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Abstract: We have attempted to develop the gamma radiation shielding abilities of newly prepared
epoxy composites by introducing ZrO2. The radiation shielding parameters are experimentally
reported below. The experimental setup included an HPGe detector and different radioactive point
sources which emitted photons with energies of 0.06, 0.662, 1.173, and 1.333 MeV. The gamma
radiation shielding abilities of the epoxy composites were examined in the context of the linear
attenuation coefficient (LAC), half-value layer (HVL), radiation absorption ratio, and other factors.
The experimental and Phy-X results for the LAC were compared, and acceptable consistency was
reported. The lowest LAC values were reported for EBZr-0 (free of ZrO2), and we found that the
photon attenuation competence of the present epoxy improved as a result of increasing the ZrO2

content. We compared the LAC values for the present epoxy composites with other samples, and we
found that the prepared composites with 20% to 40% ZrO2 had higher LAC values than epoxy with
30% Yahyali Stone. The HVL lengths of the epoxy composites reduced with the addition of ZrO2 for
the four selected energies, which confirmed that introducing ZrO2 improves the radiation absorption
abilities of epoxy composites. At 0.06 MeV, the HVL for the ZrO2-free epoxy was 2.60 cm, which fell
to 0.23 cm after adding 40% ZrO2. The mean free path (MFP) for the prepared composites was less
than 1 cm at 0.06 MeV (standard for EBZr-0), while it was 1.32 cm for EBZr-10. For the other energies,
it was higher than 6 cm, and became higher than 10 cm at 1.333 MeV for all composites. The obtained
results suggest that non-toxic, natural, and cheap epoxy composites with high ZrO2 content have
the potential to improve the gamma ray shielding competence of epoxy composites for low energy
radiation applications.

Keywords: epoxy; ZrO2; gamma rays; shielding; radiation absorption ratio

1. Introduction

The demand for effective radiation shielding materials is increasing as more tech-
nologies begin to use radiation to function. Radiation is extensively used in the fields of
medicine and agriculture, and in many others [1–3]. However, radiation can also cause
immense harm to humans and the environment if they are exposed to the high energy
photons for a long period of time. Three strategies are often used to minimize the potential
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side effects that might occur when working with radiation: time, distance, and shielding.
The first two principles relate to minimizing the time under exposure and maximizing the
distance from the radiation source. In addition to these two principles, radiation shields
are used to absorb high energy photons. These shields are placed between the radiation
source and humans or the environment and are specifically designed to attenuate as much
radiation as possible [4–7].

In addition to being effective at blocking radiation, depending on the desired ap-
plication, these shields can be tailored to have different characteristics to make them as
efficient as possible [8,9]. These characteristics vary from being lightweight to being thin,
transparent, resistant to chemical and thermal exposure, able to block a wide range of
photons, and more [10]. Concretes, for example, when combined with other additives, can
be effective at blocking neutrons and gamma rays, and are widely used as a lining for X-ray
rooms. However, concretes tend to develop cracks over time and lose their water content,
so these properties must be considered and/or the concrete must be enhanced to improve
these properties. Other materials such as polymers are being researched for their use in
radiation shielding applications [11–13].

Epoxy resin, a type of polymer, contains many hydrogen atoms, which are highly
effective at attenuating neutrons. In addition, epoxy composites have excellent mechanical
properties, great chemical resistance and adhesive strength, and are suitable for harsh
environments such as nuclear power plants [14–17]. By introducing additives with high
atomic numbers, the shielding abilities of epoxy can be further improved. For instance,
Chang, L. et al. [18] prepared epoxy composites filled with different weight percentages of
tungsten and tested them against gamma rays. Their results showed a positive relationship
between shielding ability and tungsten content in the epoxy, at the expense of the mechani-
cal properties of the material. Additionally, Alduhaibat, M. et al. [19] tested Al2O3-epoxy
and Fe2O3-epoxy at two different weight percentages each and found good results for some
radiation shielding parameters.

