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Abstract.
An anonymous linking code is an encrypted key for linking data from different sources. So
far, quite simple algorithms for the generation of such codes based on personal character-
istics as names and date of birth are in common use. These algorithms will yield many non
matching codes when facing errors in the underlying indentifier values. We suggested the
use of Bloom filters for calculating string similarities in a privacy-preserving manner. Here,
we claim that this principle can also be used for a novel error-tolerant but still irreversible
encrypted key. We call the proposed code Cryptographic Longterm Key. It consists of
one single Bloom filter into which identfiers are subsequently stored. Tests on simulated
databases yield linkage results comparable to non encrypted identifiers and superior to re-
sults from hitherto existing methods. Since the Cryptographic Longterm Key can be easily
adapted to meet quite different prerequisites it might be useful for many applications.

1 Introduction

In many epidemiological studies record linkage is required for patient follow-up or for combining
cross-sectional data from different sources. Whenever feasible, researchers merge the databases
using a common unique identification number. Otherwise, they most frequently resort to prob-
abilistic record linkage based on personal identifiers like surnames, given names, date of birth,
and address information [1-4]. In many countries legal regulations prescribing to ensure patient
privacy in medical research, however, complicate record linkage on personal identifiers. There
are three generic types of approaches to deal with this requirement. The first involves the use
of a highly reliable data trustee [5,6]. The trustee performs the record linkage on the plain text
identifiers previously transferred to him from the data sources. Afterwards, the trustee assigns
some sort of pseudonyms to the records. Using these pseudonyms researchers are subsequently
able to merge the epidemiological data. Approaches of the second type are commonly labelled
“privacy-preserving record linkage” in the literature [7,8]. Each identifier is encrypted separately
before, usually by a semi-trusted third party, the record linkage is performed. In contrast, the
principle of the third class of approaches is at first to compose one single data item from the iden-
tifiers which is subsequently encrypted and used as an anonymous linking code (ALC). To some
extent though made obsolete by the improvement of privacy-preserving record linkage methods,
ALCs are still in common use [9].
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Their design principle forms the basis of well-reputed commercial software products [10]. Ad-
ditionally, there are instances in which the use of just a single data item for anonymous linkage
is actually prescribed by law [11,12]. ALCs hence might find a wide range of applications in the
future, either.
In [13] we suggested the use of Bloom filters for privacy-preserving record linkage. The favourable

reception of the paper [14-16] as well as practical need in the course of the establishment of a
German Mortality Register made us thinking about whether our idea could possibly used to
build an encrypted key for linking patient data to epidemiological registers.
In this paper, we describe the design and the properties of a novel ALC. By exploiting the cryp-

tographic properties of Bloom filters it preserves the privacy of identifier values while enabling
error-tolerant comparisons. That is, it allows for typographical and other errors in the identi-
fier values the linkage key is composed of. We additionally report on the results of empirical
comparisons with previously used methods and discuss some properties of the novel ALC.

2 Related work

The basic principle of hitherto existing ALCs is to begin with a single string built from some
identifier values. Prevailing are combinations of identifiers regarded as relatively stable as First
name, Surname, Date of birth and Sex. This string serves as input to a cryptographic hash
function. The resulting hash value constitutes the linking code.1 If two ALCs agree exactly, the
corresponding records are regarded as to represent the same person. Due to the cryptographic
hash function it is impossible to re-engineer the original string. Moreover, if a keyed one-way
hash function is used and the key of the hash function remains secret, a dictionary attack on the
ALCs is impossible as well.
The most basic and common ALC consists of three simple steps [9]. First, the values of all

constituent identifier values are concatenated. Secondly, the resulting string is standardized using
some set of pre-processing rules2. Thirdly, this standardized string is put into a cryptographic
hash function. [22-28] describe examples of the application of this Basic ALC.
An obvious drawback of this approach is that it does not tolerate any errors in the identifiers.

