used in the development of compact thermal energy storage devices that enable 
storage and retrieval of energy at nearly constant temperature. 

The phenomenon of solidification or melting is brought about by a process of 
latent heat (2) transfer at the interface between the solid and the liquid phases. For 
a pure substance, throughout this process, the temperature Tm of the interface remains 
constant. Both 2 and T, are properties of a pure substance. Within each of the single 
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phase, the heat transfer is essentially governed by the process of unsteady conduction, 
although under certain circumstances, convection may also occur in the liquid phase 
under the action of body (e.g. buoyancy) or surface (e.g. surface tension) forces. 

There are two approaches to solving the phase change problems: 

(i) the variable domain formulation; 
(ii) the fixed domain formulation. 

In the first approach, which has several variants, two energy equations in their 
conventional form are solved in the solid and the liquid phases with temperatures 
Ts and T~ as the dependent variables respectively. In addition to the domain boundary 
and initial conditions, the following two conditions are imposed at the interface: 

Ts = T, = Tm, (1) 

KeaTs _ K  aT, 
t3n i ~n i = p2vi, (2) 

where n is a vector normal to the interface and vi is the instantaneous velocity of the 
interface in the direction of the normal. 

Since the method requires continuous tracking of the interface, the physical 
coordinates are usually normalised with respect to this location. The governing energy 
equations are then freshly derived in the transformed coordinate system in which the 
interface is immobilised, although in the physical coordinate system the volumes 
occupied by each of the single phases change with time (and, hence, the designation 
of variable domain formulation). In multidimensional problems, this transformation 
involves laborious algebra that gives rise to psuedo-convection terms and cross- 
derivatives (see, for example, Saitoh 1978), the former may even given rise to numerical 
instabilities under certain circumstances. The finite difference implementation of the 
variable domain formulation can be carried out through several variants that are 
described by Basu & Date (1988); not all of which are amenable to easy extension 
to multidimensional problems. 

This paper is concerned with the second type of formulation, namely the fixed 
domain or the enthalpy formulation, which treats the total enthalpy H, rather than 
the temperature T, as the main dependent variable in the energy equation. Now since 
enthalpy is a conserved property; the energy equations for both phases can be written 
in terms of a single equation, viz: 

fft(PH ) + div(puH) = div(K grad T), (3) 

where u is the velocity vector which may be finite in the liquid phase. 
Incidentally, it can be shown that (3) already satisfies the interface flux condition 

(2). As such, the equation applies to the entire domain of interest and the interface 
need not be tracked during the differential formulation of the phase-change problem. 
Hence, this formulation is also known as the fixed domain formulation. Note, however, 
that (3) contains two dependent variables, H and T, and a set of auxiliary relations 
(also known as equations of state) between them must be specified. 

In several applications, the domain boundaries are often of complex shape. Also 
because of the asymmetries of the boundary shapes, and thermal boundary conditions, 
and because of the presence of convection, the interface, during its evolution, can 
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assume complex shapes. It has become increasingly apparent that such complexities 
(Wilson et al 1978; Sparrow et al 1988, pp. 747-86) can best be handled by the enthalpy 
formulation; rather than the variable domain formulation. This is particularly so if 
it is of interest to develop generalised computer codes for the general problem of 
solidification and melting. 

Computationally speaking, it is relatively simple to implement the enthalpy 
formulation via discretised equations when the substance is impure. For, in this case, 
the latent heat transfer takes place over a range of temperatures that demarcate what 
is known as the "mushy" region. The physical and transport properties of this region 
must however be known, or modelled. For a pure substance, however, the phase- 
change takes place at a unique temperature and it was shown by Voller et al (1979), 
that unless special procedures are adopted, the predicted temperature and heat flux 
histories, as well as the interface movement, are unrealistic. Recently, Voller (1990) 
has reviewed several implicit procedures using the enthalpy formulation. Date (1991, 
1992) has also reviewed some of the earlier methods and identified their shortcomings. 