To estimate the lifespan of epoxy-based composites, Saiyad M. and Devashrayee
N. [20] irradiated several different materials with gamma radiation. Epoxy materials with
lead and graphite were found to be the most effective at absorbing gamma radiation.
A composite with vanadium slag, epoxy resin, and antinomy-trioxide was prepared by
Kavanoz, H. et al. [21] for radiation shielding applications as well as fireproofing. The
composite had better shielding properties than concrete, but they were slightly less effective
than those of lead. Another composite made of waste sawdust, waste PVC shavings,
waste eggshells, vermiculite, and epoxy as a binder, produced by Sevinc, A. and Durgun
M. [22], exhibited good attenuation abilities at the energies tested. Sahin, N. et al. [23]
investigated an epoxy polymer matrix with Yahyali stone, a natural stone found in Turkey.
The composite was found to be a low-cost, natural, and effective non-toxic radiation shield.
Furthermore, the introduction of nanoparticles into epoxy composites has also been tested.
Zhang, T. et al. [24] prepared Bi2O3-Ti3C2TX epoxy composites, and these samples were
found to be effective at a wide range of energies. Like other heavy metal oxides such
as lead, tungsten, and hafnium oxides, zirconium dioxide (ZrO2) has been proposed in
the literature as an additive to low-density shielding material with the basic promise of
enhancing the shielding competences. Shielding composites with additional ZrO2 content
have shown greater attenuation performance compared with neat epoxy. Aside from
their great radiation attenuation potential, ZrO2-reinforced epoxy composites are arousing
interest for their durability, low cost, low weight, and low toxicity, all of which make it an
ideal alternative to heavy shielding materials in personal protective equipment.

In this work, non-toxic, natural, and cheap epoxy compounds with high ZrO2 content
were prepared in order to study their radiation attenuation properties against different
energies of photons. This study was performed by employing the typical narrow beam
transmission geometry for the gamma radiation attenuation set up where the investigated
photon energies were 0.06, 0.662, 1.173, and 1.333 MeV. The radiation shielding parameters
were examined in the context of the LAC, MFP, and Zeff. The major contribution of
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the present study is our conclusion that the use of non-toxic, natural, and cheap epoxy
composites enriched with high amounts of ZrO2 have the potential to enhance gamma ray
shielding ability for low energy radiation applications.

2. Materials and Methods
2.1. Preparation

New composites based on epoxy resin and zirconium oxide in addition to a small
percentage of boron oxide were prepared. “Generic” brand epoxy resin, in the form of a
transparent liquid, was purchased from a local store. The two other oxides (ZrO2 and B2O3)
were purchased from El-Gamhoria Company in Egypt. These oxides were sieved using a
sieve with 60 µm hole diameters. These three components were mixed in the proportions
displayed in Table 1 to get five different samples, which were prepared in the traditional
mixing way, as shown in Figure 1.

Table 1. The compositions of the prepared samples.

Sample Code
Composition (wt %)

Density (g·cm−3)
Epoxy B2O3 ZrO2

PBT-0 85 15 0 1.282

PBT-10 75 15 10 1.402

PBT-20 65 15 20 1.548

PBT-30 55 15 30 1.727

PBT-40 45 15 40 1.953
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Figure 1. The prepared samples used in this study.

2.2. Attenuation Measurements

Attenuation parameters were calculated experimentally using an HPGE detector and
various radioactive sources. Geometric measurement was designed using the collimated
beam technique, as shown in Figure 2. The source–sample distance was 15 cm, while the
sample–detector distance was about 4 cm. The net count rate (N) of the sample, and its
absence (N0), were calculated in the same conditions with each emission of energy from the
source using help Genie 2000 software. From the count rate values, the linear attenuation
coefficient (LAC) can be identified through the following equation [25–29].

LAC =
−1
x

ln
N
N0

(1)
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Figure 2. The arrangement of the experimental work.

Some of the shielding quantitates for the epoxy resin samples reinforced with ZrO2
and B2O3 were calculated as described elsewhere [30–35].

3. Results

Using the experimental setup outlined in the previous section, we measured the
intensities of the incident and transmitted radiation. This helped the authors to report
the experimental linear attenuation coefficients (LACs) for the epoxy samples (EBZr-0 to
EBZr-40). The LAC values were determined using Phy-X software (these were theoretical
results for the LACs, and we aimed from these calculations to check the consistency
between the measured and calculated LACs). According to the measured and Phy-X
program calculations, the variation in the LACs for the EBZr-0 to EBZr-40 samples against
four photon energies (0.060–1.333 MeV) is graphed in Figure 3. According to the data
presented in the figure, small deviations between the measured and Phy-X values of
1.07–4.78% for EBZr-0, 0.28–2.11% for EBZr-10, 0.46–0.7% for EBZr-20, 1.74–4.69% for EBZr-
30, and 0.66–3.81% for EBZr-40 were reported. These deviations indicate high accuracy
in the experimental LAC values for the prepared epoxy samples (EBZr-0 to EBZr-40).
Accordingly, we used these experimental LAC values to study other shielding parameters
for our prepared epoxy samples.
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Figure 3. Comparison between the experimental and Phy-X linear attenuation coefficients for the
new epoxy composites.

