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ABSTRACT
We propose a novel evidence accumulation framework that

accurately estimates the positions of humans in a 3D en-

vironment. The framework consists of a network of dis-

tributed agents having different functionalities. The mod-

ular structure of the network allows scalability to large

surveillance areas and robust operation. The framework

does not assume reliable measurements in single cameras

(referred to as ’sensing agents’ in our framework) or reliable

communication between different agents. There is a position

uncertainty associated with single camera measurements and

it is reduced through an uncertainty reducing transform

that performs evidence accumulation using multiple cam-

era measurements. Our framework has the advantage that

single camera measurements do not need to be temporally

synchronized to perform evidence accumulation. The system

has been tested for detecting single and multiple humans

in the environment. We conducted experiments to evaluate

the localization accuracy of the position estimates obtained

from the system by comparing them with the ground truth.

Also, two different configurations of the agents were tested

to compare their detection performance.

Index Terms— camera networks, distributed processing,

evidence accumulation, uncertainty reduction.

I. INTRODUCTION

The biggest advantage of multi-camera surveillance net-

works over single camera systems is their ability to combine

information from different cameras into scene-level repre-

sentations that yield enhanced awareness of the monitored

environment . But this ability depends critically on how

the information is combined from the different cameras. We

obviously need an evidence accumulation framework that is

well-principled with regard to combining the uncertainties

in the information gleaned from each camera. We also want

such a framework to scale up easily as more and more

cameras are added to the network. As a camera network

becomes large, it is extremely difficult to synchronize image

capture by the different cameras. Therefore, we would want

the framework to combine information from the different

cameras taking into account the uncertainty in image acqui-

sition times. The goal of this paper is to present such an

evidence accumulation framework.
Our proposed framework consists of a hierarchy of agents.

The lowest level of this hierarchy consists of ’sensing

agents’; they extract candidate shapes and features. Higher

levels of the agent hierarchy deal with: 1) the local ac-

cumulation of supporting evidence for the shape/feature

hypotheses that are output by the sensing agents; and 2)

the aggregation of the hypotheses at a more global level.

Note that the candidate shapes/features that are output by the

lowest level of the agent hierarchy suffer from high false-

positive rates because of complex backgrounds, occlusions,

rather limited fields of view of the individual cameras, and

so on (Figure 1). It is the accumulation of evidence at the

higher levels of the hierarchy that progressively eliminates

the false positives and provides accurate estimation of the

human positions in the monitored environment.

II. RELATED WORK

Many evidence accumulation schemes have been proposed

in the multi-camera visual surveillance literature. These

include the schemes reported in [1], [2], [3], [4], [5], [6],

[7], [8], [9] and others. In [1] and [10], a person’s 3D

location is estimated by triangulation of 3D rays directed

along the line joining camera focal points and the person’s

centroid in 2D image planes. A pseudo-intersection point is

computed that minimizes the sum of the squared distance to

each pointing ray. Bayesian networks have also been used for

multi-camera evidence accumulation [4], [11], [12]. In [11],

a Bayesian belief network is used to match subjects across

different cameras by integrating geometry- and recognition-

based modalities, whereas, in [4], the Bayesian net fuses in-

dependent observations from multiple cameras by iteratively

resolving independency relationships and confidence levels

within the net. The system described in [7], [8] is based

on FOV (field of view) lines of the cameras to establish

correspondences between the views of the same object as

seen in different uncalibrated cameras. In [13], image-based

sensor observations are associated with scene-based object

hypotheses using features that are viewpoint independent

e.g. object location, object class (human, vehicle etc.) and
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Fig. 1. Images from a multi-camera test sequence with complex background. They were acquired at approximately the same time. Red circles

depict the detected head candidates (both true heads and false positives). Inspite of a large number of false positives due to the complex background, the

proposed evidence accumulation scheme generates accurate 3D head positions. A demo video of our multi camera person detection system can be viewed

at http://cobweb.ecn.purdue.edu/RVL/movies/MultiCameraPersonDetection_ICDSC08.wmv

color. The associations are made based on comparing the

features of a new observation against the features stored for

each existing object hypothesis using a match score function.