Recently, Date (1992) has presented an enthalpy formulation that eliminates the 
problem of prediction of unrealistic temperature histories, allows use of an efficient 
line-by-line numerical integration algorithm and is applicable to multidimensional 
problems. The purpose of this paper is to present Date's formulation giving further 
details than those given in Date (1992). 

1.2 Outline of the paper 

The paper is divided into five sections. Section 2 describes Date's (1992) formulation 
in one and two dimensions, § 3 deals with phase-change problems involving convection. 
Here it is argued that since the interface can assume arbitrary shape, solution of 
equations of motion on non-staggered grids offers considerably more computational 
convenience than the use of staggered grids. A few illustrative solutions to the 
phase-change problems are presented in § 4. Finally conclusions are reported in § 5. 

2. Enthalpy formulation of Date (1992) 

2.1 One-dimensional problems 

For the purposes of discussion, we consider one-dimensional heat transfer without 
bulk convection; further assuming uniform properties. Equation (3) can then be 
written as: 

c~H c3 2 T 
= k - - ~ .  (4) p-~- 

~X 

In order to solve the above equation, H must be replaced by T or vice versa. This 
is done via the equations of state which provide the H - T  relationship. Figure 1 shows 
this relationship which is only piece-wise continuous. Mathematically, the relationship 
can be written in two ways as shown in table 1. Most of the previous authors have 
preferred the H = f ( T )  relationship; we prefer the T = f ( H )  relationship following 
Shamsunder & Sparrow (1975). 

It is convenient to define the following dimensionless variables: 

c~ = (H - H~)/2, (5) 
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Figure 1. H - T  relat ionship 
for a pure substance. 

o = c , (  r -  T.) /g ,  

X = x /L ,  

Z = o~t/L 2. 

In  the  new va r i ab le s ,  (4) r e a d s  as:  

04~ 020 
0--~ = Ox  2; 

and the T = f(/-/) relationship reads as: 

0 = ~; 0 ~< 0 (sol id) ,  

0 = 0; 0 ~< ~ ~ 1 ( interface) ,  

0 = ~b - 1; ~ t> 1 ( l iquid) .  

Relationships (10) to (12) can be generalised as: 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

Table 1. H-T relationship. 

H = f ( T )  T = f (H)  

Solid H = Cp T; T ~ Tm T = H/Cp; H <~ H s 

Interface H = Cp T .  + Hps(t); T = T,, T = Tin; Hs ~< H ~< H 1 

Liquid H = Cp T + 2; T >>. Tm T = (H -- 2)/Cp; H >>. H 1 

f',  + e d H ' d t = H 1 - H ' = ~ d t  

where t' = t ime for la tent  
heat transfer 
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where 
~ ' - -  0.5(I 1 - 4~1-14~1- I}. (14) 

Equation (14) ensures that ~b'--0 in solid, ~b'= -~b at the interface and ~b'= - 1 in 
liquid. 

Now (9) can be finite-differenced via control-volume analysis as: 

07 = = s ( ° 7 + ,  - + 07_ 1); (15) 

where 
S= Az/AX2; (16) 

and j identifies the grid node, whereas superscripts n and o identify the new and the 
old values. In deriving (15), uniform grid spacing AX is assumed. 

Equation (13) can now be used to replace O's in (15), so that: 

~b~.(1 + 2S) = S(tk~+ 1 + ~b~_~) + S(tk)+ 1 - 2q~ + ~b~_l) + ~.. (17) 

In the above equation, ~b' values lag behind the ~b values by one iteration. As such 
the q~' terms (along with ~b~) can be treated as sources. Equation (17) is then un- 
conditionally stable according to the Scarborough criterion, and can be solved by 
the point-by-point Gauss-Seidel scheme or by the line-by-line Tridiagonal Matrix 
algorithm (TDMA). Further, it is not necessary to carry out "book-keeping" of the 
nodes which are in solid, liquid and phase-change states. 