We plotted the LACs as a function of ZrO2 content in Figure 4. The lowest LAC values
were reported for EBZr-0 (free of ZrO2), and this can be explained according to the low
Z atomic content of this sample. It was found that the photon attenuation competence of
the present epoxy improved with increasing ZrO2 content. As is known, high LAC values
are a good indicator of superior radiation attenuation competence. Thus we can conclude
form Figure 2 that BZr-40 is the best shield among our prepared epoxy samples due to
the high LAC for this sample. Additionally, BZr-30 exhibited greater radiation shielding
competence than samples BZr-0 to BZr-20, providing confirmation that the addition of
ZrO2 to epoxy has a significant impact on the photon shielding features of the resulting
epoxy composite. Quantitatively, the epoxy without ZrO2 had a LAC of 0.259 cm−1 at
0.06 MeV, which quickly increased to 2.978 cm−1 when 40% ZrO2 was added. For these
two epoxy samples, the LACs were, respectively, 0.109 and 0.146 cm−1 at 0.662 MeV. Thus,
it is also to be noted that ZrO2 has a positive impact on the LAC at 0.06 MeV, which makes
these epoxy samples more suitable for applications that require low energy radiation.

As was reported by Kathem et al., pure epoxy and an epoxy/15% wt. Fe3O4 nanocom-
posite have LAC values of 0.0869 and 0.0971 cm−1, respectively (this is at 0.662 MeV) [36].
When this is compared with the LACs of the EBZr-0 to EBZr-40 samples, all of these
samples have higher LAC values (0.108, 0.109, 0.124, 0.133, and 0.146 cm−1) than those of
pure epoxy and the epoxy/15% wt. Fe3O4 nanocomposite. Additionally, Sahin et al. have
reported that pure epoxy and epoxy with 30% Yahyali Stone had respective LACs of 0.080
and 0.111 cm−1 [37]. According to these values, we concluded that the EBZr-20, EBZr-30,
and EBZr-40 epoxy composites have better photon shielding competence than the epoxy
with 30% Yahyali Stone mentioned above.
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Figure 4. The variation of the LAC values of epoxy with ZrO2.

The photon shielding competences of these new epoxy composites (EBZr-0 to EBZr-40)
were examined in the context of characteristics called HVL and MFP. The changes of the
HVL of the new epoxy composites as determined by experiment are graphed in Figure 5.
It is to be noted that the HVL lengths of the epoxy composites reduce with the addition
of ZrO2 for the four selected energies. This implies that introducing ZrO2 improves the
radiation absorption abilities of the epoxy composites due to the high amount of ZrO2,
which causes an increase in the density of these composites. At 0.06 MeV, the HVL for the
ZrO2-free epoxy was 2.60 cm, which fell to 0.92 cm following the introduction of 10% ZrO2,
to 0.70 cm following the introduction of 20% ZrO2, to 0.33 following the introduction of 30%
ZrO2, and to 0.23 cm following the introduction of 40% ZrO2. Thus, the HVL at 0.06 MeV
decreased from 2.60 to 0.23 cm due to the addition of 40% ZrO2 to these epoxy composites.
When we examined the HVL values at 0.662 MeV, we found that the HVL fell from 6.69 cm
to 4.58 cm following the addition of 40% ZrO2 to these epoxy composites, while it decreased
from 8.79 cm to 6.10 cm at 1.173 MeV when the ZrO2 content was increased from 0% to 40%.
These values confirm that the HVL values decrease as the ZrO2 content level increases in
these new epoxy composites.
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On the other hand, it was reported by El-Khatib et al. that the HDPE/10 wt% nano
CdO has an HVL of 9.36 cm at 1.333 MeV, while Sahin et al. reported an HVL of 8.913 cm
for epoxy/30% Yahyali Stone. For our new epoxy composites, the HVL values at 1.333 MeV
were 9.38 cm, 8.69 cm, 7.84 cm, 7.27 cm, and 6.52 cm for EBZr-0, EBZr-10, EBZr-20, EBZr-30,
and EBZr-40, respectively. Hence, EBZr-20, EBZr-30, and EBZr-40 have lower HVL values
than HDPE/10 wt% nano CdO and epoxy/30% Yahyali Stone [38–40].