Due to the design of cryptographic hash functions, the slightest input variation results in a
completely different hash value. As a consequence, due to the notorious frequency of spelling
and typographical errors in patient identifiers there will be many false negative classifications.
In addition, since patients with variations of identifiers may have different characteristics than
patients with exact matching identifiers, restricting the linkage in this manner is not an option.
The design of more elaborate ALCs allows for some variation or errors in the identifier values.

In order to link data on subsequent hospitalizations of patients in Switzerland, the Swiss Federal
Office for Statistics mandated the Encryption Section of the Swiss Military Department to find a
linking method that preserves the confidentiality of the patients’ medical records [29,30]. The re-
sult was an error-tolerant ALC based on Soundex encodings, called “anonymer Verbindungskode”
resp. “code de liaison anonyme”, that works as follows [29]: First, identifiers Surname and First
name are Soundex encoded. Secondly, the Soundex codes are concatenated with the full Date of
birth and Sex. Thirdly, this string is put into a cryptographic hash function. Applications with
and discussions of this Swiss ALC can be found in [31-34].
Another path to an error-tolerant ALC is followed by the Australian Institute of Health and

Welfare (AIHW). The basic idea is to make up the key just of certain characters instead of full
1 Thereby, ALCs meet the definition of one-way [17-19] or irreversible pseudonyms [20,21]. ALCs can
therefore be regarded as instances of the latter.

2 Customary pre-processing routines involve the removal of non alphabetical characters from names,
removal of non digits from dates, and bringing all characters to upper case.
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last and first names. [35] tested various variants and identified the combination of the second,
third and fifth character of Surname plus second and third of First given name, Date of birth
and Sex as best performing3. This string forms the so called “Statistical Linkage Key” (SLK)
which is routinely included in data sets of the AIHW [37]. If the SLK is additionally encrypted, it
forms an ALC. This is routinely done within the Supported Accommodation Assistance Program
(SAAP) National Data Collection, the resulting key is called the Encrypted SLK [38].4

3 Methods

The core problem to solve when constructing a Longterm identification key is how to reconcile
privacy and error-tolerance. In [13] we suggested to use Bloom filters for calculating string sim-
ilarities between two strings in a privacy-preserving manner. We believe that this principle can
be used for a ALC as well. Since our ALC is intended to be persistent over long time periods we
call it Cryptographic Longterm Key (CLK).

3.1 Bloom filters

A Bloom filter is a data structure proposed by Bloom [39] for checking set membership efficiently
[40]. It consists of a bit array of length l with all bits initially set to 0. Furthermore, k independent
hash functions h1, . . . , hk are defined, each mapping on the domain between 0 and l−1. In order
to store the set S = {x1, x2, . . . , xn} in the Bloom filter, each element xi ∈ S is hash coded using
the k hash functions and all bits having indices hj(xi) for 1 ≤ j ≤ k are set to 1. If a bit was set
to 1 before, no change is made.
To store set elements in Bloom filters, we apply the double hashing scheme proposed by [41].

They show that only two independent hash functions are necessary to implement a Bloom filter
with k hash functions without any increase in the asymptotic false positive probability [41].
Therefore, k hash values are computed with the function

gi(x) = (h1(x) + ih2(x)) mod l (1)

where i ranges from 0 to k−1 and l is the length of the bit array. For security reasons, we use two
keyed hash message authentication codes (HMACs), namely HMAC-SHA1 (h1) and HMAC-MD5
(h2) [42] to create the CLKs.
Bloom filters can also be used to determine whether two sets approximately match [43]. If two

sets contain a common element, the bits having the same indices will be set to one when the sets
are stored in Bloom filters under the same parametrization. Consequently, if two sets have many
elements in common, their Bloom filters will have a large number of identical bit positions set
to 1. Since the proportion of zeros in a Bloom filter for n elements is approximately [44]:

p′ =

(
1− 1

l

)kn

, (2)