The formulation is thus an improvement over that of Shamsunder & Sparrow 
(1975) who did not generalise the T =  f(H) relationship in the manner of (13) and 
(14) and therefore had to resort to node "book-keeping" which necessitates the use 
of only point-by-point integration procedure. Basu & Date (1987) have however 
shown that application of TDMA results in much faster convergence than the 
point-by-point procedure particularly when fine mesh size is used. 

This formulation however suffers from one drawback. It will be recognised that 
0 < ~b < 1 at the phase-change node. As such, throughout the period of transition of 
the interface through the control-volume surrounding the phase-change node 
q~' = - q~, and therefore the nodal value of the phase-change node remains stationary 
at 0 = ~b + ~b'= 0. As a result, the predicted temperature histories demonstrate a 
step-like or a wavy pattern (Shamsunder 1978, pp. 165-83; VoUer et al 1979). 

One way in which this peculiar behaviour can be eliminated is to use a fine mesh 
(or small AX); so that the time period over which 0 remains stationary at zero is 
minimised, and the essentially way solutions appear to be smooth and accurate. This 
measure was adopted by Shamsunder (1978, pp. 165-83), but it exacts penalty in 
computer time which can partly be compensated by the application of TDMA, as 
described above. 

To prevent 0 from remaining stationary at zero at the phase change node, it is 
necessary to rewrite the generalised T = f(H) relationship as: 

0 = ~b + ~b", (18) 

where 

~" = ~p' + Opt. (19) 

Here 0~ denotes the nodal value of the temperature at the phase-change node; it 
equals zero at the single phase nodes. With the replacement suggested by (18), (15) 
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can now be written as: 

4)~.(1 + 2S) = S(4)~.+, + 4)~'-1 ) + S(4)+1 - 24);.'" + 4)j'"_ ,) + 4);. (20) 

The above equation is same as (17), except that 4)' is replaced by 4)". The 4)" values 
again lag behind the 4) values by one iteration. Further, however, it becomes necessary 
to determine the value of 0~c at the phase-change node. 

2.1a Determination of 0 : Consider figure 2, where the phase change node j is 
shown along with nodes j - 1 and j + 1 which are in single phase. At the time instant 
considered, let the interface be located at a distance AX~ to the east of the nodal 
position Xj. Now since the value of 0 at the interface is zero, one may linearly 
interpolate O~,j to read as 

r lo 
o,~,j = L A X ,  + A X  J J- ~" 

Similarly, if the interface is to the west of node j then: 

O t~, j  = 

where 
AX~ = 

= 

Equations (21) 

(21) 

where 

and 

IAx ,  I 
IAX~I +-AX 10j +1, (22) 

X~ - X j  

(0-5 - 4)~)Ax 

(0.5 + 4)~)AX. (23) 

and (22) can now be generalised as: 

0~,j = 0.5 [(h + IZ I)0j_ a - (A - Ia l )Oj+ 1IF, (24) 

n 

0.5 + 4)s . (25) 
A = 1 + 10-5 + 4)j I 

F = - (1 + 4)))4)). (26) 
(1 - 4)~)4)j 

SOLID 
xi 

xi 

! 

, o : 
! 

I j-1 ! l 
!; . x - ~  

J LIQUID 

ILl "~~ All 

L A 
Typical phase change 
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2.1b Some pertinent comments: (i) At the phase change node, q~jAX represents the 
volume occupied by the liquid. 

(ii) The location of the interface is identified with 0 = ~b + ~b" = 0. As such, AXt = 
0"5 AX - ~bjAX = (0'5 + ~bj)AX, as shown by (23). 

(iii) Equation (24) ensures that when AXI is positive, (21) is used to determine the 
nodal value of temperature at the phase-change node. When.AX~ is negative, 
(22) is operational. 

(iv) The factor F given by (26) equals zero at the single phase nodes, but it equals 
one at the phase-change node [see (14)]. This ensures that 0pc = 0 at single phase 
node but is finite at the phase change node. 