The work in [14] describes a region-based stereo algorithm

capable of finding 3D points inside an object knowing only

the projections of the object (as a whole) in two views. The

work reported in [15] addresses the problem of selecting the

best camera position for extracting the desired human motion

information. The human position, body orientation and body-

side estimation is performed by determining the camera

viewpoints where these features can be easily estimated and

maximizing the joint probabilities of observations obtained

from multiple cameras.

The work we report here carries out evidence accumula-

tion with a framework of agents possessing heterogeneous

characteristics. These agents cooperate to estimate 3D hu-

man positions in real time, followed by determination and

visualization of their trajectories. Due to the modular agent-

based processing architecture, the proposed framework is

well suited to large-scale surveillance applications since

new agents can be integrated seamlessly. The evidence

accumulation scheme works well even when the different

cameras are not synchronized with regard to their image

acquisition times. The unsynchronized observations allow

for denser temporal observations of the 3d environment and

avoid redundancy among multiple observations when a large

number of cameras is deployed in the network [16].

The paper is organized as follows. Section 2 describes

the problem of 3D position estimation that we try to solve

and the assumptions about the environment and our current

setup. Section 3 details the agent based architecture which

achieves multiple functionalities through cooperative inter-

action between heterogeneous agents. Section 4 explains the

single sensor processing of acquired images, while section 5

elaborates the novel evidence accumulation scheme to obtain

accurate 3D position estimates. Experimental results are

presented and discussed in section 6. Section 7 gives some

concluding remarks followed by possible future extensions

of the current work. Finally, section 8 acknowledges the

funding support for this research.

III. PROBLEM DESCRIPTION

Our overall goal is to develop a cooperative processing

architecture for detecting and tracking multiple humans in

an environment and visualizing their trajectories. The work

presented in this paper solves a sub-problem of the human

tracking problem: first detect the humans in the environment

and estimate their positions using the individual cameras

in the network, and then combine the information gleaned

from the individual cameras to achieve higher localization

accuracy of the estimated positions and the reduction of

false detections. Our setup consists of 12 cameras monitoring

an indoor rectangular area (8m × 5m). The cameras are

grouped into 4 clusters as shown in Figure 2. In solving

the detection and localization problem, we have made the

following assumptions:

• The environment is defined in terms of the world coor-

dinate frame that is taken to be the reference coordinate

frame.

• All cameras are calibrated with respect to the world

coordinate frame.

• Image capture by the different cameras is not synchro-

nized and the images are acquired with time stamp

information.



Fig. 2. Camera configuration used for the evidence accumulation

framework results reported in this paper: There are 12 cameras grouped

into 4 clusters, each monitoring a small part of a rectangular area.

• The cameras are connected to PCs that perform all

image processing operations.

• The PCs can communicate with one another via either

wired or wireless network connections.

• Multiple humans may exist in the environment viewed

by the network of cameras.

• In this paper, the position of a human is represented by

the human head position.

IV. AGENT BASED ARCHITECTURE

The cooperative processing architecture consists of the

following agents:

• Sensing Agent

• Cluster Leader Agent

• Monitoring Agent

• Visualization Agent

These agents are software processes running on PCs that

are connected by wired or wireless network links. Multiple

such agents may run on a single PC. The agents may

also control hardware such as cameras for image capture

or display devices for visualizing the trajectories of the

detected humans. Figure 3(a) shows a generic view of our

agent based architecture and Figure 3(b) shows an example

implementation that was used for the results reported here.

IV-A. Sensing Agent

The sensing agents are situated at the bottom of the

hierarchy of agents. Ideally, in distributed sensor networks,

a sensor node consists of a sensor, a processing module, and

a communication module. In our current setup, we simulate

a sensor node by a sensing agent. It is a software agent

running on a PC, that utilizes an IEEE 1394 firewire camera

for image capture, performs local processing on the acquired

images and sends some data to other agents (specifically

the cluster leader) at the next higher level of the agent

hierarchy. As mentioned earlier, the images are captured

with time-stamp information. Local processing involves the

application of a background subtraction algorithm [17] to

obtain contours of foreground objects and extracting human-

head like object regions from these contours. The extracted

head-like regions are also called head region candidates.

