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Abstract—To promote research on dynamic constrained 

multiobjective optimization, we first propose a group of generic 

test problems with challenging characteristics, including different 

modes of the true Pareto front (e.g., convexity–concavity and 

connectedness–disconnectedness) and the changing feasible 

region. Subsequently, motivated by the challenges presented by 

dynamism and constraints, we design a dynamic constrained 

multiobjective optimization algorithm with a nondominated 

solution selection operator, a mating selection strategy, a 

population selection operator, a change detection method, and a 

change response strategy. The designed nondominated solution 

selection operator can obtain a nondominated population with 

diversity when the environment changes. The mating selection 

strategy and population selection operator can adaptively handle 

infeasible solutions. If a change is detected, the proposed change 

response strategy reuses some portion of the old solutions in 

combination with randomly generated solutions to reinitialize the 

population, and a steady-state update method is designed to 

improve the retained previous solutions. Experimental results 

show that the proposed test problems can be used to clearly 

distinguish the performance of algorithms, and that the proposed 

algorithm is very competitive for solving dynamic constrained 

multiobjective optimization problems in comparison with 

state-of-the-art algorithms. 

 
Index Terms—Dynamic constrained multiobjective 

optimization, test problems, population selection, change response 

I. INTRODUCTION 

ANY real-world optimization problems, particularly 

online optimization problems or optimal control 

problems, involve multiple objectives and constraints that may 

change over time throughout the optimization [1]; such 

problems can be called dynamic constrained multiobjective 

optimization problems (DCMOPs). Without loss of generality, 
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a DCMOP can be mathematically formulated as follows: 
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where m is the objective function index, and M is the number of 

objective functions. j is the decision variable index, and n is the 

number of decision variables. x is a solution that consists of n 

decision variables, and xj is the jth decision variable, which is 
bounded by corresponding lower (x

min 

j ) and upper (x
max 

j ) bounds. 

 is the decision space, and t represents a dynamic environment. 

h and g are the numbers of dynamic equality and inequality 

constraints, respectively. F(x, t) is the objective function vector 

to be minimized at t, and fm(x, t) denotes the mth objective 

function. hk(x, t) and gk(x, t) represent the kth equality and 

inequality constraints, respectively, that vary with t. 

If a solution satisfies all constraints, then it is called a 

feasible solution; otherwise, it is called an infeasible solution. 

For two feasible solutions x1 and x2 of a DCMOP at t, x1 is said 

to dominate x2 if and only if fm(x1, t)≤fm(x2, t) for every m∈

{1,…,M} and fb(x1, t)<fb(x2, t) for at least one index b∈

{1,…,M}. If there is no other solution in  to dominate x1, then 

x1 is a nondominated solution (i.e., a Pareto-optimal solution). 

F(x1, t) is then called a Pareto-optimal objective vector at t. The 

set of all Pareto-optimal solutions is called the Pareto-optimal 

set (POS). Similarly, the set of all Pareto-optimal objective 

vectors is called the Pareto-optimal front (POF). 

The goal when solving a multiobjective optimization 

problem (MOP) is to obtain a set of nondominated solutions, all 

of which must be feasible. Compared with constrained MOPs 

without dynamism (CMOPs) and dynamic MOPs without 

constraints (DMOPs), DCMOPs are more challenging due to 

the simultaneous presence of constraints and dynamism. 

Specifically, a change is usually not observable and may even 

be unknown, and it may arise in either the objective functions 

or constraints. Detecting environmental changes is difficult if 

they are unforeseen in DCMOPs. The feasible region of 

objective functions (hereafter referred to simply as the feasible 

region) is affected by constraints and may increase or decrease 

with dynamism, changing the number of feasible solutions. 

Abandoning infeasible solutions may be beneficial for 

population convergence. However, some previous infeasible 

solutions close to the boundary of the feasible region can easily 

become feasible or even nondominated in new environments. 
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Therefore, determining how to best handle infeasible solutions 

is a considerable challenge. For a DCMOP, the true POF of the 

objective functions (hereafter called the true POF) may be 

determined by the unconstrained POF (i.e., the POF of a 

DCMOP without constraints) and bounds of the feasible region. 

The true POF of a DCMOP may become disconnected when 

the lower bound of the feasible region is irregular. An example 

of the true POF of a DCMOP with two objectives (i.e., f1(x, t) 

and f2(x, t)) is given in Fig. 1, and its functions are given in 

Section S-I of the supplementary material. The 

disconnectedness of the true POF may cause the population to 

get stuck at local regions, decreasing the population diversity. 

Thus determining how to design the population update strategy 

that can quickly track the true POF and improve population 

diversity is a challenging task. Furthermore, dynamism and 

constraints can cause the true POF to move in an irregular 

manner. Hence, designing an effective change response 

strategy that can track the new POF is an arduous task.  

In recent years, many contributions have been made 

regarding attempts to solve CMOPs and DMOPs in several 

important aspects, including benchmark problems [2]–[7], [63], 

performance metrics [2], [8]–[11], and algorithms [12]–[23]. It 

is worth noting that the moving peak benchmark problem 

designed in [63] transforms the single objective problem 

proposed in [56] into a two-objective problem by assigning a 

random objective value into each individual, which is a good 

attempt. However, many real-world problems are DCMOPs, 

and the current states of both benchmark problem and 

algorithm designs for DCMOPs are considerably less advanced 

compared to those for CMOPs and DMOPs [24]. Azzouz et al. 

[25] designed a set of test instances for DCMOPs and proposed 

a dynamic constrained algorithm to solve them. However, the 

true POSs in the designed test problems show only small 

variations between t and t+1, making it difficult to test the 

change response capability of an algorithm. Azzouz et al. [24] 

proposed a dynamic constrained multiobjective evolutionary 

algorithm (DC-MOEA) for solving the test problems designed 

in [25]. However, this algorithm does not update the retained 

previous feasible solutions when the environment changes, 

resulting in a slow tracking ability when the change in the true 

POS or POF between t and t+1 is large. 
To advance the state of research on DCMOPs, we design a 

set of test problems and propose a novel dynamic constrained 
multiobjective evolutionary algorithm (dCMOEA) to solve 
them. The main contributions of this work are as follows: 
1) Following a few basic design principles proposed in [12] 

and [56], two important characteristics of DCMOPs are 
introduced into the test problems. Specifically, the true POF 

in each proposed test problem is simultaneously determined 

by the unconstrained POF and bounds of the feasible region, 
causing the true POF to switch between different modes 

(e.g., connected and disconnected). This characteristic is 

useful for testing an algorithm’s convergence speed, 

reactivity, and rapid tracking capability with respect to the 
new true POF. The feasible region in each of the proposed 

test problems can increase or decrease with dynamism in an 

irregular manner, meaning that the number of infeasible 

solutions and even the true POF of a DCMOP can change. 

The second characteristic makes it possible to test an 

algorithm’s capability of handling infeasible solutions. 

2) The nondominated solutions in DCMOPs usually vary with 

dynamism and constraints, and some previous 

nondominated solutions may become infeasible or 
dominated in a new environment. Based on this fact, we 

propose a nondominated solution selection operator that is 

suitable for DCMOPs. When a new environment arises, the 

proposed nondominated solution selection operator can 
reserve a part of nondominated solutions obtained in the 

previous environment, increasing the diversity of the 

nondominated set in a new environment.  

3) For handling the infeasible solutions and improving 

population diversity, the constraint handling technique 
proposed in [15] is introduced into the designed mating 

selection strategy and population selection operator. 

Considering that the feasible region may vary with 

dynamism, the population selection operator integrates the 

information of the obtained feasible solutions. The 

proposed operator can adaptively update the population, 

balancing the trade-off between the population diversity 

and convergence capability of dCMOEA. 
4) For a DCMOP in which the environmental changes are 

unforeseen, we propose a change detection strategy that can 

accurately detect dynamism arising in either objective 

functions or constraints. dCMOEA reinitializes a portion of 

the solutions and reuses some previous solutions with 
competitive performance (i.e., small objective function and 

constraint violation values) when the environment changes. 

Meanwhile, we exploit information collected from the 

reinitialized solutions and an approximate feasibility ratio 
to update the retained previous solutions, allowing the 

proposed algorithm to quickly track the new POF. 

The remainder of this paper is organized as follows. Section 

II discusses some related work on the constraint handling 

techniques used for CMOPs and the change response strategies 

used for DMOPs. Section III presents the design of the test 

problems. Section IV describes the framework of the proposed 

dCMOEA, together with detailed descriptions of each 

component of the algorithm. Performance metrics and a 

comprehensive comparison of various multiobjective 

evolutionary algorithms (MOEAs) on the test problems are 

presented in Section V. Section VI offers a further discussion of 

the proposed algorithm. Section VII outlines some conclusions 

and suggests directions for future research. 

II. RELATED WORK 

Considering that there are few works on solving DCMOPs, 

in this section, we first present some recent studies on 

constraint handling techniques for CMOPs and then discuss the 
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Fig. 1. The diagram of the true POF of a DCMOP. 
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change response strategies adopted in DMOPs. 

A. Constraint Handling Techniques 

The constraint handling techniques for CMOPs can be 

divided into three categories [21]: techniques that place a 

higher priority on feasible solutions to survive to the next 

generation, techniques for balancing the trade-off between 

feasibility and convergence, and techniques for repairing 

infeasible solutions. 

The first category is based on a preference for feasible 

solutions, which are considered better than infeasible ones. The 

constraint handling method proposed by Coello Coello and 

Christiansen [26] simply ignores infeasible solutions, which 

results in difficulty when solving problems with a narrow 

feasible region. Deb et al. [13] designed a constrained 

dominance relation in which a solution x1 is said to dominate x2 

if 1) the former is feasible while the latter is not, 2) they are 

both infeasible, but x1 has a smaller overall constraint violation, 

or 3) both of them are feasible and x1 dominates x2. Following a 

similar idea, Cheng et al. [27] updated the population on the 

basis of the degree of constraint violation. Fonseca and 

Flemming [28] designed a unified framework for solving 

CMOPs in which a higher priority is assigned to the constraints 

than to the objective functions, thus the search process 

prioritizes finding feasible solutions over finding optimal ones. 

Takahama et al. [29] and Asafuddoula et al. [30] proposed an 

-constrained dominance relation in which the constraint 

violation values of two solutions are not considered if they are 

smaller than a certain threshold. In the method of [31], 

infeasible solutions do not survive to the next generation if the 

number of feasible solutions is sufficient. Fan et al. [32] 

designed an angle-based constrained dominance principle in 

which x1 dominates x2 if the former is feasible while the latter is 

not. For a DCMOP, the feasible region can increase or decrease 

with dynamism. Giving feasible solutions a higher priority is 

beneficial for speeding up the convergence of an algorithm 

when the feasible region is large. However, emphasizing the 

importance of feasibility may reduce the population diversity. 

Techniques in the second category try to balance the 

trade-off between feasibility and convergence during the 

evolutionary process. Angantyr et al. [33] and Young [34] 

developed a constrained dominance relation by combining the 

ranks of a solution based on its objective functions and 

constraint violation values. Woldesenbet et al. [15] proposed a 

new constraint handling technique in which each objective 

function of a solution is modified in accordance with its 

original objective function values and constraint violation 

values. The dominance relation is determined on the basis of 

the modified objective functions and the nondominated sorting 

procedure proposed in the nondominated sorting genetic 

algorithm II (NSGA-II [13]). To improve the population 

diversity, Li et al. [35] developed a method in which the worst 

solution is given a second chance for survival when it is 

associated with an isolated subregion. To utilize useful 

information included in infeasible solutions, Peng et al. [36] 

introduced infeasible weights, which change with smaller 

constraint violation values and better objective function values, 

to maintain many well-diversified infeasible individuals. Ning 

et al. [37] proposed a constrained nondominated sorting rank 

approach in which each solution is associated with a 

constrained nondomination rank in accordance with its Pareto 

rank and constraint rank. Sorkhabi et al. [38] designed an 

efficient approach for constraint handling in which infeasible 

particles are evolved in the constraint region toward feasibility, 

and feasible particles are evolved toward Pareto optimality. 

However, for a DCMOP, a smaller feasible region may lead to a 

reduction in the number of feasible solutions. In this case, 

removing some feasible solutions may cause the algorithm to 

fail to converge because the solutions in the POS are feasible. 

Techniques in the last category aim to repair infeasible 

solutions. In [39], Harada et al. proposed a constraint handling 

method called Pareto descent repair, which incorporates the 

gradient projection method. However, the gradient information 

for DCMOPs is usually unavailable. Sigh et al. [40] used an 

approximate descent direction method to reduce the degree of 

constraint violation. Jiao et al. designed a feasible-guiding 

strategy that aims to find feasible solutions close to the feasible 

region in a feasible direction with the help of infeasible 

solutions [41]. For a DCMOP, however, the feasible region 

varies irregularly with dynamism, and it is difficult to find a 

good feasible direction in which to repair infeasible solutions. 

Additionally, there are some effective constraint handling 

strategies to solve the constraints in single objective 

optimization problems. Runarsson and Yao [58] proposed a 

stochastic ranking in which a probability is introduced to 

balance the objective and overall constraints violation 

stochastically. This approach can significantly improve the 

optimization performance without any special constrain 

handling operator. In [59], they designed an improved 

stochastic ranking in which comparison between two solutions 

may be based on the overall constraint violation alone or 

objective value alone as randomly determined. Thus, some 

infeasible solutions with better value may be selected in 

evolution. Allmendinger and Knowles [60] investigated two 

interesting types of ephemeral resource constraints (ERCs): one 

encodes periodic resource availabilities, and the other models 

‘commitment’ constraints that make the evaluable part of the 

space a function of earlier evaluations conducted. The studies 

on both types of constraints are of great significance to 

real-world applications, especially closed-loop optimization 

settings. Note that ERCs are not standard constraints but 

restrictions on a series of solutions that can be actually 

evaluable at a given time during the optimization, arising 

because of resourcing issues [61]. 

B. Change Response Strategies 

The strategies for responding to changes can be divided into 

the following three categories.  

1) Diversity Enhancement: These methods increase the 

population diversity by means of certain methodologies when a 

change is detected. Woldesenbet and Yen [42] proposed a 

dynamic EA with variable relocation that relocates solutions 

based on the changes in the objective function values due to a 

change in the environment and the average sensitivities of their 

decision variables to the corresponding changes in the objective 

space. Yang and Tinos [43] and Mavrovouniotis and Yang [45] 

proposed a hybrid immigrant scheme based on memory-based 

immigrants [44] and elitism-based immigrants, and these 

methods are effective in dealing with changing DMOPs. 