(v) Since Opc,~ = 0 at the single-phase nodes 4~)' = ~b'j at these nodes, that is tpj' = 0 in 
solid and 4~j = - 1 in liquid. As such the location of X~ (or the volume occupied 
by the solid) can be calculated from: 

N 

X, = Z (1 + O~)AX, (27) 
j=,1 

where N denotes the total number of nodes in the domain. 
(vi) Both th' and 0c  are calculated in such a way that it is not necessary to carry 

out "book-keeping" of the single-phase and phase-change nodes, and hence (20) 
can be solved by TDMA. 

2.1c The solution procedure: The following steps are incorporated in the solution 
procedure: 

(1) Specify initial values of temperature 0~, at all nodes. 
(2) Hence, evaluate ~bi, and q~'i, at all nodes using (10) or (12) as appropriate, and 

¢ (14). Set ~b'i' ~ = ~b,. 
(3) Perform one iteration of (20) for an arbitrarily chosen time step Ar to yield new 

values of q~. 
(4) Evaluate tk' from (14) and 0pc from (24) at all nodes using the just calculated 

values of q~. Hence form ~b" = ~b' + 0pc at all nodes. 
(5) Return to step (3) until ~b has converged between successive iterations. 
(6) Calculate 0 = q~ + ~" at all nodes and evaluate X i from (27) if desired. 
(7) Set 4) ° = &, and return to step 3 to calculate the next time step. 

The above strongly implicit procedure is stable for any val~ue of the chosen time 
step At, and grid spacing AX. Usually coarse grids (say 5 to 7 nodes) suffice. However, 
for high Stefan numbers, that is for high velocity of interface movement, finer grids 
(11 to 13 nodes) may be required to achieve good accuracy (Date 1992). 

2.2 Two-dimensional problems 

The dimensionless governing equation for such problems is given by 

0~ ~20 c~20 
0z - ~X 2 + 0Y 2; (28) 
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and the finite-difference analogue is given by: 

x(~+ 1,j + ~- ~,~) q~.j(l + 2Sx + 2S,) = S " " 

where 

2.2a 

+ s, fo"~.j+~ +¢"~,~_1) 
tPn trn ~vvn ) 

+ S~(~p,+ 1,j - 2~ , , j  + ~'k-1.~ 

+ s,(~,~+1 - 2~'~,~ + ~+~) 

+ q:~.~, 

S~ = A T / A X  2, 

Sy = Az/A Y2. 

Determinat ion o f  Opt: 

(29) 

(30) 

In order to evaluate q~;, it becomes necessary to estimate 

0,., = 0"5~(L \ [ By[By+ i)0o., I _ (IBB~I - l)O I, (34) 
where 

B y  = I Ayl - 0.5, (34a) 

A y  = AY,/{IAY, I + Ay};  (34b) 

O pcyl ~" 0 " 5 ( O k , j -  1 "JI- Ok,j+ 1) , (34c) 
and 

0p~r~ = 0.5 [ ( A y  + I A y l )  Ok, j_  1 -- (Ay  -- I A y l )  0k, J + 1 ]" (34d) 

Here AXi and AY~ represent the location of the interface along X and Y axes 
respectively (see figure 3). Note that in a general phase-change problem, the interface 
may occupy the phase-change control volume in any of the six ways shown in figure 3. 

Similarly 

and 

+,)o... _(,;: _ ,)o.... I, 
B x  = r A x t  - 0-5; 

h x  = A X i / { I A X i l  + AX}, 

Opcxl = 0.5 (O k _ ~,i + Ok + ~,~); 

0 ~  2 = 0.5 [ ( a x  + IAxl)0k_zj -- ( A x  - Iaxl)Ok+,,j-l. 