3 During the setup, non-alphabetic characters are ignored. When a name fails to have a sufficient length,
the digit ‘2’ serves as a placeholder. For any other missing data, the digit ‘9’ is used [36]

4 From personal communication we are aware that other versions of this ALC variant are in actual use.
The Swiss Federal Statistical Office, for example, links criminal statistics using a code composed of the
first three letters of Birth name, the first two letters of First name, Sex, Date of birth, Birth canton
and Citizenship canton. This and many other analogical codes unfortunately are ad hoc setups and
consequently not well documented or published.
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a long Bloom filter will contain mostly zeros. To assess the similarity of Bloom filters, a coefficient
insensitive to many matching zeros is desirable. We chose the Dice-coefficient [45] therefore. For
comparing bit strings, the Dice-coefficient can be defined as

DA,B =
2h

(a+ b)
(3)

where h is the number of bit positions set to 1 in both bit strings, a is the number of bit positions
set to 1 in A and b the number of bit positions set to 1 in B.

Fig. 1: Building a Cryptographic Longterm Key
Subfigure (A) starts with raw identifiers First name, Surname, and Birth year and an empty Bloom
filter. The line breaks are inserted for graphical convenience only. After pre-processing, First Name
and Surname are split into Bigrams, Birth year into Unigrams. (B) depicts the storing of the first
n-gram subset (First name). Each Bigram is hashed five times. Bits having indices corresponding to
the hash values are set to one. In (C) the hashing of the second n-gram subset (Surname) in the
Bloom filter is shown. (D) illustrates the storing of the Unigram-set stemming from Birth year. The
resulting Bloom filter forms the CLK for John O’Shea, born in 1967.

A

John, O'Shea, 1967

0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000

JO   OH   HN     OS   SH   HE   EA     1   9   6   7 

B

0000000000000100000000000000000000000000
0000000000000000000000100000000010000000
0000000000000000000000000000100000000000
0000000000010000000000100000000000100000
0000000000000000000001000000000000000000
1000000000000001000010000000000000000000
0000001000000000000100000000000000100000
0000000000000000001000000000000000000000

JO        OH        HN 

220
181
142

298

259
131
 72
 13

274

215
154
108
 62

246

200

C

0000000000000100001000000000000000000000
0000000000000000000000100000000010100000
0000000000010000000010000000100000000000
0000000000010000000000100000010010100000
0000000000000000000001000000000000010001
1000001001001001001010001000000000100000
0000001000000000000100000000000000100000
0000001000000000001100010001000000000001

OS        SH        HE        EA 

209
195
 91

307

218
224
149
 74

319

299
206
100
 18

286

234
212
199
152

303

215

D

0000000000000100001000000000100010100000
0000000000000000000000100000000010100010
0000000000010000000010000000100010000000
0000100000010000000000100000010010110000
0000000000000001000001000001000001010001
1000001001001001001010001000000001100100
0000001000000000000101000000000000101000
0000001000000000001100010001000100000001

 1            9           6           7 

155
112
 34

276

233
187
181
175

199

193
124
 78
 32

261

215
237
200
 28

311

274
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3.2 The Cryptographic Longterm Key

Suppose a CLK is to be made up from m identifiers. After pre-processing, each identifier is split
into its set of constituent n-grams. Each of the m n-gram subsets is subsequently stored in the
very same Bloom filter of length l using k hash functions as described in the previous section.
The resulting Bloom filter constitutes the CLK.
The Dice coefficient of the two corresponding CLKs approximates the n-gram similarity [46]

between two records of identifiers. Since we use keyed one-way functions to hash the n-grams,
the identifier values cannot be re-engineered from a given CLK. The CLK therefore is an error-
tolerant anonymous linking code. Figure 1 depicts the building process for three identifiers using
a bit array of length l = 320 and k = 5 hash functions. In Figure 2 the comparison or matching
of two CLKs is illustrated.