2) Memory Mechanism: These mechanisms reuse the past 
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information to improve the performance of EAs [56]. Goh and 

Tan [11] proposed an idea based on comparing the potential of 

new regions with past information to decide whether a 

subpopulation should be initialized when an environmental 

change occurs. Specifically, the particular subpopulation must 

be reinitialized in the space from which the winner is sampled. 

Wang and Li [46] designed a reinitialization strategy to respond 

to environmental changes. In their reinitialization strategy, the 

initialized solutions are chosen from the current population and 

archived solutions with a probability of 0.2. In [47], Azzouz et 

al. proposed generating some solutions via a memory-based 

strategy that makes use of previous optimal solutions. 

3) Prediction Strategy: Such a strategy usually predicts the 

state of the new environment using existing information and 

other learning techniques. Considering the properties of 

continuous DMOPs, Zhou et al. proposed a population 

prediction strategy that is divided into two parts: a center point 

and a manifold [16]. A sequence of center points is used to 

predict the new center, and the previous manifolds are 

maintained to estimate the next manifold. 

The three types of change response strategies discussed 

above perform well for solving different DMOPs. Nevertheless, 

for DCMOPs, the feasible region move with dynamism, and a 

previously feasible region may become infeasible in a new 

environment. In other words, previously feasible solutions may 

become infeasible. Therefore, a change response strategy must 

be designed with proper consideration of the constraints. 

III. PROPOSED TEST PROBLEMS 

Test problems play a crucial role in judging whether an 

algorithm is a candidate for solving MOPs [3]–[4]. Currently, 

test instances for DMOPs [3]–[5], [63] and CMOPs [6], [31], 

[48] have been proposed. However, these test problems do not 

consider dynamism and constraints simultaneously. 

Analogous to the design principle of dynamic single-objective 

test problems proposed in [56], the test problems of a DCMOP 

should also be close to reality, easy to describe, simple, and 

easy to analyze. In real-world applications of DCMOPs, the 

objective functions and the feasible region may both change 

with dynamism, changing the true POF. Specifically, the 

bounds of the feasible region may be determined by the 

unconstrained POF and constraints, and its true POF is a part of 

the lower boundary of the feasible region. Dynamism and 

constraints can change the lower boundary, causing the true 

POF to alternate between connectedness and disconnectedness 

as well as between convexity and concavity, which pose a 

tremendous challenge for the convergence speed and response 

capability of an algorithm. The feasible region may move with 

dynamism, resulting in changes to the feasible solutions, 

infeasible solutions, and nondominated solutions. Some 

previously nondominated solutions may become dominated or 

even infeasible in the new environment. Meanwhile, some 

previously infeasible solutions may become feasible or even 

nondominated. This possibility poses a challenge regarding an 

algorithm’s capability of handling infeasible solutions. Based 

on these characteristics arising in real-world applications, this 

paper considers the four types of test problems, and the 

real-world problems related to these four types are discussed in 

Section S-II of the supplementary material. 

Type I: The feasible region first increases with t and then 

decreases, while the true POF changes from continuous to 

disconnected and finally back to continuous. 

Type II: The feasible region first decreases with t and then 

increases, while the true POF changes from disconnected to 

continuous and finally back to disconnected. 

Type III: The feasible region first increases with t and then 

decreases, while the true POF changes from disconnected to 

continuous and finally back to disconnected. 

Type IV: The feasible region first decreases with t and then 

increases, while the true POF changes from continuous to 

disconnected and finally back to continuous. 

Considering that the objective functions in the electric power 

supply problem studied in [49] oscillate among several 

optimization modes, this study considers two cases for the 

unconstrained POF of a DCMOP, called Case 1 and Case 2. 

Case 1: The unconstrained POF has one mode that includes 

convexity and concavity. Algorithms with fast convergence can 

easily solve such problems 

Case 2: The objective functions oscillate among several modes 

that may include convexity and concavity. 

For the real-world optimization problems especially for the 

optimization of electric energy (e.g., the dynamic power supply 

problem in magnesia grain manufacturing [49], the peaking 

shaving and valley filling problem in plug-in electric vehicles 

[62]), their objective functions and constraints may include 

trigonometric functions. Additionally, constraints in real-world 

problems usually cause the irregularity of feasible region, 

leading to the irregularity of the true POF in DCMOPs. 

Designing test problems with trigonometric functions can 

easily reflect these characteristics arising in real-world 

problems by adjusting the corresponding parameters. Based on 

the above discussions and benchmarks designed in [4], [6], and 

[48], this study proposes the following instance generator. 
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In the objective functions, s(t) is a nonnegative dynamic 

parameter that controls the movement of the unconstrained 

POF. A large movement distance of s(t) causes the POF to also 

exhibit a large movement. xI and xII are subvectors of x. h(xI, t) 

is a nonnegative function such that 0h(xI, t)s(t). At controls 

the curvature of the unconstrained POF, and Wt determines the 

number of mixed concave and convex segments of the 

unconstrained POF. Setting Wt properly can make the 

unconstrained POF oscillate among several modes. g(xII, t) is a 

nonnegative function that determines the starting position and 

change of solutions in POS. The minimum value of g(xII, t) is 

zero, so the objective functions can be formulated as follows: 

 1 2

1 2

( )
( ) 2 sin( )

2
t t

f f s t
f f s t A W 

 
    (3)

Based on Equation (3), the unconstrained POFs with 

different settings for s(t), At, and Wt are shown in Fig. 2. 

In the constraints of Equation (2), the effects of parameters , 
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a, b, c, d, and e on the feasible region caused by constraints are 
described in [6]. Additionally, sl controls the slope of the upper 
boundary of the feasible region caused by constraints. m(t) and 
z(t) are nonnegative dynamic parameters that control the lower 
and upper bounds, respectively, of the feasible region 
determined by constraints. 

To embody the characteristic changes for problems of Types 

I-IV, s(t), m(t), and z(t) are set as follows:  

 
( )

( )

( )

s t t

m t v t

z t t

 


 

  
   
   

  (4) 

where  controls the starting position of the unconstrained POF; 

 and  control the starting positions of the lower and upper 

bounds, respectively, of the feasible region;  controls the step 

length of the unconstrained POF; and  and  control the step 

lengths of the lower and upper bounds, respectively, of the 

feasible region. 

For Cases 1 and 2, one can select between these two cases by 

setting Wt as desired. 

Case 1: The unconstrained POF has one mode that includes 

convexity and concavity, with Wt set to a constant. 

Case 2: The unconstrained POF oscillates among several 

optimization modes that may include convexity and 

concavity, with Wt=sin((t+1)). Note that  controls the 

curvature of oscillation, while  determines the period of 

oscillation (i.e., the period is 2/). Two diagrams are 

given in Fig. 3 to illustrate the impacts of  and  on the 

unconstrained POFs. Their objective functions are given in 

Equations (5) and (6), respectively. 

1 2

1 2
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f f t
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The ideas on scaling up the proposed test problems are 

discussed in Section S-III of the supplementary material. 

IV. PROPOSED DCMOEA 

In a DCMOP, the true POF and feasible region vary with 

dynamism. To handle infeasible solutions and respond to 

changes, this paper designs an algorithm called dCMOEA, 

whose basic framework is presented in Algorithm 1. 

As shown in Algorithm 1, dCMOEA starts with an initial 

population P. Then, the nondominated solution set A is 

determined (line 4 of Algorithm 1). In the each generation, if a 

new environment is detected, then a change response strategy 

(line 8 of Algorithm 1) is used to update P, and a nondominated 

solution selection operator (line 9 of Algorithm 1) is applied to 

update A. Afterward, a mating selection operator (line 11 of 

Algorithm 1) is used to select two parents (i.e., pi,1 and pi,2) for 

generating the ith child qi (line 12 of Algorithm 1). 

Subsequently, qi is stored in an offspring set Q. At the end of 

each generation, a population selection operator (line 14 of 

Algorithm 1) is applied to update P. Finally, a nondominated 

solution selection operator (line 15 of Algorithm 1) is used to 

update A. The above procedure is executed until the termination 

condition is met. In the following sections, each component of 

dCMOEA will be described in detail. 

A. Initialization 

In dCMOEA, the evolutionary process starts with an initial 

population P with N solutions. For a DCMOP, it is difficult to 

generate a feasible solution when the feasible region is small. 

However, the solutions in the POS and POF must be feasible, 

so this paper stipulates that there must be at least one feasible 

solution in the initial population to prevent the absence of 

nondominated solutions. During initialization, we first use 

Equation (7) to generate the components of each solution. 

 min max min

, ( )
i j j j j

x x rand x x     (7) 

where rand is a random number in the range [0, 1]. 

Subsequently, the constraint deviation values of each 

solution are calculated using Equations (8) and (9). 
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Algorithm 1 Framework of DCMOEA 

1:  Input: N (population size) 

2:  Output: a set of approximation POFs 

3:  Initialization: generate an initial parent population P randomly; 

4:  A=Nonselection(P, A) 

5:  while termination condition not met do 

6:     for i=1 to N do 

7:       if change is detected then 

8:         P=ChangeResponse(P); 

9:         A=Nonselection (P, A); 

10:     end if 

11:     pi,1 and pi,2=MatingSelection(P) 

12:     qi=GenerateOffspring(pi,1, pi,2); 

13:   end for 

14:   P=PopulationSelection(P, Q); 

15:   A=Nonselection(P, A); 

16: end while 

 

  
(a)                                                           (b) 

     
(c)                                                           (d) 

Fig. 2. The unconstrained POFs of test problems with different overall shapes.
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Fig.3. The unconstrained POFs of a DCMOP with (a)  = 6 and  = 0.4; and (b) 

=3 and =0.4 at different times. 
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where Gk(xi, t) and Hk(xi, t) denote the kth inequality and 

equality constraint violations, respectively, at t. The parameter 

c is a tolerance value for relaxing the equality constraints to 

inequality constraints, and v(xi, t) is the total constraint 

violation of xi at t. xi is a feasible solution if v(xi, t) is zero. 

If there is no feasible solutions, then the initial population is 

regenerated until there is at least one feasible solution. 

B. Nondominated Solution Selection 

The nondominated solution selection procedure aims to 

preserve nondominated solutions from the Population P and A. 

For a DCMOP, some solutions in A may become dominated 

solutions or even infeasible solutions when a new environment 

arises. To obtain nondominated solutions with diversity, we 

propose that, when a change is detected, the infeasible and 

dominated solutions in A are first removed, followed by the 

infeasible and dominated solutions in P. Afterward, A is 

updated according to the dominance relationship between 

solutions in A and the nondominated solutions in P. Note that if 

the environment changes, then the infeasible and dominated 

solutions in P are removed, and A is updated according to the 

dominance relationship between solutions in A and the 

nondominated solutions in P. Specifically, when a new 

environment is detected, the constraint deviation values of all 

solutions in A are calculated using Equations (8) and (9), and 

solutions with constraint deviation values larger than zero are 

removed from A. Afterward, each solution in A is associated 

with a fitness value, which can be calculated via Equation (10). 

   ( ) ' | 'F i i R i i      (10) 

where R is the set of solutions, and i and i’ are the indices of two 

different solutions in R. |・| represents the cardinality of a set, 

and i’≺i indicates that i’ dominates i. F(i) is the fitness value of 

the ith solution in R. 

Subsequently, the dominated solutions in A are removed. 

After it, there are two cases for A: one is that A becomes an 

empty set, and another is that there is at least one solution in A. 

To preserve nondominated solutions from the population P, 

the constraint deviation values of each solution in P are 

calculated using Equations (8) and (9). Afterward, all feasible 

solutions in P are copied into an empty set S. Each solution in S 

is associated with a fitness value according to Equation (10). 

All nondominated solutions in S are copied into an empty set S’. 

If A is empty, then all solutions in S’ are copied into A. If there 

is at least one solution in A, then the dominance relations 

between the solutions in A and S’ are assessed, and the 

following three cases are considered:  

1) If a solution in S’ is dominated by any solution in A, then this 

solution in S’ is not considered.  

2) If a solution in S’ is not dominated by any solution in A and 

does not dominate any solution in A, then this solution in S’ 

is added to A.  

3) If a solution in S’ is not dominated by any solution in A and 

dominates some solutions in A, then all solutions dominated 

by this solution in S’ are removed from A.  

Last, some solutions in A must be removed if |A| is greater 

than N. In this paper, the crowding distance operator applied in 

NSGA-II is used to perform a truncation operation to ensure 

that |A| is equal to N. The pseudocode for nondominated 

solution selection is presented in Algorithm 2. 

C. Mating Selection and Genetic Operators 

Mating selection plays an important role in producing new 

offspring. For MOPs, binary tournament selection based on the 

dominance relationships between solutions is a common 

selection method [18], [21], and [31]. Unlike CMOPs and 

DMOPs, DCMOPs involve constraints and dynamism 

simultaneously, implying that the feasible region of a DCMOP 

varies with dynamism. Thus, the method used to select parents 

from P influences the population diversity and convergence 

speed of the algorithm. Simply selecting from among the 

feasible solutions may reduce the diversity of the offspring, 

while selecting an excess number of infeasible solutions may 

slow the convergence speed of the algorithm. This study 

proposes to modify the objective function values based on the 

feasibility ratio of the solutions to balance the numbers of 

feasible and infeasible solutions in the parent population. The 

objective function value modification method proposed by 

Woldesenbet et al. [15] is based on the feasibility ratio and does 

not involve parameter tuning, which makes it easy to 

implement in dCMOEA. Therefore, this method is adopted in 

dCMOEA to modify the objective function values so that a 

promising parent population can be obtained. Note that this 

Algorithm 2 Non-dominated solution selection 

1: Input: P, A, S=, S’= 

2: Output: A 

3: if a new environment is detected then 

4:    for i=1:|A|  

5:       Calculate constraint deviation value v(xi, t) of the ith solution in A 

using Equations (8) and (9); 

6:       if v(xi, t) is not zero then 

7:          Remove the ith solution from A; 

8:      end if 

9:    end for 

10:    for i=1:|A| 

11:       Calculate the fitness value of the ith solution in A using Equation 

(10); 

12:    end for 

13:    Remove solutions having a fitness value that is more than one from A;

14: end if 

15: for i=1:N 

16:    Calculate constraint deviation value v(xi, t) of the ith solution in P; 

17:    if v(xi, t) is zero then 

18:       Add the ith solution into S; 

19:    end if 

20: end for 
21: Calculate fitness values of solutions in S using Equation (10); 

22: Copy all solutions having a fitness value of zero in S to an empty set S’;

23: if A=  then 

24:    All solutions in S’ are copied into A; 

25: else 
26:    for i=1:|S’| 

27:       if the ith solution in S’ is dominated by anyone in A then 

28:          A remains unchanged; 

29:       else 
30:         if the ith solution in S’ is not dominated by any one in A, and it does 

not dominate any one in A then 

31:             The ith solution in S’ is added into A; 

32:         else 

33:             All solutions in A dominated by ith solution are removed; 

34:         end if 

35:      end if 

36:    end for 

37: end if
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modification method includes a distance measure and an 

adaptive penalty. The detailed modification procedure in 

calculating the distance measure is as follows:  

First, dCMOEA normalizes the objective values by 

Equations (11)-(13).  

  max

,  max ( ,  )
m t m

P
f f t




x
x   (11) 

  min

,  min ( ,  )m t m
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f f t



x

x   (12) 
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f t
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x
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where f
max 

m,t  and f
min 

m,t  denote the maximum and minimum of the 

mth objective function value in F(x, t) at t, respectively. 