(33) 

(33a) 

(33b) 

(33c) 

(33d) 

where 

O~.k~ at all phase-change nodes. Note that, in a multi-dimensional problem, several 
nodes may undergo phase change simultaneously. The procedure adopted for 
evaluation of Opc.k ~ is as follows: 

o ~j= 0.5(0,c x + o )r, (31) 
where 

F = - {(I + ~'kj)~b'kj}/{(1 -- q~ki)(/)k~}. (32) 

NOW the X and Y components of 0p~ are evaluated as follows: 
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(a) (b) 

rs Ts ~ - .  
(c) (el) 

(el I f )  
Figure 3. Different interface 
positions. 

Equations (33) and (34) show that when IAXil ~ AS or IAY~I ~> AY, then Ov,~ = O~,~t 
and 0~r = 0per1; when ]AX~I ~< AX and IAY~I ~< AY, Opt x = 0 ~  and 0v,y = 0my 2. Thus, 
one-sided interpolation for 0pc is carried out only when the ititerface lies between the 
phase-change node and its immediate neighbouting node. 

2.2b Determination of  AXi and AYe: It is clear from figure 3 that the expressions 
for AXI and AY~ will depend on the type of intersection of the interface with the 
control volume. Further, it must be possible to determine the type of intersection 
itself. Both these are accomplished by using ~b' and ~" variables. Here expressions 
for Type (a) and Type (c) intersections will be devised; for other types, the appropriate 
expressions are given in the appendix A. 

Type (a) intersection is thus identified by: 

~'k+~,s = - 1; 

~'~- 1 j = 0 .  

" A Further, area nn'ss' = (0"5 + ~bkj) XAY, or 

a x i  = (0.5 + ~j)AX. 

(35) 

(35a) 
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In order to determine AYe, the procedure adopted is as follows: 

AY,= ~aY, ~AY, aX~ 
(~X kj AXi -~X-2- k~--2-- + neglected terms 

Now 

dAYt = 1 / ( d A X " )  = - 1 A X = I  AX, 
0X / \  ~Y / kl kj 

and 

: 

dX 2 = - I ~ - - X - ~ / \ ~ /  Jlk~ - ~ i  ~-Y~J 
Thus, 

A 5 = - C , +  -~ --o-~i'. '  
where 

~kj)/(" (~ ' O y  c~ = (0.5 + ¢ / ) kj. 

(35b) 

The derivatives of ~b' are evaluated by central difference. Equat ion (35b) shows that 
when the interface is parallel to the Y-axis (as in a one-dimensional problem) 
O¢'/dY = 0 and AYi~ ~ as would be expected; and (35a) is the same as (23). 

Type (c) intersection is identified by: 

~b' = ' = O. (36) k -  1 ,j  ~ g k , j -  1 
Further, 

AYi = ( Yi - Y.) + 0.5AY, (36a) 
where 

and 

Then 

Yi - Y. = - 0AY~ 02Ay~I AX 2 
d x  . d x :  . - 2 - + " "  

,fi 'qAX' AXe, = X~, - X ,  = (0.5 + .,.~, , 

(36b) 

(36c) 

. 1 . ¢, 

(36d) 

OAY~x . = 1/~(O(a'/(\OY . ) A X } ;  (36e) 

~ _~ ~'/(~+~A~l. 
-~X 2 ~= ( ~ X ~ Y / \  ~Y.] Jl .  

(36f) 

A Y~ = 0"5A Y - (0"5 + ~ ' ) / {  t3~-I } ,  

. 2  ~24' I 0 ' +{,o.,+,., (36g) 
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Similarly, it can be shown that: 

,, ~ '  
AX,=O'SAX-(O'5 + ~e)/ { ~  ~} + {(0"5 

' 

tb") 2 dz$ ' l  AY 2 
+-e, dX~y[e ~ , 

(36h) 

2.2c The solution procedure: Thus once AX~ and AY~ are determined for each 
phase-change node, 0 can be determined from (31) to (34). The overall solution 
procedure is given below: 