Head extraction algorithm is explained in section V. Sensing

always involves false detections. So a sensing agent is not

expected to always successfully detect the human heads. Its

responsibility is only to detect the head region candidates. In

the ensuing discussion, we will refer to single camera head

region candidates as ’measurements’. The sensing agent then

sends a message including the measurements to a cluster

leader. It is worth mentioning that actual images are not

sent, rather only small datasets are sent. This is shown in

Figure 4.

IV-B. Cluster Leader

A cluster leader implements our evidence analysis and

accumulation algorithm to unify the information received

from lower level agents in the agent hierarchy. Note that

the hierarchical organization of the agents shown in Figure

3(a) allows for the node below a cluster leader to be either

a sensing agent or another cluster leader agent. A cluster

leader agent receives messages containing measurements or

position estimates from lower level agents and uses them

to accumulate evidence for accurate 3D position estimation.

There are two types of position estimates:

1) Candidate position estimate (CPE): This is generated

by a lower-level cluster leader as a result of integrating

one or more measurements received from different

sensing agents. It is represented by (p, S), where p

is the mean vector representing the candidate position

and S is the covariance matrix representing position

uncertainty. p and S are specified in 3D world coor-

dinates.

2) Validated position estimate (VPE): When a CPE is able

to accumulate evidence from 3 or more measurements,

it is said to be validated and is then known as a

validated position estimate (VPE). The integration and

validation of position estimates is performed using

Mahalanobis distances and weighted recursive least

squares technique [18]. A VPE is also denoted by

(p, S). A CPE may or may not represent an actual

human head depending on how many measurements

are integrated into it but a VPE represents the position

of an actual human head.

Once the VPEs are generated, “unnecessary” measurements

are eliminated within the cluster leader to avoid data redun-

dancy and to ensure that each measurement is associated

with a unique VPE. The cluster leader then sends a message

to a higher-level cluster leader containing the VPEs and also

the CPEs that it could not validate. If a cluster leader at the

topmost level can not validate any of the CPEs, they are

discarded. A top-level cluster leader sends all the VPEs to the

monitoring agent and the visualization agent for generating

the trajectories and for the visualization of the detected



human heads.

IV-C. Monitoring and Visualization Agents

Since the current paper focuses primarily on accurate head

position detection using evidence accumulation, we fill focus

on the functions of the sensing agents and the cluster leader

agents in the following sections. The monitoring and the

visualization agents will be presented in detail in future

publications. Suffice here to say that the monitoring agent is

responsible for monitoring the object/humans found in the

environment by associating tracking labels with such objects

and the visualization agent provides a user interface for vi-

sualizing the 3D environment along with the objects/humans

found in it.

Fig. 4. Data transmitted from a sensing agent to the cluster leader:

At each time instant i, a data record containing the position estimates for

all the detected head region candidates along with the associated timestamp

information is sent. No images are sent.

IV-D. Connectivity and Communication Issues

In a distributed network (wired or wireless), reliability or

lack thereof is an important issue. We do not wish to assume

a reliable network and we want our framework to allow for

fault conditions such as some sensor nodes going down or

some communication links failing during a detection and

tracking task. To realize an unreliable network, we use the

UDP messaging protocol rather than the TCP/IP protocol.

A cluster leader integrates the information received from

the lower level nodes. Therefore, since the system allows

for cluster leader failure, the network connections between

the sensing agents and the cluster leaders are reconfigurable

dynamically. That way, if a cluster leader node fails, the

sensing agents connected to it can start sending their data to

other active cluster leaders in the network.

IV-E. Configuring the Agent Hierarchy

Depending on the number of sensing agents in the camera

network, there may be one or more cluster leaders and they

may be arranged in multiple layers of the agent hierarchy.