Fig. 2: Comparing Cryptographic Longterm Keys
To determine the similarity between two CLKs the Dice Coefficient as defined in section 3.1 is
calculated. CLKs shown in subfigures (A) and (B) stem from exactly the same identifier values,
consequently Da,b = 1.00. The identifiers corresponding to CLKs from (A) and (C) are completely
different. Since there are hardly any bits conjointly set to one, the Dice Coefficient results in Da,c =
0.23. Regarding CLKs in (A) and (D), there is one typo in Surname. Apart from that the identifiers
agree exactly and the Dice Coefficient results in Da,d = 0.80. Note that of the Basic ALC, the Swiss
ALC, and the Encrypted SLK described in section 2 neither would match given the identifier values
from (A) and (D).

A

0000000000000100001000000000100010100000
0000000000000000000000100000000010100010
0000000000010000000010000000100010000000
0000100000010000000000100000010010110000
0000000000000001000001000001000001010001
1000001001001001001010001000000001100100
0000001000000000000101000000000000101000
0000001000000000001100010001000100000001

John, O'Shea, 1967 

B

0000000000000100001000000000100010100000
0000000000000000000000100000000010100010
0000000000010000000010000000100010000000
0000100000010000000000100000010010110000
0000000000000001000001000001000001010001
1000001001001001001010001000000001100100
0000001000000000000101000000000000101000
0000001000000000001100010001000100000001

John, O'Shea, 1967 

C

0010100000001010000010000000000001100000
0000000010001000100000000000010000010000
0000000000000010110000000010000010000000
0010010100001000100100000001110000010110
0100010000100101000001000101000001000001
1000000010000100000100100100000001000010
0100000000000000000000000000000000001000
0010000001000000010001000000000010000000

Nancy, Smith, 1982 

D

0000000010000100001000000000100010100000
0000000000000000000000101000000010000010
0000000000000000000010000000100010000000
1000100000010000000000100100000110110100
0000000000000001000001000001000001001001
1000001000001001000010000000000001100100
0000001000001000000101000000000000101000
0000001000000000001000010000100100100000

John, O'Dhea, 1967 
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Fig. 3: Comparison of the CLK with different ALCs and Plain Text Comparison
The plots (A-E) show the conditional frequency distributions of matches and non matches over
similarity scores. The CLK is set up with l = 1000. First Name and Surname were padded with spaces
before being split into Bigrams [47]. The other identifiers were split into Unigrams. Each subset of
n-grams is hashed using 10 HMACs and a different cryptographic key either. The lines in (D) and
(E) indicate the optimal thresholds of classification. The table in (F) lists the true positive, false
positive, true negative and false negative classifications of the methods. For the CLK and the plain
text comparison optimal thresholds for classification as a link (.84, resp. .83) are adopted.
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F5 Discussion

Method TP FP TN FN

Basic ALC 1,265 0 24,998,000 735
Swiss ALC 1,521 0 24,998,000 479

Encrypted SLK 1,580 0 24,998,000 420
CLK 1,953 50 24,997,950 47

Plain text comparison 1,945 22 24,997,978 55
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4 Results

We compared the CLK with the Basic and Swiss ALCs, as well as with the Encrypted SLK
for evaluation. Additionally, we put the CLK to a test against the plain text comparison of
identifiers using the Damerau-Levenshtein distance function. We simulated records comprising
the identifiers First name, Surname, Birth day, Birth month, Birth year and Sex based on a
German phone book.5 The test data base consisted of two files: First, we simulated file A with
nA = 2, 500 records. From them we took 2, 000 records and introduced errors at random to
them.6 Next, we put these 2, 000 garbled records into a second file B and appended 8, 000 freshly
simulated records, making up file B with nB = 10, 000. There were 25, 000, 000 record pairs
hence, 2, 000 of them matches and 24, 998, 000 non matches. Crossing this true matching state
with the classifications from the methods compared, we got the usual true positive (TP), false
positive (FP), true negative (TN) and false negative (FN) classifications.
Results are shown in Figure 3. The conditional frequency distributions of matches and non

matches demonstrate that the CLK outperforms the other ALCs clearly (subfigures A-D). As
the table in subfigure (F) reveals, it exhibits a far smaller total number of false classifications.
As shown by the numbers, the CLK performs only slightly less well as the plain text comparison.
The quite similar conditional distributions of matches and non matches in subfigures (D) and
(E) support this reasoning.