(I) Specify initial values of temperature 0in at all nodes. 
(2) Hence evaluate thin and ~b'in and set ~'i'n = q~'i~. 
(3) Perform one iteration of (29) using double-sweep TDMA for an arbitrarily chosen 

time step Az to yield new values of tp. Calculate tp' values at all nodes. 
(4) Identify the type of interface intersection from ~b' distribution. Hence calculate 

AX~ and A Y~ from appropriate expression. 
(5) Calculate Opc,k j from AXi and AYi. 
(6) Form q~k'i = Ck'kj + O~,kj. 
(7) Return to step 3 until ~b has converged between successive iterations. 
(8) Calculate 0 = ~b + ok" at all nodes. 
(9) Set ~b ° = ~b" and return to step 3 to calculate at the new time step. 

2.3 Closure 

In this section, an enthalpy formulation is developed, the unique feature of which is 
the generalisation of the T=f(H) relationship first in a continuum [(13), (14)!, 
and then for a discretised domain [(18), (19),1. The latter is introduced to facilitate 
prediction of smooth temperature and heat flux hisotries without employing very 
fine mesh sizes. 

The discretised version of the T = f(H) relationship required evaluation of Opt at 
the phase-change nodes. This, in turn, requires location of the interface in terms of 
local coordinates AXi and AYe. The Opo AXi and A Y~ are evaluated in terms of ~b' 
and ~b" which are functions of ~b. This method of locating the interface is unique in 
the sense that the interface may locally assume arbitrary shape and may intersect a 
given grid-line more than once. This contrasts with the method proposed by Patel 
(1968) (and which is used by Lazardis 1970 & Huang et al 1991) which attempts to 
predict interface coordinates X~ and Y~ relative to a fixed origin at all times by solving 
a differential equation. The present method for locating interface can also be extended 
to three-dimensional situations by employing:appropriate Taylor-series expansion. 

Further, the present method does not require "book-keeping" of the nodes in any 
of the operations and therefore enables use of line-by-line integration algorithm such 
as the TDMA. 

3. Phase-change with convection 

In several multidimensional phase-change problems, the operating or boundary 
conditions may be such that the liquid region experiences convection due to body 
or surface forces (Basu & Date 1988), requiring solution of the Navier-Stokes 
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equations to retrieve the velocity vector u in (3). Usually such problems are solved 
by using the variable domain formulation (see, for example, Beckermann & Viskanta 
1989). In such methods, since the liquid volume changes in size and shape with time, 
grids must be relaid at every time step with consequent requirement for interpolating 
the variables to the new positions assumed by the grid nodes. This is quite cumbersome. 
In the enthalpy formulation, since the grids remain fixed in space, such problems are 
avoided, although care is needed in effecting the boundary conditions on velocities 
at the phase-change nodes. This problem becomes particularly more complex when 
staggered grids are used for the velocity variables (see, for example, Gadgil & Gobin 
1984 and Voller et al 1987) since the control-volumes surrounding the different velocity 
components occupy different amounts of solid and liquid, and which must be properly 
accounted. In order to fully realise the benefits of the fixed-grid enthalpy formulation, 
it is necessary to solve the Navier-Stokes equations on non-staggered grids. 

During the last decade this has been achieved by employing in effect the concept 
of artificial compressibility (Rhie & Chow 1983) to eliminate the problem of checker- 
board prediction of pressure. Recently however, Date (1993, 1994) has pointed out 
some inelegant aspects of this method and its variants and suggested a new method 
that involves use of an effective pressure gradient to drive the nodal velocities. This 
method can be easily combined with the present enthalpy formulation since the liquid 
volume of any node is simply calculated as -dp'kjAXAY (in two dimensions). Also 
since AX~ and AY~ are locally evaluated, they can be readly used to effect the no-slip 
boundary condition at the interface. 

Complete de'tails of present enthalpy formulation with convection are not given 
here for limitations of space, although these can be found in the dissertation by Pillay 
(1992) who has extended the formulation presented in §2 to include the effects of 
non-uniform grid-spacing, property difference of the two phases and convection driven 
by buoyancy. 