( ,  )mf tx  is the mth normalized objective function value of x at 

t. 

The total normalized constraint violation of a candidate 

solution at t is then calculated by Equations (8), (9), and (14): 

  max max
1 1, , 

( ,  ) ( ,  )1 1
( ,  )

g h
n n

k i k i

i

k kg hk t k t
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v t

n nG H 

  x x
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where ( ,  )iv tx  is the total constraint violation of xi at t. It is 

worth noting that the smaller the value of ( ,  )iv tx  is, the better 

the candidate solution. 

The “distance” value of xi in the mth objective function 

(denoted as dm(xi, t)) is obtained by Equation (15). 

 
2 2

( ,  ) ( ,  ) ( ,  )
m i m i

d t f t v t x x x   (15) 

The “penalty” value of xi in the mth objective function 

(denoted as pm(xi, t)) is obtained by Equation (16). 

  ( ,  ) (1 ) ( ,  ) ( ,  )
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p t r v t r Y t    x x x   (16) 

where rf denotes the feasible ratio of the current population, 

number of feasible solutions in current population

population size
fr  , and 

0 if ( ,  )=0
( ,  )=

( ,  ) otherwise
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. 

The mth modified objective value of xi is formulated as 

follows: 

  ' ( ,  )= ( ,  ) ( ,  )
m m i m i

f t d t p tx x x   (17) 

After the objective function values of xi are modified, each 

solution is assigned a fitness value in accordance with Equation 

(10), and crowding distances are calculated using the method 

proposed in NSGA-II. Then choosing two parents (i.e., pi,1 and 

pi,2) for the ith child employs the mating selection operator 

according to the fitness values and crowding distances of the 

solutions in P. The pseudocode for mating selection is 

presented in Algorithm 3. 

Once a parent population has been constructed, the popular 

simulated binary crossover (SBX) and polynomial mutation 

(PM) operators proposed in [54] are used to generate offspring. 

D. Population Selection Operator 

For a DCMOP, if the feasible region decreases with 

dynamism, then more infeasible solutions may arise. 

Conversely, the number of infeasible solutions may decrease. 

Therefore, handling infeasible solutions while considering 
dynamism is key to obtaining a suitable set of approximations. 

Simply discarding infeasible solutions might cause the 

algorithm to become trapped in local optima [15] whereas 

retaining more infeasible solutions may reduce the convergence 
speed of the algorithm. Note that dCMOEA must have a high 

convergence speed to allow it to track the POF quickly in the 

case of fast and frequent changes. To balance the convergence 

speed of the algorithm and the diversity of the population, 

dCMOEA considers two cases for handling infeasible solutions: 
the case where the number of feasible solutions of in P and Q is 

less than or equal to the threshold NF, and the case where the 

number of feasible solutions is more than NF. 
a) The number of feasible solutions is fewer than or equal to 

NF. For convenience of description, the solutions in P and Q 

are copied to an empty set C. The feasible solutions in C are 

allocated to a feasible set FC, and the infeasible ones are 

allocated to an infeasible set IC. Considering that the solutions 

in the POS must be feasible, we propose that all solutions in FC 

should be retained for the next generation, and the remaining 

N-|FC| solutions in the population should be chosen from the 

infeasible solutions in IC. To select N-|FC| infeasible solutions 

from IC, we first modify the objective function values of these 

infeasible solutions. Because there are no feasible solutions in 

IC, Equation (16) is modified as shown in Equation (18). In 

other words, the objective function values of the infeasible 

solutions in IC are revised in accordance with Equations (8), 

(11)-(15), (17), and (18). 

  (  ) ( ,  )m i ip t v tx x，   (18) 

Subsequently, each individual in IC is assigned a fitness 

value that is calculated using Equation (10). Finally, we select 

N-|FC| infeasible solutions by means of the fast nondominated 

sorting and crowded-comparison operators proposed in [13]. 

b) The number of feasible solutions is more than NF. When 

the number of feasible solutions is large, the number of feasible 

solutions that are propagated to the next generation may also be 

large. In this case, we propose to modify the objective function 

values of all solutions in C in accordance with Equations 

(11)-(17). Once the modified objective function values of all 

solutions have been obtained, N solutions are chosen by means 

of the fast nondominated sorting and crowded-comparison 

Algorithm 3 Mating selection 

1:    Input: P 

2:    Output: pi,1, pi,2 

3:    for j=1:2 

4:       Random select two different individuals p1, p2 from P; 

5:       if F(p1)< F(p2) then 

6:          pi,j=p1; 

7:       else 

8:          if F(p1)> F(p2) then 

9:             pi,j=p2; 

10:        else 

11:           if d(p1)> d(p2) 

12:             pi,j=p1; 

13:           else 

14:              if d(p1)< d(p2) then 

15:                 pi,j=p2; 

16:              else 

17:                 Random select an individual from p1 and p2; 

18:              end if 

19:           end if 

20:        end if 

21:     end if 

22:   end for 
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operators proposed in [13]. 

The pseudocode for the population selection procedure is 

presented in Algorithm 4. 

E. Dynamism Handling 

If the optimizer is aware of the changes in a DCMOP, then it 

does not need to detect change; otherwise, change detection is 

usually needed. When a change arises, change response has an 

important role in tracking the new POF in a changing 

environment. In this section, we first discuss the change 

detection method that detects the changes arising in DCMOPs 

with unforeseen environmental changes. Subsequently, the 

proposed change response strategy is described. 

1) Change Detection  

The authors in [11], [16], [17], and [18] proposed that 

changes can be detected by comparing previous objective 

function values with re-evaluated ones. However, this change 

detection method may also fail when only the constraints are 

dynamic. For a DCMOP, an environmental change may arise in 

either the objective functions or constraints. In this paper, we 

propose that both the objective functions and constraints are 

detected to accurately detect environmental changes. However, 

detection will be computationally expensive if each individual 

in the population is chosen as a detector. To improve detection 

efficiency, the number of individuals chosen as detectors is 

restricted to 10%N, which is suggested by [11] and [18]. The 

steps to detect environmental changes are as follows: 

Step 1: Randomly choose 10%N individuals from the 

population. 

Step 2: Let i=1; 

Step 3: If i≤10%N, then recalculate each objective function 

value for the ith solution; otherwise, the detection procedure 

ends. 

Step 4: If any of the recalculated objective function values of 

the ith solution is different from their corresponding previous 

value, then a change is successfully detected, and the 

detection procedure ends; otherwise, go to Step 5. 

Step 5: Recalculate the difference between the left- and 

right-hand sides of each constraint. If this value differs from 

the one in the previous generation, then a change is assumed 

to be successfully detected, and the detection procedure ends; 

otherwise, let i=i+1 and go back to Step 3. 

2) Change Response  

For a DCMOP, the true POF or feasible region may change 

with t. The nondominated solutions in the POF obtained by an 

algorithm at t-1 may have become dominated or infeasible. 

Similarly, the infeasible solutions at t-1 may have become 

feasible or nondominated. Additionally, a dynamic 

environment may cause the feasible region to become larger or 

smaller. Simply discarding all previous solutions and randomly 

reinitializing the population might be beneficial for population 

diversity, but more optimization time will be needed for the 

algorithm to converge. In contrast, reusing all previous 

solutions to search for new nondominated solutions may reduce 

the population diversity. For these reasons, this paper adopts 

random immigrants and memory schemes to reinitialize the 

population when a new environment arises.  

Based on the above discussion, the population in a new 

environment will be composed of 50% reinitialized solutions 

and 50% previous ones. Note that the reinitialized solutions are 

generated using the method discussed in the Initialization 

section and are copied into an empty set R. To choose 50% of 

the previous solutions, all previous solutions are re-evaluated, 

and their modified objective function values are calculated 

using Equations (8), (9) and (11)-(15). Then, we select the 

desired number of feasible previous solutions from the 

population P by means of the fast nondominated sorting and 

crowded-comparison operators proposed in [13]. 

To enable the algorithm track the new POF quickly, once a 

new environment is detected, we exploit information collected 

from the reinitialized solutions and new approximation of the 

POF to update the retained previous solutions. Specifically, the 

reinitialized solutions and retained solutions are first combined, 

and the feasible solutions are then copied into a new set FS. 

Each solution in FS is assigned a fitness value. Considering that 

solutions with fitness values of less than two may be close to 

the new POF, we propose that each modified solution should 

include the information of these appealing solutions. For the ith 

retained previous solution, Equation (19) is used to locate a new 

position for each of its variables. 

 
, , , ,( )

i j i j rbest j i j
x x rand x x      (19) 

where xrbest, j is the jth variable of a solution with a fitness value  

less than the fitness values of two randomly solutions from FS. 

However, the variable value obtained via Equation (19) may 
be smaller or greater than the corresponding lower or upper 

bound on that variable, making this variable infeasible. The 

bound constraints on each decision variable are known, so such 

infeasibilities can be repaired in a timely manner. Considering 

that the feasible region may become smaller or larger with 
dynamism, the feasibility ratio is considered in the repair 

method. To quickly calculate the feasibility ratio, we use a rule 

of thumb (i.e., calculating the percentage of feasible solutions 

during the reinitialization stage) to estimate the feasibility ratio 
at t. The calculation method is given in Equation (20).  

  =
/ 2

NR

N
   (20) 

where NR denotes the number of feasible solutions in the 

Algorithm 4 Population selection procedure 

1: Input: P, Q, C=, FC=, IC= 

2: Output: P 

3: Cope all solutions in P and Q to C. 

4: Calculate the number of feasible solutions in P and Q; 

5: if The number of feasible solutions≤NF then 

6:    All feasible solutions in C are assigned to FC, and infeasible ones are 

allocated to IC. 

7:    Modify the objective function values of solutions in IC using 

Equations (8), (11)-(15), (17), and (18). 

8:    Calculate the fitness value of each solution using Equation (10). 

9:    Choose N-|FC| infeasible solutions by fast nondominated sorting and 

crow crowded-comparison operator. 

10:    Let P=, and cope all feasible solutions in FC and the selected 

N-|FC| infeasible solutions to P. 

11: else 

12:    Modify the objective function values of all solutions in C according 

to Equations (11)-(17) 

13:    Calculate the fitness value of each solution, and choose N solutions 

from C. 

14:    Let P=, and cope the selected N solutions to P. 

15: end if 
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reinitialization stage. 

For an infeasible variable that exceeds its lower bound, its 

optimal value may be near to the corresponding lower bound. 

Therefore, we find a feasible variable that is near its lower 

bound. In contrast, a feasible variable close to its upper bound is 

determined. When the feasible ratio is small, a minor revision is 

made for the corresponding infeasible variable. Conversely, a 

major revision is made. Based on the above discussions, this 

study uses Equations (20), (21) and (22) to repair the jth 
variable below x

min 

j  and Equations (20), (22) and (23) to repair 

the jth variable above x
max 

j  

  min min

,( )
j j i j j

x x r x x      (21) 

  max max

,( )
j j i j j

x x r x x      (22) 

 r rand    (23) 

The pseudocode for the change response procedure is 

presented in Algorithm 5. 

F. Computational Complexity of One Generation of dCMOEA 

In the loop (lines 6–15 of Algorithm 1) of each generation, 

computational resources are mainly consumed by the mating 

selection, offspring reproduction, population selection, and 

nondominated solution selection procedures, while other 

procedures require less computational cost. Selecting parents 

(i.e., the mating selection operator in line 11 of Algorithm 1) 

takes O(MN) computations, where M is the number of 

objectives. Generating an offspring solution (line 12 of 

Algorithm 1) requires O(M) computations, so the offspring 

reproduction takes O(MN) computations. The population 

selection procedure (line 13 of Algorithm 1) requires O(MN2) 

computations on the fitness assignment and O(N2logN) 

computations on elitist preservation. The nondominated 

solution selection procedure (line 15 of Algorithm 1) spends 

O(MN2) computations. Thus, the overall computational 

complexity of dCMOEA for one generation is O(MN2) or 

O(N2logN), whichever is larger. 

V. EXPERIMENTAL STUDY 

In this section, we will examine the effectiveness of the 

proposed test instances and dCMOEA. For the test instances, if 

the performances of several representative algorithms are 

clearly distinct, then this will show that the proposed test 

instances are effective. For dCMOEA, if it can outperform all 

algorithms considered for comparison on most or even some of 

the test instances, then this will suggest that dCMOEA is 

competitive for solving DCMOPs. 

A. Compared Algorithms 

Only a few MOEAs have already been proposed for solving 

DCMOPs. Therefore, in addition to two algorithms for solving 

DCMOPs (i.e., DC-MOEA, proposed in [24], and 

DNSGA-II-A, proposed in [25]), this paper also considers three 

representative constrained multiobjective optimization 

algorithms for solving CMOPs (i.e., constrained NSGA-II 

(C-NSGA-II) [15], constrained NSGA-III (C-NSGA-III) [31], 

and constrained two-archive EA (C-TAEA) [21]) for 

comparison. For handling dynamic environments, the 

nondominated solution selection operator and the change 

detection method proposed in this study and the restart scheme 

for change response were incorporated into C-NSGA-II, 

C-NSGA-III, and C-TAEA. The resulting algorithms are called 

DC-NSGA-II, DC-NSGA-III, and DC-TAEA, respectively. 