5 Discussion

Security Consider a setting with several data sources (e.g. hospitals) and a central data registry.
At the data sources, personal identifiers are replaced by CLKs and records subsequently sent to
the registry. At the registry, records are linked using the CLKs. According to Kerkhoffs’ principle,
we assume public knowledge of the design principles of the CLKs and parameters l, n, and k.
The cryptographic key of the HMACs however remains private to the data sources.
The registry is not able to re-engineer the identifier values because one-way functions are used.

Also, the registry is not able to mount a dictionary attack on the CLKs because it is not aware
of the cryptographic key. The registry might however undertake a frequency attack since the
frequencies of the bit positions set to 1 are of course related to the frequencies of n-grams in the
original identifiers. In [13] we discussed a frequency attack on Bloom filters containing just one
identifier, a more thorough analysis is contained in [16]. To sum up, the success of a frequency
attack depends on the ratio of the number of hash functions used to the length of the Bloom filter
k
l . The CLK however takes several instead of one identifier only7, and each can be hashed with
a different cryptographic key k. We regard a frequency attack as extremely difficult therefore. In
any case, it is possible to enhance security by raising k

l .

5 We took First name and Surname from the phone book. A Birth year was then simulated according
to the actual age distribution of Germany in 2006. Lastly, we used a precompiled list recording first
names with sex. If a first name did not appear in the list, we assigned Sex with p = .5.

6 For generating errors we built an error simulation tool following the design principles of “generate2.py”
[48]. We introduced a variety of error types, including typos, phonetic errors, and ocr-errors. Error
probabilities were independently applied according to “gold standard” data stemming from the Panel
Study “Labour Market and Social Security” [49]. We adopted for First name p = .2, Surname p = .15,
full Date of birth p = .05, and Sex p = .05.

7 If one stores the Bigrams of a surname of average length, say 7 characters, in a Bloom filer of length
l = 1000 using k = 30 hash functions, there are at most 180 Bits set to one. If one hashes First name
(e.g. 6 characters), Surname (7 characters), Birth day, Birth month, Birth year, and Sex as in the
evaluation study (l = 1000, k = 10), there are more, at most 200, Bits set to one.
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If one of the data sources acquires the CLKs from the registry, the possibility of a dictionary
attack emerges. This could be prevented if the registry simply rotates the incoming CLKs by
a secret number of positions. The ability to link the CLKs is thereby preserved whereas the
possibility of a dictionary attack by a data source perishes.

Collisions An important feature of any ALC and pseudonym system is collision-freeness. For
example, in [29] a test for collisions of the Swiss ALC is described. Swiss ALCs of 220, 020
unique combinations of patients’ identifiers (First name, Surname, Date of birth, and Sex) from
a hospital data base were created. Among them, there were 304 double Swiss ALCs and 1 triple
Swiss ALC. This means a false-positive (or collision) rate of (2×304+3×1)

222020 = .003, which was
considered acceptable.
We put the CLK to an analogous test. Due to lack of real test data, we took 20, 931, 406

combinations of First name and Surname from a German phone book and added simulated Date
of birth and Sex as described in Footnote 5. Among the resulting records, there were 20, 916, 246
unique combinations of identifiers. We generated CLKs from them as described in the caption
text of Figure 3. We found just 526 doublets, making a collision rate of (2×526)

20916246 = .00005.