There is a tradeoff involved between the numbers of levels of

the hierarchy in the architecture versus the communication

Fig. 5. Why do we need multiple levels of Cluster Leaders: Head

position validation requires data from at least three sensing agents. Positions

in Area A are coverable by three sensing agents from a single cluster; so

a single cluster leader can perform validation. But positions in area B are

not coverable by three sensing agents of a single cluster. Therefore multiple

levels of cluster leaders are needed for integration and validation in area B.

delays in the network. On the one hand, the sensing agents

and the cluster leaders may be configured in multiple layers

as shown in Figure 3(a), so that there are multiple clusters

of sensing agents and each cluster’s data is processed by

one cluster leader. Such a configuration will have higher

cumulative communication delays compared to a simple

network where all the sensing agents are directly connected

to a single cluster leader that does all the integration and

validation processing. On the other hand, it is typical of

wireless sensor networks that the sensing agent nodes may

have limited communication range and so may not be able to

send their data to a single cluster leader. Therefore formation

of multiple clusters may be necessary.
If multiple cluster formation is allowed, each cluster may

be able to cover only a portion of the entire monitored

area. In our current system implementation, a cluster leader

requires measurements from at least three sensing agents to

obtain a VPE. As shown in figure 5(a), the cluster leader

for cluster #3 can validate all the locations within area A.

But area B (figure 5(b)) is not coverable by at least three

sensing agents of any one cluster; so no single cluster leader

can validate the locations in this area. So the cluster leaders

corresponding to all the four clusters need to send their

position estimate data to a higher level cluster leader to

perform a second level of integration. This scenario justifies

the need for having multiple levels of cluster leaders in our

architecture.

V. SINGLE VIEW HEAD DETECTION

The human head detection in single camera images in-

volves contour analysis of foreground silhouettes. The al-

gorithm we use for that purpose is based on the work

of Zhao [19]. This work deals with shape decomposition

and body part identification in line-approximated contours

of foreground objects that are assumed to be humans (see

Figure 6 for details). Body part identification is followed by

the extraction of edge segment boundaries. An edge segment

boundary is defined as that contour whose boundary contains



(a) Generic view (b) Example Implementation

Fig. 3. An agent-based hierarchical processing architecture for the detection of humans and their localization.

only one cut; cuts are shown as red lines in figure 6 (c). In

figure 6 (d), edge segment boundaries are the boundaries of

the red colored patches.
For each edge segment boundary, its similarity to a simple

head model is computed. The head model (which is assumed

to be a circle) is fitted to each edge segment boundary i
using the least squares method and its center x0i and radius

ri calculated. The average fitting error Ei in this calculation

is computed as

Ei =
1

Ni

Ni
∑

j=1

(

‖xj − x0i‖
2

2
− r2

i

)

(1)

where xj’s are the points on edge segment boundary i and

there are Ni of them. The similarity of the edge segment

boundary i to the head model is computed as

Simi =

√

r2
i − Ei

ri

(2)

Note that 0 ≤ Simi ≤ 1. All the edge segment boundaries

for which Simi exceeds a threshold (0.6−0.8) are detected

as head region candidates. We assume that an average human

head when modeled as a sphere in 3D is approximately 10

inches in diameter. Using this assumption and the estimated

radius of the human head region candidate in a single camera

image, we can estimate a rough distance d of the human head

from the camera, using the relation

d

F
=

D

2r
(3)

where F is the focal length of camera, r the estimated radius

of the head region candidate, and D = 25.4 cm(10 inches).
Here D is the assumed diameter of the average human

head; it is obtained experimentally through measurements

on several people. All lengths are assumed in cm units. This

equation indicates that r is small for a person far away from a

Fig. 6. Zhao’s Shape Decomposition (from [19]): (a) the original

image, (b) line approximated contour of foreground person, (c) computing

the negative curvature minima (represented by small circles) and the cuts

(represented by red lines) (d) the edge segment boundaries; these are the

boundaries of the red colored patches.

camera (d large) and vice versa. This equation also indicates

that |△d| = (△r/r) d, implying that the uncertainty in d is

large for a person far away from a camera and vice versa.

Figure 7 presents an idealized representation of the head

candidate detected by a single camera for a single human

in its field of view. The head candidate is represented in

camera coordinate frame by (u, v, d) where (u, v) are the

pixel coordinates of the head candidate region mean and d
is its distance from the principal center of the camera. The

ellipse in the figure represents the uncertainty in d.