The variations of the MFP values of the new epoxy composites as determined by ex-
periment are graphed in Figure 6. The MFP values for the five newly developed composites
showed the same tendencies as the HVL values. In the other words, as we reported for the
HVL values, the MFP values decreased with the introduction of ZrO2 into these composites.
The MFP was relatively high for EBZr-0 (between 3.75 cm and 13.53 cm), while the MFP
for EBZr-40 lay within the range of 0.33 cm and 9.41 cm. The difference in the MFP values
for the same composite was due to the dependence of the MFP on the energy level. At
low energy, the MFP is small, while it increases with increasing energy. The MFP values
for these composites were less than 1 cm at 0.06 MeV (standard for EBZr-0), while it was
1.32 cm for EBZr-10. For the other energies, it was higher than 6 cm, and it increased to
more than 10 cm for the last energy for all the composites.
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For the current epoxy composites, the interactions between the radiation and the
composites was examined in the context of the radiation absorption ratio (RAR). In Figure 7,
we plotted the RAR variation of the pure epoxy and the epoxy with 10–40% ZrO2. This is
an important parameter since if the value of the RAR for a certain shield is higher than 50%,
then this shield can attenuate half of the incoming radiation, while if it is close to 100%,
then this shield has interesting shielding abilities and can stop almost all the incoming
radiation. Hence, radiation shielding material investigators aim to develop new materials
with high RARs (higher than 50%). Taking this fact into consideration, we examined
Figure 7 and found that at 0.06 MeV, the RAR for the epoxy composites with ZrO2 had high
RAR values (higher than 50%). For the two composites with 30% and 40% ZrO2, the RAR
was almost 100% (98.43% and 99.75%, respectively). This means that these two composites
are good choices for low energy shielding applications. When the energy increased, the
RARs fell to less than 50%. However, we found that higher RAR values improved the
attenuation tendencies of these composites. These RAR values are presented for samples
with a thickness of 2 cm, but we can improve the RAR for these composites, especially for
high energy radiation, by increase the thickness of the composite.
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Figure 7. The variation of the radiation absorption ratios of epoxy with ZrO2.

The effective atomic number (Zeff) of the epoxy composites were computed using
Phy-X software. For the Zeff values, we not only selected the four energies used in the
previous figures, but we extend the energy range up to 15 MeV. The variations of the Zeff
values of the epoxy composites without ZrO2 and with ZrO2 was determined using Phy-X
software, and these have been graphed in Figure 8. The general trend of the Zeff values
versus the energy is the same for each of the epoxy composites. The Zeff values show
increased behavior between 0.015 MeV and 0.02 MeV (standard for EBZr-0), and this is
due to the K-absorption edge for Zr which occurs at 0.018 MeV, and because EBZr-0 is
ZrO2-free, so we didn’t observe this increase in the Zeff trend between 0.015 MeV and
0.02 MeV. Between 0.02 MeV and 0.3 MeV, the Zeff values decreased, and the rate of this
decrease was very fast. For EBZr-10, the Zeff in this interval varied between 27.15 and 4.75,
while it is varied between 29.07 and 4.67 for EBZr-20. Above 0.3 MeV and up to around
5 MeV, the Zeff values remained constant for all epoxy composites regardless of their ZrO2
content. Moreover, as the ZrO2 content increased in the epoxy composites, the Zeff values
also progressively increased. This increase in the Zeff values may be associated with the
increase in the weight percentage of high Z-elements (i.e., Zr with atomic number of 40).
Thus, we found significant differences in the Zeff values between the EBZr-0 and EBZr-40
composites. Quantitatively, the Zeff values for these composites were, respectively, 8.66 and
39.70 at 0.02 MeV, 4.74 and 25.00 at 0.06 MeV, 4.27 and 8.22 at 0.2 MeV, and 4.25 and 6.57 at
0.6 MeV.
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4. Conclusions

The current work concerns the fabrication of a new, cheap, natural, and ecofriendly
radiation shielding composite composed of epoxy containing different quantities of ZrO2.
To this end, composites EBZr-0 to EBZr-40, which contained 0% to 40% ZrO2, were success-
fully prepared, and we tested their photon shielding competences experimentally, as well
as theoretically using Phy-X software, against 0.06, 0.662, 1.173, and 1.333 MeV photons.
The shielding abilities of the prepared composites were investigated in the context of the
LAC, HVL, RAR, and Zeff values. All of these parameters demonstrated that ZrO2 has
the potential to improve the radiation protection competences newly developed epoxy
composites, since the LAC and Zeff values increased progressively with increasing ZrO2
content, while both the HVL and MFP values showed a notable decline with increasing
ZrO2 content. The RAR values for the epoxy composites with ZrO2 were high at 0.06 MeV
(higher than 50%). At this energy, the RAR values for EBZr-30 and EBZr-40 were almost
100% (98.43% and 99.75%, respectively). Hence, these two composites are good choices for
low energy shielding applications.
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