Efficiency Regarding ALCs, time resources needed comparing them is of relevance only.8 Table
1 displays the runtimes of the different runs in our evaluation study. Whereas it took 19 minutes
more to compare the CLKs than the other ALCs, this certainly does not imply that time com-
plexity is prohibitive. Actually, the CLK exhibits a runtime comparable to plain text similarity
functions. After all, it took additional 39 minutes to determine the Damerau-Levenshtein dis-
tances. Since this would be an unfair confrontation, we determined the runtime when applying
n-grams on the plain text values as well. It turns out that it took 6:30 minutes more to calculate
the plain text n-grams than to compare the CLKs.

Table 1: Runtimes of comparison in minutes.
Each computer run involved 25, 000, 000 record pairs. All computations were performed using a
2.80GHz Pentium D Processor running Windows XP, with 2GB of RAM. All routines were implemented
in Java.

Method Runtime

Basic ALC 53:36

Swiss ALC 53:10

Encrypted SLK 53:34

CLK 72:08

Plain text comparison (Damerau-Levenshtein) 111:32

Plain text comparison (n-grams) 76:42

8 Compuationally, coding the identifier values is a cheap task. For example, the creation of the 21 Million
CLKs used for the collision test took us 50 minutes only.
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Flexibility The design and application of the CLK might be modified in several respects to
meet certain practical requirements. That is, it is more flexible than hitherto existing ALCs in
various regards.
First, the CLK allows for relative weighting of included identifiers. For example, if Surname

is to be of greater relevance than First Name, simply use relatively more hash functions to store
Surname in the CLK.
Second, the CLK allows for adding additional identifiers ex post. Suppose a registry is accu-

mulating CLKs. After years, there are more and more collisions and it would be advantageous
to add an identifier. This identifier could, in principle, be added to the CLKs without taking
recourse to the original values of the identifiers already incorporated. There is no need to know
the cryptographic keys whatsoever since each identifier is hashed using a different one. When
the counting variant of Bloom filters [50] is used to set up the CLKs, there would be even the
possibility of a removal of identifiers.
Third, the design of the CLK allows for meaningful comparisons even in the event that some

CLKs only contain additional identifiers. Suppose in some CLKs an indicator of vital status
(“dead/alive”) is added for some reason. Depending on the data quality of the other identifiers
this disturbs the similarity approximation to some extent, but makes it not obsolete as would be
the case with other ALCs.
Fourth, as discussed above, the security of the CLKs can be enhanced by raising k

l . On the
other hand, lowering k

l will result in an improved record linking quality. The CLK hence allows
for fine-balancing security and linking ability under the terms of a specific application.
Fifth, whereas the other ALCs return simply “ALC matches” or “ALC does not match”, the

CLK returns continuous similarity scores (see Figure 1). This implies that the CLK allows for
economizing on the costs of false linking classifications by adopting specific loss functions in
different studies. Suppose the cost of a false positive classification is relatively high as compared
to the cost of a false negative classification. By raising the threshold for classification (i. e. it takes
higher a similarity to be classified as a link), false positive cases tend to be avoided. Lowering
the threshold would work the other way around.

6 Conclusion

In this paper, we presented the Cryptographic Longterm Key, a new method for building an
anonymous linking code. Hitherto suggested ALCs consist of a single string built from some
identifier values which is put into a cryptographic hash function. If two ALCs agree exactly, the
corresponding records are considered to be linked, otherwise to be not linked. In contrast, the
CLK consists of a single Bloom filter in which n-gram sets of a several identifiers are stored. It
allows to approximate the n-gram similarity between two sets of identifier values. It is a novel,
error-tolerant ALC therefore. Using simulated data, we compared its performance with previously
suggested ALCs. It results to be clearly superior in matching effectivity being as efficient as a
n-gram comparison of plain text identifier values.
As a future work, we intend to test the CLK in a real-world setting. Additionally, we plan to

investigate the security properties more thoroughly. Finally, we want to put the applicability of
Counting Bloom filters for building CLKs to the test.
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