The candidate position measurement (u, v, d) obtained

from a single camera image is transformed into the world

coordinate frame p = (x, y, z). Since there is always some

position uncertainty associated with a camera measurement

of the human head position, each measurement is specified

by the mean position p and covariance matrix S (see Ap-



Fig. 7. Single camera head detection.

pendix A for mathematical details on how the measurement

(u, v, d) is converted to the world coordinate frame).
The measurement from a single camera may not represent

the actual position of a human head. That is why we refer

to a detected region as a head candidate rather than a

head. The reason is that certain non-human objects may

appear circular in a single camera view and may be mistaken

for a human head. Even if the detected regions actually

represent human heads, there is uncertainty in single camera

position estimates due to sensor noise and due to assumption

about the head size stated previously in this section. This

necessitates evidence accumulation from multiple sensing

agents to integrate their measurements to obtain a VPE.

VI. MULTI-CAMERA EVIDENCE ACCUMULATION

When a cluster leader receives a new measurement from

a sensing agent, it attempts to update its set of existing

position estimates by integrating the new measurement with

any one of them. We now describe how this update is carried

out using weighted recursive least squares technique with

minimum variance.
As mentioned in the previous section, the human head

position in the environment at time t is represented by the

position estimate p = (p, S) where p is the mean vector and

S is the covariance matrix representing position uncertainty.

Let us say that this position estimate is currently stored in

a cluster leader. If a new measurement p′ = (p′, S′) is

received from one of the sensing agents at roughly the same

time t, the cluster leader checks to see if this measurement

can be integrated with the position estimate p by calculating

the Mahalanobis distances between them:
d1 = pT S−1p′ and d2 = (p′)T (S′)−1p
If d1 and d2 are less than a certain distance threshold

dthreshold and if the timestamps of p and p′ differ by less

than a time threshold Tthreshold, they are then allowed to be

integrated. When p is updated, the new estimate is given by

pupdated =
(

pupdated, Supdated

)

. This calculation is carried

out as follows [18]:

1) pre-computation step

K = S (S + S′)
−1

(update gain) (4)

Fig. 8. Uncertainty reduction through measurement integration

2) update step

pupdated = p − K (p − p′) (5)

Supdated = (I − K)S (6)

Since there is a time stamp associated with each position

estimate, the time stamp for pupdated is calculated as the

average of the time stamps for p and p′. Integration of one

or more measurements results in a CPE and the cluster leader

keeps track of how many measurements are integrated into

each CPE. In our current implementation, if three or more

measurements can be integrated, a CPE becomes validated

and is called VPE. Upon validation, all the intermediate

CPEs that share any measurement with a VPE are eliminated.

This is done primarily to ensure that each measurement only

contributes to one VPE in order to minimize false detections.

Additionally it leads to efficient memory usage in the cluster

leader and faster integration process because there are fewer

CPEs to keep track of for the purpose of dealing with a new

measurement.
The evidence accumulation and position validation calcu-

lations can be understood better with the help of Figure 9. In

this figure, the possible candidate position estimates gleaned

from the three cameras labeled A, B and C are: P0(A0, C1),
P1(A1, B1, C2), P3(B0, C2), P4(A1, B1), P5(A1, C2) and

P6(B1, C2). It is clear that the measurements A1, B1 and

C2 can be integrated to obtain a VPE P1. All other

Fig. 9. Integration and validation of position estimates.



Fig. 10. This figure shows the case when a single measurement from

one of the cameras participates in multiple integrations vis-a-vis other

camera measurements.

CPEs containing at least one of A1, B1 or C2 will then be

eliminated. In the figure, the position estimates P2(A1, B0),
P3(B0, C2), P4(A1, B1), P5(A1, C2) and P6(B1, C2) are

eliminated.

The integration of measurements is based on computing

the Mahalanobis distance but there may be scenarios where

this leads to false detections. For example, as shown in Fig-

ure 10a, measurement #1 from camera #1 may be integrated

with multiple measurements of camera #2 and all except one

integration will result in false positives in head detection. In

order to handle this situation, the cluster leader retains all the

original measurements even after they are used to generate

an updated position estimate. The measurements are retained

until the measurements either become part of a VPE or are

discarded as explained previously. To illustrate this, Figure

10b shows that measurement A2 from sensing agent A may

be integrated individually with measurements B1 and B2

from sensing agent B, leading to updated position estimates

C1 and C2 respectively. Therefore the cluster leader retains

A2, B1, B2, C1 and C2 because at this point none of them

is validated. The cluster leader does not know apriori which

of the combinations of measurements will get validated.