4. Some illustrative applications 

The present enthalpy formulation has been applied to the solution of several one- and 
two-dimensional problems (without convection) involving temperature, heat flux and 
heat transfer coefficient boundary conditions and different initial conditions (Date 
1992). Here, for the purposes of illustration, two 2-dimensional problems without 
convection and one problem with convection are considered. 

Problem I: This problem has been solved by Lazaridis (1970). Initially saturated 
liquid (0~, = 0) is contained in a square domain of unit dimensions. At , = 0, the 
temperature at X --- 0 and Y = 0 boundaries is lowered to 0o(= St) = - ff6405 so that 
solidification commences instantly. The boundaries at X = 1 and Y = 1 are insulated. 

Figure 4 shows the comparison of the predicted interface movement with that 
calculated by Lazaridis (1970). The present predictions are obtained with only five 
nodes in X and Y directions. The accuracy of predictions was checked by employing 
three time steps such that S x = Sy = 0.0625, 0.125, 0.25. The computed results were 
found to be insensitive to this variation of time steps predicting the total solidification 
time a t ,  = 0.59. For the largest time step the cPu time for complete solidification 
on CYBER 180/840 computer was 2.26s, and that for the smallest time step was 
9.02 s. 
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Figure  4. Evolution of interface - 2 - D  conduction phase change. [ 
(AX = AY= 0.2), o Lazaridis 1970.] 

Present 

The special feature of this problem is that since 0o is constant along X = 0 and 
Y = 0 the predicted interface is symmetric about  Y = X line and that at no time 
instant does the interface intersect a given grid line more than once. 

Problem 2: In order to cause multiple intersections of the interface with a given 
grid-line at some instance of time, Lazaridis's problem was modified such that at 
X = 0 and Y = 0, 0o was assumed to vary linearly as: 

0o = - (0-25 + 0-75 Z), (37) 
where 

Z = X or Y as appropriate. 

For  this problem 8 nodes were used in X and Y directions. Figure 5 shows the 
interface movement as predicted by Pillay (1992). The total solidification time was 
predicted at z = 0.74 and required cPu  time of 10.4 s for Sx = Sy = 0"54 and 13 s for 
Sx = Sy = 0.32. The computed results were again found to be independent of the time 
step. It is seen that at small times, the interface intersects a given grid line twice. 

Problem 3: Beckermann & Viskanta (1989) performed experiments with melting of 
gallium. The test cell had inside dimensions of 4.76cm height and width and 3.81 cm 
depth. Initially the gallium was at temperature Tc < 7",. At t = 0, the right vertical 
face is raised to Th > T m  and maintained there while the left vertical face is maintained 
at To. All other faces are insulated. 

Melting proceeds from right (i.e. X = 1) towards left (X = 0). However the process 
conditions are such that after sufficient time, convective heat transfer from the melt 
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to the interface is balanced by the heat conduction through the solid, and a steady 
state is reached. 

Pillay (1992) performed calculations assuming the melting situation to be two- 
dimensional neglecting all variations in the depthwise direction. The same conditions 
were assumed by Beckermann & Viskanta (1989). 

Figure 6 shows the comparison of predicted and experimental interface location 
at steady-state for three experimental conditions: T* = ( T h -  To)~( Th- Tin)= 0"468, 
0.957, 1"935. Pillay's (1992) predictions were obtained with 10 x 10 fixed nodes, 
whereas Beckermann & Viskanta (1989), who used a variable domain formulation, 
used 26 x 42 grid nodes in liquid and solid regions each. Pillay (1992) solved the 
enthalpy and momentum equations simultaneously and not through a quasi-steady 
approximation necessitated in the variable domain method for solving the momentum 
equation. Considering the coarseness of the grid, Pillay's predictions are in reasonable 
agreement with the experiment and the predictions of Beckermann & Viskanta (1989). 
The departure of the interface shape from the vertical demonstrates the effect of 
buoyancy-induced circulation in the liquid region. 
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5. C o n c l u s i o n s  

The following are the salient features of the enthalpy formulation described in the 
present paper. 