B. Parameter Settings 

1) To study the impact of the change frequency (t), t was set 

to values of 10, 15, and 20. The number of changes was 

nt=21. To minimize the effect of static optimization, each 

algorithm is allowed to run for 40 generations before the 

first change, and the total number of generations was 

ntt+40. 

2) Settings of the Test Problems: According to [6], some of the 

parameters used in Equation (2) were set as follows: 

=-0.25, a=0.2, b=1, c=1, d=0.5, and e=1. To cause the 

true POFs of the test problems to change in accordance with 

the characteristics of problems of Types I-IV, ’, At, and z(t) 

were set to -/16, 0.05, and 6, respectively, and s(t) and m(t) 

were set as follows:  

Type I: 
( ) max(3.5 0.14 ,  0.7+0.14 )

( ) max(1.43-0.05 ,  0.43+0.05 ) 

s t t t

m t t t

   
   

 

Type II: 
( ) max(2.5 0.05 ,  1.5+0.05 )

( ) max(1.16 0.075 ,  -0.34 0.075 )

s t t t

m t t t

   
     

 

Type III: 
( ) min(2.1 0.14 ,  4.9-0.14 )

( ) min(0.93 0.05 ,  1.93-0.05 )

s t t t

m t t t

   
    

 

Type IV: 
( ) min(2 0.05 ,  3-0.05 )

( ) min(0.41 0.075 ,  1.91-0.075 )

s t t t

m t t t

   
    

 

In the designed test problems, h(xI, t) is set to x1, and g(xII, 

t) is denoted as follows: 

  2

2

( ) ( (1 0.9 sin(0., 2 )))
II

n

j

j

g xt t


    x   (24) 

To cause the objective functions to change in accordance 

with the modes corresponding to Cases 1 and 2, Wt was set 

as follows: 

Case 1: Wt=2; 

Algorithm 5 Change response 

1: Input: P, CSC=, R= 

2: Output: P 

3: Generate N/2 solutions by the method in Section IV-A, and copy them 

into R; 

4: Calculate the feasibility ratio of solutions in R using Equation (20); 

5: Calculate the modified objective values of all solutions in P; 

6: Calculate the fitness values and crowing distances of all solutions in P;

7: Select 50% feasible old solutions from population P according to the 

fitness values and crowing distances, and put them into a new set CS; 

8: CSC=CSR 

9: Calculate the constraint violation values of solutions in CSC; 

10: for i=1:|FO| 

11: Random select an individual with fitness value less than two from P;

12:    for j=1:n 

13:      Generate jth variable xi, j by Equation (19); 

14:      if xi, j<
min

j
x  then 

15:        Repair it by Equations (21) and (23); 

16:      else 

17:         if xi, j>
max

j
x then 

18:           Repair it by Equations (22) and (23); 

19:         end if 

20:      end if 

21:    end for 

22: end for 
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Case 2: Wt=6sin(0.2(t+1)). 

Base on the above settings, eight test problems can be 

obtained, which are shown in Table I. The true POF and 

POS of each problem are given in Section S-IV of the 

supplementary material. 
3) Decision Variables. Each test problem has ten decision 

variables; x1[0, 1], and xj[0,2] for j≥2. 

4) Algorithm Parameters: Both the parent population size N 

and the offspring population size in all algorithms were set 

to 200. NF was set to 100. In SBX, the crossover probability 

(Cr) and the distribution index (dc) were set to 0.8 and 5, 

respectively. In PM, the mutation probability (mp) and the 

distribution index (dm) were set to 0.05 and 40, respectively. 

The detailed experiments that select these parameters are 

given in Section S-V of the supplementary material. 

The other parameters for the five compared algorithms were 

the same as those used in the referenced papers. 

C. Performance Indicators 

In our experimental studies, three performance metrics, i.e., 

the hypervolume (HV) [8], inverted generational distance (IGD) 

[9], and Schott’s spacing metric (SP) [52] were adopted to 

compare the algorithms’ performance. The HV and IGD 

metrics simultaneously measure the diversity and convergence 

of the results, and the SP metric measures how the solutions in 

the discovered POF are distributed. Let POF* be the obtained 

approximation set of POF. 

1) HV: HV can assess the size of the area covered by the 

obtained approximation set. The reference point for the 

calculation of HV is set to (z1+1, z2+1), where z1 and z2 are the 

maximum values of two objective values of the true POF. A 

higher HV value means a better approximation set.  
2) IGD: IGD is calculated by Equation (25). 

 
1

1 POFn

i

iPOF

IGD d
n 

    (25) 

where nPOF=|POF|, and di is the minimum Euclidean distance 

between the ith member in POF and one in POF*. The lower the 

IGD value, the better the obtained approximation set. 

3) SP: Schott’s SP metric tests the distribution of the obtained 

POF, and SP is calculated by Equation (26). Note that a smaller 

SP value indicates a better quality of the results. 
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where Di is the Euclidean distance between the ith solution and 

its nearest member in POF*.D is the average value of Di. 

D. Empirical Results 

For each combination (nt, t) for a test problem, each 

algorithm was run 30 times on each test instance, and the mean 

and standard deviation of the results were recorded. Note that 

the Wilcoxon rank-sum test [53] at the 0.05 significance level 

was used to determine whether the performance of one 

algorithm statistically differs from that of another algorithm 

with respect to each performance metric. 

To judge whether the proposed test instances are effective, 

the ranking method described in [4] was used. Specifically, an 

algorithm ranks the highest if it outperforms the largest number 

of competitors, and the algorithm that outperforms the fewest 

competitors will be assigned the worst rank. Multiple 

algorithms may have the same rank if they outperform the same 

number of other algorithms. Note that for each algorithm, the 

average rank was calculated based on three combinations for a 

given test problem. An algorithm was considered the best if it 

had the smallest average rank. Conversely, an algorithm was 

considered the worst if it had the largest average rank. Based on 

this ranking method, the obtained rank of each algorithm is 

listed in Section S-VI of the supplementary material. 

It can be observed that dCMOEA achieves the best 

performance in terms of all three metrics, followed by 

DC-NSGA-II. DC-NSGA-II-A performs the worst among the 

compared algorithms. DC-NSGA-III, DC-TAEA, and 

DC-MOEA show different performances on different test 

problems. The experimental results indicate that the designed 

test problems can clearly distinguish the performance of each 

algorithm. Therefore, the proposed test problems are effective. 

To analyze the algorithms’ performance in terms of each of the 

three metrics in detail, the obtained average results and 

standard deviations for the HV, IGD, and SP metrics are shown 

in Tables II-IV, respectively. The computational time of each 

algorithm on each test problem is given in Section S-VII of the 

supplementary material.  

It can be observed from Table II that on all test problems, 

dCMOEA achieves the best performance in terms of the HV 

metric. Clearly, dCMOEA is more promising than the other 

algorithms for solving these test instances. DC-NSGA-II 

achieves the second-best performance. Note that dCMOEA 

borrows the idea of modifying the objective function values 

that is used in DC-NSGA-II. DC-NSGA-II-A also modifies the 

objective function values, but it performs worse on all test 

problems, which may imply that an effective method of 

modifying the objective function values may be helpful for 

handling the infeasible solutions arising in DCMOPs. 

As seen in Table III, on the proposed test instances, all five 

compared algorithms are outperformed by dCMOEA in terms 

of the IGD metric. The results obtained by DC-NSGA-II are 

second only to those obtained by dCMOEA, whereas 

DNSGA-II-A performs the worst among the compared 

algorithms. Overall, the experimental results demonstrate the 

capability of dCMOEA for solving DCMOPs. As a supplement 

to the tabular presentation, Fig. 4 shows the evolutionary curves 

of the average IGD values on the first two test problems with 

t=15 and nt=21. The evolutionary curves on the other test 

problems are given in Section S-VIII of the supplementary 

material. Note that the evolutionary curves of the results 

obtained by DC-NSGA-II-A are not included because of its 

poor performance. Compared with the other algorithms, 

dCMOEA responds to environmental changes more steadily 

and recovers faster for the most of the test problems, implying 

its higher convergence performance. Nevertheless, dCMOEA 

performs similarly to DC-NSGA-II but better than DC-MOEA, 

DC-NSGA-III, and DC-TAEA on all test problems.  

Table IV presents the results achieved by the six algorithms 

in terms of the SP metric. This table shows that dCMOEA 

achieves the best results on most of the test problems. For the 

TABLE I 

DIFFERENT BENCHMARKS THAT CONSIST OF TYPE I-IV AND CASE 1-2. 

Instance No. 1 2 3 4 

Combination Type I+Case 1 Type II+Case 1 Type III +Case 1 Type IV+Case 1 

Instance No. 5 6 7 8 

Combination Type I+Case 2 Type II+Case 2 Type III +Case 2 Type IV+Case 2 
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second and sixth test problems with nt=21 and t=15 and the 

fifth test problem with nt=21 and t=20, however, DC-NSGA-II 

shows a performance similar to that of dCMOEA. This 

suggests that DC-NSGA-II is promising for problems with 

slow changes, which may be because DC-NSGA-II has a slow 

convergence capability. For all test problems, DC-MOEA, 

DC-NSGA-II-A, DC-NSGA-III, and DC-TAEA fail to show 

appealing performance in terms of the SP metric. 

To judge the algorithms’ tracking capability, we also plotted 

the final POFs of all algorithms over 21 time windows, as 

presented in Section S-IX of the supplementary material. The 

figures evidently show that dCMOEA is very capable of 

tracking the true POF in each environment. 

VI. DISCUSSION 

A. Effectiveness of Each Component of dCMOEA  

This subsection investigates the effects of different 

components of dCMOEA, including three key components, i.e., 

the mating selection operator, the population selection operator, 

and the change response strategy. To examine the effectiveness 

of each component of dCMOEA, we adapted the original 

dCMOEA into six variants. The first variant (dCMOEA-S1) 

uses the mating selection operator designed in [31] to replace 

the one proposed in this paper. In the second variant 

(dCMOEA-S2), the population selection operator proposed in 

this paper is replaced with that proposed in [31]. dCMOEA-S3 

is the third variant, in which the population selection operator 

designed in [24] is used to update the population. dCMOEA-S4 

is the fourth variant, in which Equations (19)-(23), for updating 

the retained previous solutions, are discarded. In the fifth 

variant (dCMOEA-S5), all solutions are regenerated randomly 

when a change is detected. The last variant of dCMOEA 

(dCMOEA-S6) uses the change response strategy proposed in 

[24] in place of the one designed in this paper. All variants were 

compared with dCMOEA on the test problems with settings of 

(t, nt)=(10, 21). The average values and standard deviations of 

the three performance metrics (i.e., HV, IGD, and SP) for 

TABLE III 

MEAN AND STANDARD DEVIATION VALUES OF IGD METRIC OBTAINED BY SIX ALGORITHMS 

Ins (t, nt) DC-MOEA DC-NSGA-II-A DC-NSGA-II DC-NSGA-III DC-TAEA dCMOEA 

1 

(10, 21) 0.36367(0.02941)‡ 0.55258(0.02763)‡ 0.10930(0.00523)‡ 0.14410(0.00597)‡ 0.16457(0.01049)‡ 0.09596(0.00535) 

(15, 21) 0.16887(0.01251)‡ 0.56751(0.02677)‡ 0.06083(0.00205)‡ 0.08358(0.00422)‡ 0.08888(0.00544)‡ 0.05435(0.00281) 

(20, 21) 0.09441(0.00773)‡ 0.55722(0.03576)‡ 0.04445(0.00222)‡ 0.05735(0.00223)‡ 0.05993(0.00304)‡ 0.04024(0.00137) 

2 

(10, 21) 0.26860(0.01767)‡ 0.57932(0.03038‡ 0.09618(0.00501)‡ 0.12791(0.00738)‡ 0.13335(0.00494)‡ 0.08331(0.00337) 

(15, 21) 0.13074(0.00684)‡ 0.58435(0.03085)‡ 0.05715(0.00192)‡ 0.07684(0.00375)‡ 0.07781(0.00333)‡ 0.05322(0.00248) 

(20, 21) 0.07730(0.00411)‡ 0.57726(0.03067)‡ 0.04439(0.00248)‡ 0.05539(0.00195)‡ 0.05565(0.00146)‡ 0.04149(0.00156) 

3 

(10, 21) 0.30675(0.02202)‡ 0.57476(0.03933)‡ 0.11023(0.00652)‡ 0.14496(0.00823)‡ 0.16487(0.00842)‡ 0.09489(0.00486) 

(15, 21) 0.16845(0.01148)‡ 0.56217(0.03725)‡ 0.06393(0.00335)‡ 0.08444(0.00313)‡ 0.09009(0.00473)‡ 0.05579(0.00291) 

(20, 21) 0.09344(0.00757)‡ 0.55948(0.04161)‡ 0.04667(0.00179)‡ 0.05834(0.00234)‡ 0.06222(0.00272)‡ 0.04207(0.00151) 

4 

(10, 21) 0.22815(0.01437)‡ 0.57868(0.03066)‡ 0.09464(0.00421)‡ 0.12588(0.00506)‡ 0.12843(0.00493)‡ 0.08380(0.00380) 

(15, 21) 0.12929(0.00574)‡ 0.59578(0.02847)‡ 0.05494(0.00263)‡ 0.07436(0.00276)‡ 0.07368(0.00284)‡ 0.05071(0.00211) 

(20, 21) 0.07888(0.00367)‡ 0.57842(0.03002)‡ 0.04259(0.00156)‡ 0.05302(0.00195)‡ 0.05332(0.00175)‡ 0.03976(0.00154) 

5 

(10, 21) 0.36912(0.03031)‡ 0.57969(0.03029)‡ 0.11566(0.00626)‡ 0.14714(0.00811)‡ 0.16843(0.01479)‡ 0.09758(0.00501) 

(15, 21) 0.17614(0.01750)‡ 0.57996(0.03099)‡ 0.07126(0.00391)‡ 0.08955(0.00650)‡ 0.09520(0.00541)‡ 0.06384(0.00282) 

(20, 21) 0.10185(0.01038)‡ 0.57734(0.03272)‡ 0.05745(0.00268)‡ 0.06588(0.00327)‡ 0.06973(0.00287)‡ 0.05310(0.00119) 

6 

(10, 21) 0.25978(0.01747)‡ 0.59926(0.03289)‡ 0.10008(0.00373)‡ 0.12845(0.00566)‡ 0.13359(0.00700)‡ 0.08608(0.00406) 