A cluster leader maintains two types of data records,

called the Candidate Position Estimate Box and the Validated

Position Estimate Box, that are updated upon the arrival

of messages from other agents. Figure 11 depicts the data

records and also the data flow in a cluster leader. The data

records rVBox, vBox and sVBox, all of type Validated

Fig. 11. The data records internal to a cluster leader.

Position Estimate Box, store information related to VPEs,

and the data records rCBox, cBox and sCBox, all of type

Candidate Position Estimate Box, store information related

to CPEs. The rVBox and rCBox act as input buffers to

receive measurements from the sensing agents or the position

estimates from the lower layer cluster leaders. Similarly,

the sVBox and sCBox act as output buffers to send newly

validated position estimates or newly received CPEs to an

upper layer cluster leader. The cBox and vBox store the

current set of position estimates. A cluster leader hangs on

to the “current” position estimates, that is, the estimates that

are within a certain time period in the past (as a short-

term memory). This is done to account for the fact that the

measurements from the different sensing agents may arrive

at slightly different times due to the asynchronous nature

of image capture or because of communication delays in the

network. To compensate for the time delay between the mea-

surements from the different sensing agents, the integration

process uses the timestamp information in addition to the

Mahalanobis distances so that the integration only involves

the position estimates whose time stamps are all within

a certain interval. The outdated measurements or position

estimates are discarded. As mentioned in section IV-B, all

measurements that can not be validated even by the highest

level cluster leader are also discarded.

VII. EXPERIMENTS AND RESULTS

Our agent-based architecture was implemented using stan-

dard PCs (Pentium 4, 3.2 GHz) and 12 cameras (640x480

Dragonfly2, Point Grey Research Inc.). In order to evaluate

our system for human head detection, we acquired a video

sequence, approximately 2 minutes long (frame rate = 7.5

fps), of a scene in which up to three persons were moving

around in a rectangular monitoring area. For analyzing the

head detection performance, we considered separately the

three scenarios where either only one, or just two, or all

three persons were present in the monitoring area. Thirty

multi-frames (time duration = 4 seconds) were extracted

from the video sequence for each of these scenarios, where

one multi-frame consists of 12 images, one from each of the

12 cameras, with all the images captured at approximately at

the same time. Therefore in total, we used 90 multi-frames of

data that corresponds to a 12 second interval. As mentioned

earlier, the goal of this paper is only to demonstrate the

detection and localization performance of the system and

not the tracking performance. Even in a short interval of 12

seconds, there are about 1500 candidate head regions in the

ground truth data (see below) that, we believe, are adequate

to demonstrate the intended performance. Therefore we can

justify using short duration data for system evaluation.
Experimental values of dthreshold ranged from 4 to 6 and

Tthreshold = 1/7.5 when the frame rate is 7.5 fps. Since

the Mahalanobis distance is normalized in terms of standard

deviation, choosing dthreshold between 4 and 6 seems to



(a) 1 person (b) 2 persons (c) 3 persons

Fig. 12. The ground truth trajectories and the detected head positions

reported by the system. Black circle represent false positives

Configuration 1 Configuration 2

Scenario before after reduction before after reduction
1 person 19 6 68.4 % 19 11 42.1 %
2 person 39 14 64.1 % 39 18 53.8 %
3 person 63 19 69.8 % 63 23 63.5 %

Table I. Comparison of the number of false positives before and after

measurement integration and validation

be high. In our experiments, we used a conservatively low

estimate for the initial uncertainty in the head position

(u, v, d), therefore we must set dthreshold to a high value

to ensure that the measurements corresponding to the same

true head position can be integrated. The choice of Tthreshold

is intuitive because we only want to integrate measurements

whose temporal separation is within one frame.
For the purpose of evaluation, ground truth was generated

by manually overlaying circles on human heads in single

camera images. These regions were then integrated to gen-

erate ground-truthed 3D positions using weighted recursive

least squares with minimum variance. Since each person

was assigned a unique identity in the ground truth data,

we generated motion trajectories of the individual persons

by linearly interpolating between the ground truthed 3D

positions. Two different configurations of sensing agents

and cluster leaders were considered during the experiments:

(a) Configuration 1 has a flat structure where all the 12

sensing agents are connected to single cluster leader and

(b) Configuration 2 has a hierarchical structure where the

12 sensing agents are divided into four clusters of three

agents each, as shown in Figure 2. Each of the four clusters

have their own cluster leaders and these cluster leaders are

connected to a second level cluster leader.
A numerical measure of the detection and localization

performance of the system is presented in terms of 1) the

number of false positives before and after measurement

integration and validation (that is, evidence accumulation)

in the cluster leaders; 2) calculation of the percentage of

the true positives after the measurement integration and val-

idation process; and 3) the localization accuracy of correctly

detected heads. A correctly detected head in 3D is one whose

shortest distance from the ground truth trajectory is less than

Configuration 1 Configuration 2

Scenario validated
heads
(correctly
detected
heads)

% true
positives

validated
heads
(correctly
detected
heads)

% true
positives

1 person 56 (50) 89.3% 75 (64) 85.3%
2 person 72 (58) 80.6% 85 (67) 78.8%
3 person 88 (69) 78.4% 97 (74) 76.2%

Table II. True positive performance after measurement integration

and validation in the cluster leaders.

Scenario Configuration 1 Configuration 2

1 person 13 cm 15 cm
2 person 14 cm 14 cm
3 person 13 cm 13 cm

Table III. Mean localization error in the detected head positions in

the world coordinate frame.

25 cm. The performance is estimated over 30 multi-frames

for each of the 3 scenarios.
Figure 12 graphically illustrates the head detection results

for the three scenarios described earlier. The solid curves

represent the trajectories generated from the ground truth po-

sitions and the circles represent the head detections reported

by the system after measurement integration and validation.

The black circles denote the false positives. For the 2-

and 3-person scenarios, there are some instances of missed

detection. This is because of the complicated background in

our test environment that results in lot of spurious contours

in foreground objects. This causes the single camera head

detection algorithm to perform sub-optimally, that is, with a

large number of false positives.
Table I presents a comparison of the number of false posi-

tives in 2D camera images vs the 3D head positions obtained

after the integration and validation of 2D measurements. For

configure 1 of the agent hierarchy, the reduction in the num-

ber of false positives is approximately 64-70 % for the three

scenarios. On the other hand, for configuration 2 of the agent

hierarchy, the reduction in the number of false positives

is roughly in the 42-64 % range. This indicates that there

is a greater decrease in the false detections when a larger

number of sensing agents can simultaneously participate in

the measurement integration and validation process. In table

II, we present the true positive detection performance. The

cluster leaders integrate the measurements received from

the sensing agents and generate validated position estimates

(VPEs). Not all of these VPEs will be actual human head

positions because sometimes false positive 2D measurements

may get integrated to give a false positive VPE. But as

the high true positive percentages in the table indicate,

the system is very effective in filtering out false positive

2D measurements. This is so because the system needs

evidence from at least three sensing agents for generating

a VPE. Even if one sensing agent generates a false positive

measurement, if it is not corroborated by at least two other



measurements from other sensing agents, it will not go past

the integration and validation stage. Table III summarizes

the mean localization error of the correctly detected heads

in the world coordinate frame.
We can observe from the results that both configurations

have comparable detection performances. This is as per our

expectations because the core evidence accumulation algo-

rithm (equations 4, 5 and 6) does not depend on hierarchical

or flat structure of the agent architecture. Nonetheless, the

choice of hierarchical configuration is strongly favored by

considerations of the monitoring area, scalability, real time

performance, and so on. While for a small monitored area

where only a few sensing agents are required, we can opt

for configuration 1 due to its simple implementation. But

for a large monitoring area, we would need a large number

of sensing agents, which in the case of wireless sensor

networks, may not be able to communicate with a single

cluster leader due to limited communication range. Therefore

a hierarchical structure of multiple cluster leaders becomes

essential. Additionally, the measurement integration and val-

idation process is O(n) for configuration 1 and O(log n)
for configuration 2. Therefore the latter configuration is

preferable for real time performance. This configuration is

also more scalable because multiple sensing agents and

cluster leaders can be added in a hierarchical fashion without

affecting the performance of the other parts of the network.