(1) By generalising the temperature-enthalpy relationship, first in a continuum 
(0 = 4~ + tp') and then adapting it to the requirements of discretization (0 = tk + q~" = 
~b + 4¢+ 0pc), a calculation procedure is developed that is numerically stable and 
physically accurate resulting in prediction of oscillation-free, non-wavy temperature 
histories and interface movements. The introduction of 0pc is akin to stating that 
phase change takes place over a range of temperatures. However, the range here is 
physically estimated and variable, and is not externally imposed as done by earlier 
researchers (see for example, Meyer 1971 or Szekely & Themlis 1970). 
(2) The 4~' and tp" variables are used to locate the interface locally, to suppress 0~ 
to zero at single phase nodes, and to enable numerical integration of the discretised 
equations by line-by-line algorithm without node "book-keeping". The tk' variable 
is also used to calculate the liquid portion of the control volume necessary for integrat- 
ing Navier-Stokes equations when convection is present. 
(3) Since the interface coordinates are calculated with respect to a local origin, rather 
than with respect to a fixed origin, the present method can handle interface of arbitrary 
shape and one that may multiply the intersect with a fixed grid line. Third-order 
accurate Taylor's series expansion is used to estimate the location of the interface. 
As such when the interface is very sharply curved, finer mesh size is required. 
(4) The present method has been extended to account for differences in liquid and 
solid properties, non-uniform grid spacing and convection. It is suggested that solution 
of equations of motion on non-staggered grid (Date 1993, 1994) enhances the 
convenience offered by the enthalpy formulation. The method can also be extended 
to complex geometries, and to the use of general curvilinear coordinates. 

A p p e n d i x  A - Expressions for location of the interface 

Refer to figure 3. 

Type  (b) intersection (d/ka_ 1 , Ckka+ 1 -- 1) 

" A AY, = (0-5 + qbkj) Y, (A1) 

t { ~ 1  } { ~ '1 } t { (  '1 )~} 
AX,= (0"5+q~k~) + (0"5 --"'2 dz~ b' AY 2 0~b' 

ki O X a Y  k~ OX kj 

(A2) 

' =q~ '  = - - 1 )  Type  (d) intersection ((ok.i+ x k + 1,j 

AYe= - 0.SAY- (0.5 + q~') OY ~) 

, ,  ~ 024 ~' 04~' 
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, ,  2 d24" ~94~' 

Type (e) intersection (~b k + 1..i = ~b' = - 1) k , j -  1 

A Y~ = el ls  of (36g), 

A X  i = RHS of  (A4). 

Type ( f )  intersection (dp'k,./+ 1 = dP'k- 1,j = O) 

A Y/=  RHS of  (A3), 

AX~ = RHS of (36h). 

(A4) 

List of symbols 

Cp 
H 
Hps 
K 
L 
S,S~ 
Sr 
St 
t 
T 

Vi 
U 

X 
Y 
Xi, Yi 
Ot 

0 
2 
P 
T 

4)' 
qb" 

specific heat; 
total enthalpy; 
pseudo enthalpy; 
thermal conductivity; 
characteristic length; 
Az/AX2; 
Az/Ay2; 
Stefan number [Cp( T m -  T~cf)/2]; 
time; 
temperature; 
interface velocity; 
velocity; 
dimensionless x coordinate (X/L); 
dimensionless y coordinate ( Y/L); 
interface coordinates; 
thermal diffusivity; 
dimensionless temperature; 
latent heat; 
density; 
dimensionless time; 
dimensionless enthalpy; 
see (14); 

4' +OF. 

Subscripts 

i 
k,j 
in 

interface; 
node designation; 
initial condition; 
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! 

m 

pc 
S 

e, n, s, w 

liquid; 
melting point; 
phase-change; 
solid; 
control-volume cell-face locations. 

Superscripts 

n new value; 
o old value. 
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