(15, 21) 0.12993(0.00766)‡ 0.60718(0.03230)‡ 0.06609(0.00312)‡ 0.08190(0.00311)‡ 0.08209(0.00286)‡ 0.06087(0.00168) 

(20, 21) 0.08208(0.00304)‡ 0.59382(0.03105)‡ 0.05554(0.00177)‡ 0.06221(0.00166)‡ 0.06465(0.00227)‡ 0.05372(0.00315) 

7 

(10, 21) 0.29880(0.02390)‡ 0.58474(0.03000)‡ 0.11773(0.00752)‡ 0.14594(0.00744)‡ 0.17153(0.01266)‡ 0.09728(0.00678) 

(15, 21) 0.17010(0.01270)‡ 0.58376(0.03171)‡ 0.07361(0.00407)‡ 0.09092(0.00598)‡ 0.09753(0.00605)‡ 0.06482(0.00238) 

(20, 21) 0.09553(0.00590)‡ 0.57417(0.03518)‡ 0.05955(0.00345)‡ 0.06847(0.00317)‡ 0.07274(0.00344)‡ 0.05456(0.00105) 

8 

(10, 21) 0.23048(0.01577)‡ 0.61377(0.03536)‡ 0.09832(0.00359)‡ 0.12798(0.00568)‡ 0.13090(0.00707)‡ 0.08715(0.00368) 

(15, 21) 0.13034(0.00783)‡ 0.61393(0.03757)‡ 0.06507(0.00260)‡ 0.07936(0.00281)‡ 0.07983(0.00349)‡ 0.06048(0.00254) 

(20, 21) 0.08536(0.00337)‡ 0.60355(0.03762)‡ 0.05362(0.00216)‡ 0.06088(0.00219)‡ 0.06320(0.00213)‡ 0.05185(0.00136) 

 

TABLE II 

MEAN AND STANDARD DEVIATION VALUES OF HV METRIC OBTAINED BY SIX ALGORITHMS 

Ins (t, nt) DC-MOEA DC-NSGA-II-A DC-NSGA-II DC-NSGA-III DC-TAEA dCMOEA 

1 

(10, 21) 2.60374(0.06625)‡ 1.95383(0.05459)‡ 3.28327(0.01632)‡ 3.15395(0.02404)‡ 3.10990(0.03625)‡ 3.34912(0.01415) 

(15, 21) 3.13594(0.03853)‡ 1.93553(0.06234)‡ 3.42097(0.01150)‡ 3.34736(0.01916)‡ 3.34060(0.02179)‡ 3.45703(0.00782) 

(20, 21) 3.34229(0.02054)‡ 1.94408(0.08024)‡ 3.46887(0.01025)‡ 3.42745(0.01028)‡ 3.42957(0.01280)‡ 3.49285(0.00384) 

2 

(10, 21) 2.84153(0.04604)‡ 1.99146(0.05402)‡ 3.30633(0.01902)‡ 3.19755(0.02965)‡ 3.19393(0.01496)‡ 3.37086(0.00965) 

(15, 21) 3.23280(0.01984)‡ 2.01934(0.05110)‡ 3.41326(0.01049)‡ 3.34945(0.01293)‡ 3.35799(0.01189)‡ 3.44178(0.00560) 

(20, 21) 3.37416(0.01230)‡ 2.02867(0.05891)‡ 3.44747(0.00947)‡ 3.40669(0.00745)‡ 3.42321(0.00689)‡ 3.46634(0.00387) 

3 

(10, 21) 2.92464(0.06816)‡ 1.94140(0.07697)‡ 3.28102(0.02151)‡ 3.15196(0.02788)‡ 3.10785(0.03041)‡ 3.35154(0.01319) 

(15, 21) 3.23733(0.03320)‡ 1.97205(0.06935)‡ 3.41084(0.01378)‡ 3.34460(0.01673)‡ 3.33664(0.01845)‡ 3.45268(0.00701) 

(20, 21) 3.38523(0.01847)‡ 1.96287(0.07138)‡ 3.46071(0.00931)‡ 3.42168(0.00999)‡ 3.42387(0.01216)‡ 3.48799(0.00401) 

4 

(10, 21) 3.01242(0.04379)‡ 1.98642(0.06159)‡ 3.29439(0.01592)‡ 3.18965(0.02119)‡ 3.19466(0.01835)‡ 3.35571(0.01001) 

(15, 21) 3.30370(0.01666)‡ 1.97185(0.05262)‡ 3.40346(0.01027)‡ 3.34250(0.01108)‡ 3.35474(0.01184)‡ 3.43481(0.00503) 

(20, 21) 3.44553(0.01128)‡ 2.00037(0.05305)‡ 3.44100(0.00655)‡ 3.40424(0.00653)‡ 3.41575(0.00583)‡ 3.45823(0.00345) 

5 

(10, 21) 2.63167(0.05798)‡ 1.89519(0.06576)‡ 3.27981(0.02171)‡ 3.17105(0.02787)‡ 3.10670(0.04173)‡ 3.37017(0.01575) 

(15, 21) 3.15213(0.04511)‡ 1.91493(0.07719)‡ 3.43042(0.01743)‡ 3.35195(0.02616)‡ 3.34925(0.02209)‡ 3.47585(0.00845) 

(20, 21) 3.36440(0.03241)‡ 1.90705(0.05774)‡ 3.47698(0.01349)‡ 3.43951(0.01333)‡ 3.44036(0.01377)‡ 3.51164(0.00337) 

6 

(10, 21) 2.87412(0.04340)‡ 1.95560(0.06411)‡ 3.29883(0.01667)‡ 3.20263(0.02323)‡ 3.18370(0.02756)‡ 3.36944(0.01193) 

(15, 21) 3.23933(0.02207)‡ 1.94743(0.04891)‡ 3.40850(0.01270)‡ 3.34589(0.01407)‡ 3.35631(0.01644)‡ 3.44045(0.00479) 

(20, 21) 3.37102(0.00899)‡ 1.97885(0.05960)‡ 3.44211(0.00927)‡ 3.41022(0.00866)‡ 3.41913(0.00970)‡ 3.46181(0.00749) 

7 

(10, 21) 2.97546(0.06900)‡ 1.91102(0.06525)‡ 3.27378(0.03021)‡ 3.17135(0.02920)‡ 3.09705(0.03963)‡ 3.37201(0.02073) 

(15, 21) 3.25330(0.03195)‡ 1.91702(0.06613)‡ 3.41681(0.01849)‡ 3.35258(0.02546)‡ 3.33658(0.02393)‡ 3.46858(0.00956) 

(20, 21) 3.40318(0.02562)‡ 1.93060(0.06085)‡ 3.46750(0.01662)‡ 3.42836(0.01533)‡ 3.43049(0.01510)‡ 3.50450(0.00315) 

8 

(10, 21) 3.02515(0.04753)‡ 1.92511(0.06544)‡ 3.29749(0.01880)‡ 3.19295(0.02305)‡ 3.18289(0.02647)‡ 3.35664(0.01033) 

(15, 21) 3.31749(0.02167)‡ 1.93232(0.06606)‡ 3.39846(0.01032)‡ 3.34062(0.01181)‡ 3.35233(0.01577)‡ 3.43260(0.00521) 

(20, 21) 3.44713(0.01150)‡ 1.94073(0.06526)‡ 3.44152(0.00887)‡ 3.40309(0.01013)‡ 3.41177(0.01033)‡ 3.45812(0.00278) 

‡ and †  indicate dCMOEA performs significantly better than and equivalently to the corresponding algorithm, respectively. 
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dCMOEA and its variants are given in Table V. 

As seen from Table V, dCMOEA performs significantly 

better than its variants on most of the test problems in terms of 

all three metrics, implying that these three key components are 

crucial for improving the performance of dCMOEA on 

DCMOPs. The IGD values of dCMOEA on the last four test 

problems are small, illustrating that dCMOEA has a better 

convergence capability for DCMOPs with oscillating objective 

function modes. Notably, dCMOEA-S3 shows similar 

performance in terms of the IGD metric on the first four test and 

the eighth problems, mainly because dCMOEA-S3 and 

dCMOEA adopt the similar constraint handling techniques that 

are from [15]. In addition, dCMOEA achieves quite small SP 

values on all test problems, implying that dCMOEA can search 

for nondominated solutions with a good distribution for 

DCMOPs. Notably, dCMOEA-S5 shows similar performance 

in terms of the SP metric on the sixth test problem, mainly due 

to the diversity of the randomly generated solutions. 

In dCMOEA-S1, feasible solutions can be more easily 

chosen for generating offspring. However, many feasible 

solutions are far from the true POF. If there are many such 

solutions in the parent population, then more poor children are 

generated. Therefore, the poor performance of dCMOEA-S1 

may be due to a large number of poor feasible solutions in the 

parent population. 

dCMOEA-S2 achieves the worst performance among the 

compared variants on all test problems, which may be because 

infeasible solutions are not considered if there are sufficient 

feasible solutions. Indeed, some infeasible solutions close to 

the true POF may carry promising population information and 

generate competitive offspring. Simply abandoning them may 

reduce the population diversity. The poor performance of 

dCMOEA-S3 on some test problems may be attributable to the 

fact that fewer feasible solutions are retained when the feasible 

region is small. Note that the solutions in the POF must be 

feasible. Fewer feasible solutions reduce the number of 

nondominated solutions in the POF, decreasing the HV values 

and increasing the IGD and SP values. 

dCMOEA-S4 does not consider any information on the new 

POF when an environmental change is detected, resulting in a 

poor initial population in the search for nondominated solutions. 

By contrast, when a change arises, dCMOEA-S5 completely 

reinitializes the population. For a DCMOP, some previously 

dominated solutions may become nondominated solutions in 

the new environment. The initial population obtained by 

dCMOEA-S5 has good diversity, but it miss many promising 

previous solutions. In dCMOEA-S6, the retained solutions are 

not updated. However, the previous feasible region may 

become infeasible in the new environment, thus increasing the 

number of infeasible solutions. Therefore, dCMOEA-S6 fails 

to track the new POF. 

In summary, by combining the three key components 

proposed in dCMOEA, dCMOEA outperforms all compared 

variants, showing that each component of dCMOEA plays an 

TABLE IV 

MEAN AND STANDARD DEVIATION VALUES OF SP METRIC OBTAINED BY SIX ALGORITHMS 

Ins (t, nt) DC-MOEA DC-NSGA-II-A DC-NSGA-II DC-NSGA-III DC-TAEA dCMOEA 

1 

(10, 21) 0.14115(0.02533)‡ 0.29109(0.11887)‡ 0.04131(0.00840)‡ 0.12395(0.01604)‡ 0.07438(0.01458)‡ 0.02845(0.00260) 

(15, 21) 0.05362(0.00779)‡ 0.24625(0.05206)‡ 0.02096(0.00185)‡ 0.07930(0.01323)‡ 0.03170(0.00553)‡ 0.01655(0.00181) 

(20, 21) 0.02990(0.00363)‡ 0.25188(0.06279)‡ 0.01661(0.00134)‡ 0.06525(0.01930)‡ 0.02186(0.00183)‡ 0.01381(0.00137) 

2 

(10, 21) 0.11311(0.02056)‡ 0.31757(0.10076)‡ 0.03514(0.00633)‡ 0.14055(0.02545)‡ 0.05230(0.00653)‡ 0.02529(0.00202) 

(15, 21) 0.04027(0.00336)‡ 0.29466(0.09136)‡ 0.01900(0.00174)† 0.09175(0.02244)‡ 0.02751(0.00448)‡ 0.01636(0.00154) 

(20, 21) 0.02353(0.00190)‡ 0.27475(0.06815)‡ 0.01506(0.00129)‡ 0.06547(0.01725)‡ 0.02040(0.00154)‡ 0.01412(0.00125) 

3 

(10, 21) 0.14194(0.02043)‡ 0.26972(0.07586)‡ 0.04599(0.00890)‡ 0.12445(0.02877)‡ 0.08431(0.01878)‡ 0.02899(0.00188) 

(15, 21) 0.06409(0.00839)‡ 0.25171(0.06333)‡ 0.02279(0.00179)‡ 0.08522(0.02013)‡ 0.03442(0.00950)‡ 0.01803(0.00170) 

(20, 21) 0.03755(0.00704)‡ 0.26705(0.08285)‡ 0.01810(0.00157)‡ 0.06917(0.01913)‡ 0.02397(0.00194)‡ 0.01582(0.00141) 

4 

(10, 21) 0.10575(0.01617)‡ 0.29303(0.06676)‡ 0.03423(0.00594)‡ 0.14095(0.02076)‡ 0.05036(0.00875)‡ 0.02505(0.00213) 

(15, 21) 0.03817(0.00336)‡ 0.30270(0.06437)‡ 0.01876(0.00350)‡ 0.09487(0.01947)‡ 0.02497(0.00284)‡ 0.01494(0.00130) 

(20, 21) 0.02256(0.00192)‡ 0.29209(0.07005)‡ 0.01414(0.00116)‡ 0.06928(0.01617)‡ 0.01855(0.00140)‡ 0.01297(0.00160) 

5 

(10, 21) 0.14139(0.02591)‡ 0.27849(0.07592)‡ 0.04184(0.00569)‡ 0.12926(0.01884)‡ 0.08197(0.01788)‡ 0.02881(0.00259) 

(15, 21) 0.05640(0.00986)‡ 0.29118(0.11025)‡ 0.02238(0.00182)‡ 0.08582(0.01797)‡ 0.03727(0.01080)‡ 0.01746(0.00142) 

(20, 21) 0.03066(0.00231)‡ 0.30525(0.10851)‡ 0.01784(0.00130)† 0.05947(0.01589)‡ 0.02348(0.00328)‡ 0.01432(0.00106) 

6 

(10, 21) 0.12201(0.02190)‡ 0.26981(0.06150)‡ 0.03523(0.00380)‡ 0.12998(0.02777)‡ 0.05811(0.01227)‡ 0.02565(0.00207) 

(15, 21) 0.04200(0.00352)‡ 0.32059(0.08405)‡ 0.01973(0.00145)† 0.08668(0.02374)‡ 0.02844(0.00256)‡ 0.01654(0.00139) 

(20, 21) 0.02490(0.00172)‡ 0.29533(0.04826)‡ 0.01571(0.00123)‡ 0.07367(0.01697)‡ 0.02175(0.00233)‡ 0.01416(0.00097) 