VIII. CONCLUSIONS

In this paper, we presented a novel evidence accumulation

framework for detecting and localizing humans in an indoor

environment with a network of cameras. Our framework

uses an agent-based architecture that can easily be scaled

up as cameras are added to the network to cover a larger

area. The two different types of agents we discussed in

detail are the sensing agent and the cluster leader agent, the

former for acquiring and locally processing the 2D images

of the monitored environment and the latter for carrying out

measurement integration and validation to generate accurate

3D head positions. A cluster leader agent integrates the

sensing agent measurements using a weighted recursive least

squares technique with minimum variance to obtain validated

head position estimates. The work we reported in this paper

focused on human head detection and localization in the

environment. Our future research will focus on uniquely

identifying different humans and tracking their trajectories

in real time. An important assumption we made for the

experimental results reported here was that, on the average,

the human head is roughly 10 inches in diameter. This

assumption can be eliminated in future improvements by

using face detection in the images and using the detected

faces to estimate the actual head size of the subjects. Face

detection can be performed in a camera view that captures

the frontal position of the subject (see, for example, [15] for

detecting the orientation of a person) and then the head size

information can be transmitted to the other sensing agents

over the network.
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APPENDIX A

POSITION ESTIMATION IN WORLD FRAME

We describe the steps to obtain the CPE p = (x, y, z) and

its error covariance matrix S from the raw measurements

(u, v, d) . Let q = (u, v, d) be the measurement vector of

the human head which is a random vector with mean as the

actual measurement q̂ and the error covariance matrix Q.
Let (R, T ) represent the transformation for a camera from

the camera coordinate frame to the world coordinate frame.

Note that all the cameras are calibrated with respect to the

world frame. Let P (x, y, z) be the 3D point specified in the

world frame and Pc (xc, yc, zc) be the corresponding point

in the camera frame. Then




x
y
z



 = R





xc

yc

zc



 + T (7)

Since the camera is calibrated, in the camera coordinate

frame, we have the following relationship between the mea-

surement (u, v, d) and the 3D point Pc (xc, yc, zc):










u = αu
xc

zc

+ u0

v = αv
yc

zc

+ v0

d =
√

x2
c + y2

c + z2
c

(8)

where (αu, αv)represent the magnification factors in the x-

and y- direction, and (u0, v0) represent the image center of

the camera image. From (8), we obtain















zc = d
q

(u−u0

αu
)
2

+( v−v0

αv
)
2

+1

xc = u−u0

αu

zc

yc = v−v0

αv

zc

(9)

Using Eqs. (7) and (9), we can compute (x, y, z).

APPENDIX B

ERROR COVARIANCE ESTIMATION IN WORLD FRAME

We will now show how the relationship between the

measurement vector q = (u, v, d) and its world-coordinate

version p = (x, y, z) can be used to transform the error

covariance matrix Q associated with q into the error covari-

ance matrix S associated with p. Let p = f (q) represent the

transformation from q to p which is actually a non-linear

transformation. Consider first the mean vector of p:

p = E [p] = E [f (q)] ≈ f (E[q]) = f (q) = f (q̂) (10)

where we have used the linear approximation in writing

E [f (q)] ≈ f (E[q]). This approximation linearizes the



nonlinear function by retaining only the first term in the

Taylor series expansion. The nonlinear function f(.) can be

expanded as a Taylor series about q̂:
p = f(q) = f(q̂+ δq) = f(q̂)+higher order terms

⇒ p ≈ f(q̂)
⇒ E [f(q)] = E [p] = E [f(q̂)] = f(q̂) = f (E[q])
As for the covariance matrix S, we consider the deviation

from the mean vector. For δp = p− p̄, δq = q− q̄ = q− q̂,

we obtain (again using the linear approximation)

δp =
∂f

∂q
δq (11)

The covariance matrix S is now computed as follows:

S = E
[

(p − p) (p − p)
T
]

= E
[

δpδpT
]

= E

[

∂f

∂q
δqδqT

(

∂f

∂q

)T
]

=
∂f

∂q
E

[

δqδqT
]

(

∂f

∂q

)T

=
∂f

∂q
E

[

(q − q) (q − q)
T
]

(

∂f

∂q

)T

=
∂f

∂q
Q

(

∂f

∂q

)T

where ∂f
∂q

is evaluated at p = p,q = q = q̂.
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