7 

(10, 21) 0.15437(0.02601)‡ 0.28825(0.08546)‡ 0.04275(0.00577)‡ 0.13591(0.02666)‡ 0.08314(0.01816)‡ 0.02962(0.00218) 

(15, 21) 0.06414(0.00963)‡ 0.26432(0.06374)‡ 0.02480(0.00231)‡ 0.09053(0.01809)‡ 0.04084(0.00871)‡ 0.01932(0.00160) 

(20, 21) 0.03762(0.00478)‡ 0.27550(0.08123)‡ 0.01957(0.00135)‡ 0.06869(0.01996)‡ 0.02567(0.00279)‡ 0.01663(0.00112) 

8 

(10, 21) 0.11245(0.02100)‡ 0.31584(0.08201)‡ 0.03492(0.00513)‡ 0.14087(0.02686)‡ 0.05386(0.00959)‡ 0.02557(0.00186) 

(15, 21) 0.03912(0.00413)‡ 0.27246(0.04382)‡ 0.01870(0.00167)‡ 0.10270(0.02206)‡ 0.02785(0.00579)‡ 0.01559(0.00142) 

(20, 21) 0.02379(0.00246)‡ 0.29940(0.08554)‡ 0.01496(0.00122)‡ 0.07737(0.01465)‡ 0.01945(0.00177)‡ 0.01294(0.00158) 

 

                       

                                                                                    (a)                                                                                                                                          (b) 

Fig. 4. Evolution curves of average IGD values for the first two test problems witht=15 and nt=21. 
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important role in dealing with DCMOPs. Here, we would like 

to explain the role of each key component in more detail. The 

mating selection operator chooses the parents in accordance 

with the modified objective functions, and infeasible solutions 

with small constraint violations and objective function values 

are given a high probability of selection, thereby improving the 

diversity of the parents and allowing dCMOEA to utilize 

infeasible solutions efficiently and effectively to generate 

offspring with appealing performance. The population 

selection strategy can balance the convergence rate of the 

population with the population diversity. This is because when 

the number of feasible solutions becomes small, dCMOEA can 

retain all feasible solutions, thus helping to rapidly track the 

new POF and POS, whereas when the number of feasible 

solutions is large, infeasible solutions with small constraint 

violations and objective function values are propagated to the 

next generation, thereby diversifying the population. 

Introducing random solutions in the change response stage can 

allow the algorithm to explore more information on the new 

environment to search for members of the population close to 

the new POF, and the update strategy for the retained previous 

solutions is beneficial for convergence when the new true POF 

moves. In summary, these three key components of dCMOEA 

play important roles in solving DCMOPs. 

B. Influence of the Number of Decision Variables  

Our preliminary experimental results show that the 

computation time needed to obtain a feasible solution increases 

as the number of decision variables increases. Indeed, for the 

test problems with the current parameters, the computation time 

is unacceptable when the number of decision variables is more 

than 15. To examine the performance of dCMOEA on instances 

with 15 and 20 decision variables, we revised z(t), which 

controls the upper bound of the feasible region for the designed 

instances. For test problems with 15 decision variables, z(t) was 

revised to 8. The value of z(t) in test instances with 20 decision 

variables was revised to 12. Considering that DNSGA-II-A, 

DC-MOEA, and DC-TAEA performed poorly in the above 

experiments, for the experiments reported in this subsection, 

the test problems with 15 and 20 decision variables were solved 

using only DC-NSGA-II, DC-NSGA-III, and dCMOEA. The 

values and standard deviations of the three performance metrics 

(i.e., HV, IGD, and MS) for these algorithms on the test 

problems with 15 and 20 decision variables are listed in Section 

S-X of the supplementary material. 

It can be observed from the corresponding tables that 
dCMOEA achieves the best performance on these instances 

among the three tested algorithms, thus demonstrating that 

dCMOEA can successfully solve DCMOPs with up to 20 

decision variables. 

VII. CONCLUSION 

In a DCMOP, the true POF is determined by the 

unconstrained POF and feasible region. This paper proposes a 
set of test instances for DCMOPs that consider simultaneous 

changes in the feasible region and unconstrained POF. The 

unconstrained POFs in the proposed test problems exhibit two 

modes. In one mode, their shapes remain unchanged with 
dynamism; in the other mode, the shapes of POFs oscillate 

among several optimization modes. During optimization, the 

feasible region may increase or decrease with dynamism, 

causing the true POF to become disconnected. The proposed 
test problems can be used to judge an algorithm’s capability of 

tracking the new POF and handling infeasible solutions. 

Furthermore, six dynamic constrained MOEAs for 

optimization were tested on eight test problems, and the results 

were evaluated in terms of three performance metrics. The 
comparison shows that the designed instances are effective and 

useful for distinguishing the performance of each algorithm. 
We also propose an algorithm called dCMOEA for handling 

MOPs with time-varying constraints and objective functions. In 

dCMOEA, the mating selection and population selection 
operators apply the constraint handling mechanism proposed in 
[15], allowing infeasible solutions with small constraint 
violations and objective function values to play a useful role in 
searching for nondominated solutions. The proposed selection 
operator can adaptively select both feasible and infeasible 
solutions for inclusion in the population, thus balancing the 
trade-off between the population diversity and convergence 
capability of dCMOEA. When a change is detected, dCMOEA 

TABLE V 

PERFORMANCE COMPARISON OF DCMOEA AND ITS VARIANTS WITH (t, nt)=(10, 21) 

Ins Indicator dCMOEA-S1 dCMOEA-S2 dCMOEA-S3 dCMOEA-S4 dCMOEA-S5 dCMOEA-S6 dCMOEA 

1 

HV 3.23600(0.02333)‡ 3.09479(0.06197)‡ 3.34999(0.01763)† 3.24582(0.02456)‡ 3.34134(0.01844)† 2.94287(0.06076)‡ 3.34912(0.01415) 

IGD 0.13381(0.00723)‡ 0.16633(0.02138)‡ 0.09321(0.00566) 0.13354(0.00885)‡ 0.09738(0.00539)† 0.24439(0.02179)‡ 0.09596(0.00535) 

SP 0.04339(0.00659)‡ 0.09258(0.02439)‡ 0.03764(0.00385)‡ 0.03535(0.00361)‡ 0.03042(0.00291)‡ 0.04714(0.00536)‡ 0.02845(0.00260) 

2 

HV 3.28356(0.01647)‡ 3.08864(0.04281)‡ 3.36164(0.01060)‡ 3.29059(0.01483)‡ 3.35859(0.01104)‡ 3.05064(0.05367)‡ 3.37086(0.00965) 

IGD 0.11552(0.00483)‡ 0.16810(0.01697)‡ 0.08449(0.00376)† 0.11485(0.00560)‡ 0.08666(0.00293)‡ 0.20389(0.01896)‡ 0.08331(0.00337) 

SP 0.03791(0.00598)‡ 0.09838(0.03125)‡ 0.03393(0.00294)‡ 0.03169(0.00274)‡ 0.02725(0.00196)‡ 0.04325(0.00450)‡ 0.02529(0.00202) 

3 

HV 3.24221(0.03143)‡ 3.03914(0.05939)‡ 3.34662(0.01817)† 3.24791(0.02973)‡ 3.33345(0.01673)‡ 2.92370(0.06056)‡ 3.35154(0.01319) 

IGD 0.13353(0.01137)‡ 0.18738(0.02449)‡ 0.09453(0.00621)† 0.13301(0.01042)‡ 0.09968(0.00496)‡ 0.24971(0.02220)‡ 0.09419(0.00486) 

SP 0.04412(0.00665)‡ 0.11218(0.03120)‡ 0.03975(0.00302)‡ 0.03826(0.00257)‡ 0.03201(0.00267)‡ 0.04808(0.00574)‡ 0.02899(0.00188) 

4 

HV 3.26071(0.01831)‡ 3.10608(0.04318)‡ 3.34965(0.01406)† 3.28397(0.01422)‡ 3.35259(0.00967)† 3.03569(0.07549)‡ 3.35571(0.01001) 

IGD 0.12000(0.00548)‡ 0.15818(0.01378)‡ 0.08258(0.00481)† 0.11280(0.00493)‡ 0.08440(0.00292)† 0.20570(0.02710)‡ 0.08380(0.00380) 

SP 0.03653(0.00462)‡ 0.11037(0.02822)‡ 0.03310(0.00297)‡ 0.03100(0.00247)‡ 0.02616(0.00223)‡ 0.04201(0.00520)‡ 0.02505(0.00213) 

5 

HV 3.26599(0.02574)‡ 3.11162(0.05083)‡ 3.36187(0.01620)‡ 3.27393(0.02094)‡ 3.35415(0.01645)‡ 2.95660(0.06020)‡ 3.37017(0.01575) 

IGD 0.13124(0.00737)‡ 0.17254(0.01723)‡ 0.09908(0.00471)‡ 0.13126(0.00754)‡ 0.10186(0.00478)‡ 0.24972(0.02242)‡ 0.09758(0.00501) 

SP 0.04380(0.00604)‡ 0.08651(0.02872)‡ 0.03967(0.00702)‡ 0.03822(0.00406)‡ 0.03227(0.00253)‡ 0.04892(0.00585)‡ 0.02881(0.00259) 

6 

HV 3.29351(0.01474)‡ 3.11023(0.05243)‡ 3.36331(0.01023)‡ 3.29265(0.02000)‡ 3.35368(0.01153)‡ 3.08168(0.06303)‡ 3.36944(0.01193) 

IGD 0.11368(0.00484)‡ 0.16535(0.01919)‡ 0.08872(0.00374)‡ 0.11474(0.00671)‡ 0.09106(0.00353)‡ 0.19333(0.02293)‡ 0.08608(0.00406) 

SP 0.03697(0.00388)‡ 0.10095(0.02731)‡ 0.03479(0.00270)‡ 0.03282(0.00311)‡ 0.03001(0.00410)‡ 0.04270(0.00513)‡ 0.02565(0.00207) 

7 

HV 3.24416(0.04267)‡ 3.06303(0.07185)‡ 3.34695(0.02612)‡ 3.26656(0.03718)‡ 3.34290(0.01990)‡ 2.99122(0.07194)‡ 3.37201(0.02073) 

IGD 0.13876(0.01520)‡ 0.19527(0.02842)‡ 0.10506(0.00857)‡ 0.13253(0.01313)‡ 0.10523(0.00514)‡ 0.23428(0.02559)‡ 0.09728(0.00678) 

SP 0.04229(0.00459)‡ 0.08423(0.02570)‡ 0.04103(0.00437)‡ 0.03980(0.00407)‡ 0.03539(0.00387)‡ 0.04763(0.00529)‡ 0.02962(0.00218) 

8 

HV 3.25934(0.02773)‡ 3.09790(0.06117)‡ 3.35078(0.01355)‡ 3.28343(0.01573)‡ 3.34494(0.01371)‡ 3.02581(0.06788)‡ 3.35664(0.01033) 

IGD 0.12095(0.00883)‡ 0.16716(0.02083)‡ 0.08733(0.00393)† 0.11382(0.00580)‡ 0.09054(0.00382)‡ 0.20989(0.02456)‡ 0.08715(0.00368) 

SP 0.03863(0.00520)‡ 0.09564(0.03359)‡ 0.03351(0.00336)‡ 0.03215(0.00249)‡ 0.02816(0.00240)‡ 0.04590(0.00583)‡ 0.02557(0.00186) 
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reuses some previous solutions with small fitness values and 
re-evaluates them.  Afterward, dCMOEA updates these 
previous solutions on the basis of useful information obtained 
from the new environment, i.e., the feasibility ratio and the 
newly obtained nondominated solutions, to provide a 
reinitialized population for the algorithm. 

Despite that dCMOEA has shown appealing performance on 
the proposed test problems, this paper has several aspects that 

limit its applicability in certain situations. The parameter 

settings for s(t), m(t), and z(t) used in the proposed benchmark 

problems depend heavily on trial and error. Moreover, this 

study does not use dCMOEA to solve the DCMOPs with three 
or many objectives. Regarding the change response, dCMOEA 

is designed for tracking the new true POF with no consideration 

about the transition cost of a new solution.  

Considering that scalability plays a crucial role in designing 
an efficient algorithm [55], in the future we will study the 

scalable dynamic constrained many-objective optimization 

algorithms and design the benchmark problems that are close to 

real-world applications and can easily be extended to three or 

more objective functions. In many real-world applications, 

changing the production solution introduces additional cost 

[64]. Thus, we will borrow the ideas proposed in [57] to design 

a general framework that can find robust solutions. In addition, 

there are other types of changes in the true POF and the feasible 
region of objective functions, which we will study in the future. 
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S-I. MATHEMATICAL FUNCTIONS DESCRIBED IN FIG. 1 

In this paper, the true POF of a dynamic constrained 

multiobjective optimization problem (DCMOP) is given in Fig. 

1 of this paper, and the corresponding mathematical functions 

of this DCMOP are Equation (S-1) in which t is set to 7. 
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S-II. REAL-WORLD APPLICATIONS LINKING TO THE FOUR 

TYPES OF THE PROPOSED PROBLEMS 

The real-world multiobjective optimization problems (MOPs) 

involved in the existing literature are mainly MOPs with 

constraints or dynamism. To the best of our knowledge, the 

real-world optimization problems solved in the existing 

literature do not consider dynamism, constraints, and 

multiobjective simultaneously. Indeed, many real-world 

problems are DCMOPs. Considering this fact, we take the fluid 

catalytic cracking-distillation (FCC-D) process, a DCMOP we 

are working on, as an example to illustrate the four types of the 

true POF and the feasible region mentioned in Section III of this 

paper. 

The FCC-D process is one of the most energy-consuming 

steps in refineries, which involves complicated physical and 

chemical reactions. In the FCC-D process, the heavy oil is 

cracked into the light hydrocarbons in the presence of catalyst, 

and then the light hydrocarbons are separated into different 

products (i.e., gasoline, diesel, and natural gas) by the 

distillation process. To minimize the energy consumption and 

maximize the economic benefits of products, refineries usually 

optimize the operating variables that control the stable 

operation of production units according to production 

constraints (i.e., yield constraints of different products). During 
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Shengxiang Yang, Senior Member, IEEE, and Tianyou Chai, Fellow, IEEE 
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the optimization of the operating variables, the operator usually 

changes the yield constraints of products to avoid large 

production fluctuations and production accidents when the 

production scenarios are switched. Therefore, optimizing the 

operating variables of the FCC-D process is a DCMOP, which 

aims at minimizing energy consumption and maximizing the 

economic benefits of the products, and takes product yields as 

dynamic constraints. 

For the ease of readers understanding, we will describe the 

mathematical model of the FCC-D process in Equation (S-2). 

The definitions of the indices, variables and parameters 

employed in the model are given as follows: 

Indices 

p Product index, p=1 (natural gas), 2 (gasoline), and 3 

(diesel). 

t Dynamic environment index. 

w Pumparound (PA) index . 

Variables 

X(t)  Operating variable vector at t. 

xj(t)  The jth operating variable at t. 

YP(t)  The pth product yield at t. 

YP(t)  Yield of pollutant at t. 
HF(t) Mass flow rate of heavy oil at t. 

CT(t) Temperature of the heated catalyst at t. 
RT(t)  Outlet temperature of the riser at t. 

CF(t) Mass flow rate of the catalyst circulation rate at t. 
SF(t)  Flow rate of the stripping steam at t. 

LF(t)  Flow rate of the lifting steam at t. 

PQw(t) Calorific value of heat recovery in the wth PA of the 

fractionator at t. 
HT(t) Temperature of the heavy oil at t. 

Ylp (t) Lower bound of demand for the pth product at t. 

Yup (t) Upper bound of demand for the pth product at t.  

Parameters 

PYp  Unit price of the pth product. 

cYS   Unit price of removing pollutant 

cSS  Unit price of heavy oil 

cFF  Unit price of steam 

    Heat transfer efficiency in the PAs 

FT   Energy required to raise 1 mol of heavy oil by 1 °C 

lxj Lower bound of xj(t). 

uxj Upper bound of xj(t).  

The mathematical model of the FCC-D process can be 

described as follows [i.e., Equation (S-2)]:  
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where h is the number of equality constraints, and hk(x, t) is the 

kth equality constraint. gp(X(t)) denotes the complicated 

nonlinear relationship between the pth product yield and X(t) 

gYP(CF(t), CT(t), SF(t), LF(t), HF(t), RT(t), HT(t)) denotes the 

nonlinear relationship between the pollutant yield and 

operating variables (i.e., CF(t), CT(t), SF(t), LF(t), HF(t), RT(t), 

HT(t)). Note that the above nonlinear relationships can be 

modeled either by using neural networks (e.g., reference [s1]) 

or by using [s2] as a rigorous model. 

This paper uses t=1, 2, and 3 to denote different dynamic 

environments of the DCMOP in the FCC-D process 

(FCC-D-DCMOP). Subsequently, we provides the diagrams of 

true POF and feasible regions arising in the four types 

mentioned in Section III of this paper. Specifically, t=1 denotes 

the current environment of the FCC-D-DCMOP, t=2 represents 

the environment in which product yield constraints change due 

to different production scenarios, and t=3 denotes the 

environment in which the operator adjusts the product yield 

constraints based on the optimized operating variables. 

Note that the real POF and the feasible region of the 

FCC-D-DCMOP, in practice, show hundreds of types that vary 

with dynamic environments, and we only describe four typical 

types corresponding to the test problems proposed in this paper. 

1) Type I. 

The feasible region of the FCC-D-DCMOP becomes small if 

the feasible ranges of product yields are small at t=1 (e.g., Yup(t) 

decreases, and Ylp(t) increases at t=1), which may lead to the 

infeasibility of the unconstrained POF of the FCC-D-DCMOP 

(i.e., the unconstrained POF is not in the feasible region) and 

cause that the true POF of the FCC-D-DCMOP is only 

determined by the lower bound of the feasible region. In 

practice, the lower bound of the feasible region may be 

continuous if the solutions (i.e, X(t)) corresponding to the lower 

bound of the feasible region are far from the bound of X(t), 

causing that the true POF of the FCC-D-DCMOP is continuous 

at t=1, as shown in Fig. S-1-a). 

The feasible region of the FCC-D-DCMOP becomes large 

when the feasible ranges of product yields become large at t=2 

(e.g., Yup(t) increases, and Ylp(t) decreases at t=2), which may 

cause that the true POF of the FCC-D-DCMOP is determined 

by both the unconstrained POF and the lower bound of the 

feasible region. The true POF of the FCC-D-DCMOP may 

fenergy

fproduct

True feasible regionThe unconstrained POF

Fig. S-1-a). Diagram of true POF and feasible region of objectives that 

correspond to Type I at t=1

Bounds of the constrained region The true POF
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change from continuous to disconnected if there are infeasible 

regions on the bound of the feasible region, as shown in Fig. 

S-1-b). 

The operator needs to adjust the product yield constraints 

(i.e., t=3) if the optimized operating variables differ greatly 

from the current ones, which can avoid large production 

fluctuations and production accidents when the operating 

variables are switched. Narrowing the feasible range of product 

yields leads to the decrease of the feasible region and the 

movement of the true POF, which may cause that the true POF 

of the FCC-D-DCMOP is determined by the unconstrained 

POF and the lower bound of the feasible region. The true POF 

may return to continuous from disconnected when a part of the 

unconstrained POF coincides with the lower bound part of the 

feasible region, as shown in Fig. S-1-c). 

It can be observed from Fig. S-1-a), Fig. S-1-b), and Fig. 

S-1-c) that the true POF and the feasible region accord with the 

characteristics discussed in Type I of this paper at t=1, t=2, and 

t=3, respectively. (i.e., the feasible region first increases with 

time t and then decreases, while the true POF changes from 

continuous to disconnected and finally back to continuous). 

2) Type II 

The feasible region of the FCC-D-DCMOP becomes large if 

the feasible ranges of product yields are large at t=1 (e.g., Yup(t) 

increases, and Ylp(t) decreases at t=1), which may cause that the 

true POF of the FCC-D-DCMOP is determined by both the 

unconstrained POF and the lower bound of the feasible region. 

The lower bound of the feasible region may be disconnected if 

there are infeasible regions in the lower bound of the feasible 

region, causing that the true POF of the FCC-D-DCMOP is 

disconnected at t=1, as shown in Fig. S-1-d). 

The feasible region of the FCC-D-DCMOP becomes small if 

the feasible ranges of product yields are small at t=2 (e.g., Yup(t) 

decreases, and Ylp(t) increases at t=2), which may lead to the 

unconstrained POF of the FCC-D-DCMOP to be infeasible (i.e., 

the unconstrained POF is not in the feasible region) and cause 

that the true POF of the FCC-D-DCMOP is only determined by 

the lower bound of the feasible region. In practice, the lower 

bound of the feasible region may be continuous when the 

solutions (i.e, X(t)) corresponding to the lower bound of the 

feasible region are far from the bound of X(t), causing the true 

POF of the FCC-D-DCMOP to change from continuous to 

disconnected at t=2, as shown in Fig. S-1-e). 

The operator needs to adjust the product yield constraints 

(i.e., t=3) if the optimized operating variables differ greatly 

from the current ones, which can avoid large production 

fluctuations and production accidents when the operating 

variables are switched. Enlarging the feasible ranges of product 

yields can lead to the increase of the feasible region of 

objectives and the movement of the true POF, which may cause 

that the true POF of the FCC-D-DCMOP is determined by both 

fenergy

fproduct

True feasible regionThe unconstrained POF

Fig. S-1-b). The diagram of true POF and feasible region of objectives that 

correspond to Type I  at t=2

Bounds of the constrained region The true POF

fenergy

fproduct

True feasible regionThe unconstrained POF

Fig. S-1-c). The diagram of true POF and feasible region of objectives that 

correspond to Type I  at t=3

Bounds of the constrained region The true POF

fenergy

fproduct

True feasible regionThe unconstrained POF

Fig. S-1-d). The diagram of true POF and feasible region of objectives that 

correspond to Type II at t=1

Bounds of the constrained region The true POF

fenergy

fproduct

True feasible regionThe unconstrained POF

Fig. S-1-e). The diagram of true POF and feasible region of objectives that 

correspond to Type II at t=2

Bounds of the constrained region The true POF
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the unconstrained POF and the lower bound of the feasible 

region. The true POF may return to disconnected from 

continuous if there are infeasible regions on the bound of the 

feasible region, as shown in Fig. S-1-f). 

It can be observed from Fig. S-1-d), Fig. S-1-e), and Fig. 

S-1-f) that the true POF and the feasible region accord with the 

characteristics discussed in Type II of this paper at t=1, t=2, and 

t=3, respectively. (i.e., the feasible region first decreases with 

time t and then increases, while the true POF changes from 

disconnected to continuous and finally back to disconnected). 

3) Type III 

The feasible region of the FCC-D-DCMOP becomes small if 

the feasible ranges of product yields are small at t=1 (e.g., Yup(t) 

decreases, and Ylp(t) increases at t=1), which may lead to the 

infeasibility of the unconstrained POF of the FCC-D-DCMOP 

(i.e., the unconstrained POF is not in the feasible region) and 

cause that the true POF of the FCC-D-DCMOP is only 

determined by the lower bound of the feasible region. In 

practice, the lower bound of the feasible region may be 

disconnected if the solutions (i.e, X(t)) corresponding to the 

lower bound of the feasible region are close to the bound of 

X(t), causing the true POF of the FCC-D-DCMOP to be 

disconnected at t=1, as shown in Fig. S-1-g). 

The feasible region of the FCC-D-DCMOP becomes large 

when the feasible ranges of product yields are large at t=2 (e.g., 

Yup(t) increases, and Ylp(t) decreases at t=2), which may cause 

that the true POF of the FCC-D-DCMOP is determined by both 

the unconstrained POF and the lower bound of the feasible 

region. The true POF may return to continuous from 

disconnected if a part of the unconstrained POF coincides with 

the lower bound part of the feasible region, as shown in Fig. 

S-1-h). 

The operator has to adjust the product yield constraints (i.e., 

t=3) if the optimized operating variables differ greatly from the 

current ones, which can avoid large production fluctuations and 

production accidents when the operating variables are switched. 

Narrowing the feasible range of product yields leads to the 

decrease of the feasible region and the movement of the true 

POF, which may cause that the true POF of the 

FCC-D-DCMOP is determined by both the unconstrained POF 

and the lower bound of the feasible region. The true POF may 

return to disconnected from continuous if some infeasible 

regions move to the bound of the feasible region, as shown in 

Fig. S-1-i). 

It can be observed from Fig. S-1-g), Fig. S-1-h), and Fig. 

S-1-i) that the true POF and the feasible region accord with the 

characteristics discussed in Type III of this paper at t=1, t=2, 

and t=3, respectively. (i.e., the feasible region first increases 

with time t and then decreases, while the true POF changes 

from disconnected to continuous and finally back to 

disconnected). 

fenergy

fproduct

True feasible regionThe unconstrained POF

Fig. S-1-f). The diagram of true POF and feasible region of objectives that 

correspond to Type II at t=3

Bounds of the constrained region The true POF

fenergy

fproduct

True feasible regionThe unconstrained POF

Fig. S-1-g). The diagram of true POF and feasible region of objectives that 

correspond to Type III at t=1

Bounds of the constrained region The true POF

fenergy

fproduct

True feasible regionThe unconstrained POF

Fig. S-1-h). The diagram of true POF and feasible region of objectives that 

correspond to Type III at t=2

Bounds of the constrained region The true POF

fenergy

fproduct

True feasible regionThe unconstrained POF

Fig. S-1-i). The diagram of true POF and feasible region of objectives that 

correspond to Type III at t=3

Bounds of the constrained region The true POF
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4) Type IV. 

The feasible region of the FCC-D-DCMOP becomes small if 

the feasible ranges of product yields are small at t=1 (e.g., Yup(t) 

decreases, and Ylp(t) increases at t=1), which may lead to the 

unconstrained POF of the FCC-D-DCMOP to be infeasible (i.e., 

the unconstrained POF is not in the feasible region) and cause 

that the true POF of the FCC-D-DCMOP is only determined by 

the lower bound of the feasible region. In practice, the lower 

bound of the feasible region may be continuous if the solutions 

(i.e, X(t)) corresponding to the lower bound of the feasible 

region are far from the bound of X(t). Therefore, the true POF 

of the FCC-D-DCMOP is continuous at t=1 if a part of the 

unconstrained POF coincides with the lower bound part of the 

feasible region, as shown in Fig. S-1-j). 

The feasible region of the FCC-D-DCMOP becomes small if 

the feasible ranges of product yields are small at t=2 (e.g., Yup(t) 

decreases, and Ylp(t) increases at t=2), which may lead to the 

infeasibility of the unconstrained POF of the FCC-D-DCMOP 

(i.e., the unconstrained POF is not in the feasible region) and 

cause that the true POF of the FCC-D-DCMOP is only 

determined by the lower bound of the feasible region. In 

practice, the lower bound of the feasible region may be 

disconnected if the solutions (i.e, X(t)) corresponding to the 

lower bound of the feasible region are close to the bound of X(t), 

causing the true POF of the FCC-D-DCMOP to be 

disconnected at t=1, as shown in Fig. S-1-k). 

The operator has to adjust the product yield constraints (i.e., 

t=3) if the optimized operating variables differ greatly from the 

current ones, which can avoid large production fluctuations and 

production accidents when the operating variables are switched. 

Enlarging the feasible range of product yields leads to the 

increase of the feasible region of objectives and the movement 

of the true POF, which may cause that the true POF of the 

FCC-D-DCMOP is determined by the unconstrained POF and 

the lower bound of the feasible region. The true POF may 

return to continuous from disconnected when a part of the 

unconstrained POF coincides with the lower bound part of the 

feasible region, as shown in Fig. S-1-l). It can be observed from 

Fig. S-1-j), Fig. S-1-k), and Fig. S-1-l) that the true POF and the 

feasible region accord with the characteristics discussed in 

Type IV of this paper at t=1, t=2, and t=3, respectively. (i.e., the 

feasible region first decreases with time t and then increases, 

while the true POF changes from continuous to disconnected 

and finally back to continuous). 

Remark: Indeed, the true POF and the feasible region of the 

FCC-D-DCMOP show hundreds of types that vary with 

dynamic environments, and we only describe four typical types 

corresponding to the test problems proposed in this paper. In 

the future, other types of the true POF and the feasible region 

arising in real-world applications will be gradually explored. 

S-III. IDEAS ON SCALING UP THE PROPOSED TEST PROBLEMS 

The test problems proposed in Section III of this paper can be 

extended from the perspectives of the decision space and the 

objective space, as follows: 

1) Decision Space 

h(xI, t) and g(xII, t) in the proposed test problems determine 

the decision space, where xIxII=x and xIxII=. Indeed, the 

decision variables used in the proposed test problems can be 

extended in any dimension as long as the following conditions 

are satisfied: 

a) The minimum value of g(xII, t) is zero. 

b) h(xI, t) is set to x1, and it satisfies 0h(xI, t)s(t). 

Note that for the test problems designed in this paper, the real 

POF does not depend on the dimension of the decision 

 

fenergy
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True feasible regionThe unconstrained POF

Fig. S-1-k). The diagram of true POF and feasible region of objectives that 

correspond to Type IV at t=2

Bounds of the constrained region The true POF
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Fig. S-1-j). The diagram of true POF and feasible region of objectives that 

correspond to Type IV at t=1

Bounds of the constrained region The true POF
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True feasible regionThe unconstrained POF

Fig. S-1-l). The diagram of true POF and feasible region of objectives that 

correspond to Type IV at t=3

Bounds of the constrained region The true POF
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variables. Therefore, the real POF and the feasible region of the 

test problems can still change according to the four types 

mentioned in this paper as long as the settings of s(t), m(t), and 

z(t) are reasonable. We recommend that their settings (i.e., s(t), 

m(t), and z(t)) are consistent with those used in our paper when 

the dimensions of the test problem are extended. 

2) Objective Function Space 

In the proposed problems, the constraints cause the bound of 

the feasible region of the objectives to be irregular, leading to 

the true POF exhibiting different characteristics (i.e., 

disconnected and continuous) with dynamism. Therefore, we 

should first consider how to scale up the feasible regions of the 

objective functions. 

In the proposed test problems, the irregularity of the bounds 

of the objective functions is caused by

2 1sin( (sin( ) ( ( , ) ) cos( ) ( , )) )
d

c
a b f t e f t       x x

‘ ‘ . Therefore, 

2 1sin( (sin( ) ( ( , ) ) cos( ) ( , )) )
d

c
a b f t e f t       x x

‘ ‘ needs to 

involve each objective function once the number of objective 

functions proposed in this paper is extended to M. Additionally, 

2 1cos( ) ( ( , ) ) sin( ) ( , ) ( )f t e f t m t     x x  controls the 

feasible regions of each objective function, so 

2 1cos( ) ( ( , ) ) sin( ) ( , ) ( )f t e f t m t     x x  also needs to 

involve each objective function. This paper provides an 

example of scaling up the constraints used in the proposed test 

problems, which is as follows: 
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where M>2. 

It can be ascertained from Section III of this paper that the 

true POF of DCMOPs may be determined by the bound of 

constraints. Therefore, the constraints must be considered when 

scaling up the objective functions. The objective functions that 

satisfy the following conditions can be used as the objectives 

functions of the extended constraints (i.e., Equation (S-3)).  

a) During the dynamic environments change, all objective 

values in the unconstrained POF must be infeasible in at 

least one environment. 

b) The true POF of the extended DCMOP is determined by 

the unconstrained POF in at least one environment. 

This paper provides an example of the extended objective 

functions (i.e., Equation (S-4)) for Equation (S-3), which is as 

follows: 

II

I

1

1

1

II

1

1

I

min  ( , ) ( ( , ),...,  ( , ),...,  ( , ))

( , ) ( ( ) ( , )) sin( )

( , ) ( ( ) ( , )) sin( )cos( )

( , ) ( ( ) ( , ))cos( )

T

k M

M

t t i

i

M k

k t t i t M k

i

M t

F t f t f t f t

f t s t g t A W x

obj

f t s t g t A W x W x

f t s t g t W x



 







 

 

  

  


 





x x x x

x x

x x

x x

(S-4) 

S-IV. TRUE POF AND POS OF EACH TEST PROBLEM 

The true POF and POS of each test problem are given in 

Table S-I. 

S-V. ALGORITHM PARAMETER SELECTION 

In this paper, we adopt the popular simulated binary 

crossover (SBX) and polynomial mutation (PM) operators 

proposed in [54] to generate offspring. The main parameters in 

SBX and PM are the crossover probability (Cr), the distribution 

index for SBX (dc), the mutation probability (mp), and the 

distribution index for mutation (dm). Additionally, the other 

parameters in dCMOEA are the population size (N) and the 

threshold of the number of feasible solutions (NF). 

According to our preliminary experiments, a larger N leads 

to better performance of dCMOEA and a longer computation 

time. To eliminate the disturbance of N on the algorithms’ 

performance comparison, N of all algorithms was set to 200 

(i.e., N=200). 

In Section IV-D, we proposed a population selection 

operator that updates the population (i.e., P) according to 

population and offspring (i.e., Q). The number of feasible 

solutions in P and Q of each generation usually is not the same 

(i.e., it may be zero, 100, 200, or 400). To determine NF, we set 

NF to 0, 100, 200, 300, and 400 to analyze the sensitivity on NF 

of dCMOEA. The results of sensitivity analysis on NF are 

given in Table S-II based on the eight test problems. 

It can be seen from Table S-II that dCMOEA with NF=100 

can performs better than its variants on most of the test 

problems in terms of three metrics, implying that NF=100 is 

suitable for dCMOEA. 

The parameters Cr and dc used in SBX are coupled to affect 

the performance of dCMOEA, and a similar situation for the 

other two parameters used in PM also arise. Therefore, Cr and 

dc are determined first, followed by mp and dm. In this paper, 

we use three performance metrics (i.e., HV, IGD, and SP) to 

evaluate the performance of an algorithm. For HV, the larger 

the value, the better the performance of an algorithm. For IGD 

and SP, however, the lower the value, the better the 

performance of an algorithm. To facilitate the analysis of the 

four parameters on the performance of dCMOEA, we use the 

average regularization indicator (ARI) to represent these three 

metrics, which is calculated as Equations (S-5) and (S-6). 

 
min max max

bf bf bf

bf

HV IGD SP
RI

HV IGD SP

    
         

  (S-5) 

 
8

1

1

8
b bf

f

ARI RI


    (S-6) 

where RIbf is the regularization value of the performance 

metrics obtained by dCMOEA that uses the bth parameter 

combination to solve the fth test problem. HVbf, IGDbf, and SPbf 

are, respectively, the HV, IGD, and SP metrics obtained by 

dCMOEA based on the bth parameter combination to solve the 

fth test problem. ARIb denotes the sum of the average 

regularization indicators of dCMOEA that uses the bth 

parameter combination to solve eight test problem. 

Table S-III provides the five levels of these four parameters 

based on our preliminary experiments. For example, Cr, dc, mp, 

and dm are, respectively, equal to 0.8, 7, 0.15, and 40 when 

their levels are 4. For brevity, an orthogonal array L25 [i.e., 

these two parameters have 25 (i.e., 52) parameter combinations 

under five levels] was used to examine the first two parameters 

(i.e., Cr and dc). For each parameter combination (e.g., Cr=0.6 

and dc=3), dCMOEA was independently executed 30 times on 
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TABLE S-I 

THE TRUE POF AND POS OF EACH TEST PROBLEM 

Instance 

No. 
Description Remarks 

1 

s(t)=max(3.5-0.14t, 0.7+0.14t); m(t)=max(1.43-0.05t, 0.43 +0.05t) 

Wt=2; , ∑ 1 0.9 sin	 0.2  

f1(x, t)=(1+g(xII,t))(x1+0.05sin(Wtx1)); f2(x, t)=(1+g(xII,t))(s(t)-x1+0.05sin(Wtx1)) 

POS(t): 0≤x1≤s(t), xj=1-0.9sin(0.2t), j=2,…,d; 

POF(t): 2 sin	   

s.j. cos   sin	   1  .
; 

       6 0; m(t)<6 

The unconstrained POF has one mode. The feasible 

region first increases with time t and then decreases, 

while the true POF changes from continuous to 

disconnected and finally back to continuous. 

2 

s(t)=max(2.5-0.05t, 1.5+0.05t); m(t)=max(1.16-0.075t, -0.34+0.075t) 

Wt=2; , ∑ 1 0.9 sin	 0.2  

f1(x, t)=(1+g(xII,t))(x1+0.05sin(Wtx1)); f2(x, t)=(1+g(xII,t))(s(t)-x1+0.05sin(Wtx1)) 

POS(t): 0≤x1≤s(t), xj=1-0.9sin(0.2t), j=2,…,d; 

POF(t): 2 sin	   

s.j. cos   sin	   1  .
; 

       6 0; m(t)<6 

The unconstrained POF has one mode. The feasible 

region first decreases with time t and then increases, 

while the true POF changes from disconnected to 

continuous and finally back to disconnected. 

3 

s(t)=max(2.1-0.14t, 4.9+0.14t); m(t)=max(0.93+0.05t, 1.93-0.05t) 

Wt=2; , ∑ 1 0.9 sin	 0.2  

f1(x, t)=(1+g(xII,t))(x1+0.05sin(Wtx1)); f2(x, t)=(1+g(xII,t))(s(t)-x1+0.05sin(Wtx1)) 

POS(t): 0≤x1≤s(t), xj=1-0.9sin(0.2t), j=2,…,d; 

POF(t): 2 sin	   

s.j. cos   sin	   1  .
; 

      6 0; m(t)<6 

The unconstrained POF has one mode. The feasible 

region first increases with time t and then decreases, 

while the true POF changes from disconnected to 

continuous and finally back to disconnected. 

4 

s(t)=max(2+0.05t, 3-0.05t); m(t)=max(0.41+0.075t,1.91-0.075t) 

Wt=2; , ∑ 1 0.9 sin	 0.2  

f1(x, t)=(1+g(xII,t))(x1+0.05sin(Wtx1)); f2(x, t)=(1+g(xII,t))(s(t)-x1+0.05sin(Wtx1)) 

POS(t): 0≤x1≤s(t), xj=1-0.9sin(0.2t), j=2,…,d; 

POF(t): 2 sin	   

s.j. cos   sin	   1  .
; 

       6 0; m(t)<6 

The unconstrained POF has one mode. The feasible 

region first decreases with time t and then increases, 

while the true POF changes from continuous to 

disconnected and finally back to continuous. 

5 

s(t)=max(3.5-0.14t, 0.7+0.14t); m(t)=max(1.43-0.05t, 0.43 +0.05t) 

Wt=6sin(0.2(t+1)); , ∑ 1 0.9 sin 0.2  

f1(x, t)=(1+g(xII,t))(x1+0.05sin(Wtx1)); f2(x, t)=(1+g(xII,t))(s(t)-x1+0.05sin(Wtx1)) 

POS(t): 0≤x1≤s(t), xj=1-0.9sin(0.2t), j=2,…,d; 

POF(t): 2 sin	   

s.j. cos   sin	   1  .
; 

       6 0; m(t)<6 

The unconstrained POF oscillates among ten

optimization modes. The feasible region first

increases with time t and then decreases, while the 

true POF changes from continuous to disconnected 

and finally back to continuous. 

6 

s(t)=max(2.5-0.05t, 1.5+0.05t); m(t)=max(1.16-0.075t, -0.34+0.075t) 

Wt=6sin(0.2(t+1)); , ∑ 1 0.9 sin 0.2  

f1(x, t)=(1+g(xII,t))(x1+0.05sin(Wtx1)); f2(x, t)=(1+g(xII,t))(s(t)-x1+0.05sin(Wtx1)) 

POS(t): 0≤x1≤s(t), xj=1-0.9sin(0.2t), j=2,…,d; 

POF(t): 2 sin	   

s.j. cos   sin	   1  .
; 

       6 0; m(t)<6 

The unconstrained POF oscillates among ten

optimization modes. The feasible region first 

decreases with time t and then increases, while the 

true POF changes from disconnected to continuous 

and finally back to disconnected. 

7 

s(t)=max(2.1-0.14t, 4.9+0.14t); m(t)=max(0.93+0.05t, 1.93-0.05t) 

Wt=6sin(0.2(t+1)); , ∑ 1 0.9 sin 0.2  

f1(x, t)=(1+g(xII,t))(x1+0.05sin(Wtx1)); f2(x, t)=(1+g(xII,t))(s(t)-x1+0.05sin(Wtx1)) 

POS(t): 0≤x1≤s(t), xj=1-0.9sin(0.2t), j=2,…,d; 

POF(t): 2 sin	   

s.j. cos   sin	   1  .
; 

       6 0; m(t)<6 

The unconstrained POF oscillates among ten

optimization modes. The feasible region first 

increases with time t and then decreases, while the 

true POF changes from disconnected to continuous 

and finally back to disconnected. 

8 

s(t)=max(2+0.05t, 3-0.05t); m(t)=max(0.41+0.075t,1.91-0.075t) 

Wt=6sin(0.2(t+1)); , ∑ 1 0.9 sin 0.2  

f1(x, t)=(1+g(xII,t))(x1+0.05sin(Wtx1)); f2(x, t)=(1+g(xII,t))(s(t)-x1+0.05sin(Wtx1)) 

POS(t): 0≤x1≤s(t), xj=1-0.9sin(0.2t), j=2,…,d; 

POF(t): 2 sin	   

s.j. cos   sin	   1  .
; 

       6 0; m(t)<6 

The unconstrained POF oscillates among ten

optimization modes. The feasible region first 

decreases with time t and then increases, while the 

true POF changes from continuous to disconnected 

and finally back to continuous. 



8                                                                                                IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 

each test problem to obtain the corresponding HV, IGD, and SP. 

Subsequently, we use Equations (S-3) and (S-4) to calculate the 

ARIb of dCMOEA that uses the bth combination of Cr and dc. 

Then, the Taguchi method proposed in [s3] to examine the 

impacts of parameters on the performance of dCMOEA and the 

factor-level trends of ARIb of Cr and dc can be obtained, which 

are given in Fig. S-2. 

It can be seen from Table S-III and Fig. S-2 that Cr with a 

level of 4 and dc with a level of 3 yield the best result. A small 

value of Cr results in a good exploitation capability but poor 

exploration capability. Similarly, a large value of Cr results in a 

good exploration capability but poor exploitation capability. 

Thus, Cr was set to 0.8 to balance the exploitation and 

exploration capabilities of dCMOEA. For a similar reason, dc 

was set to 5. 

The method using to determine mp and dm is used to 

determine Cr and dc. The factor-level trends of mp and dm are 

given in Fig. S-2. It can be seen from Table S-III and Fig. S-3 

that mp with a level of 4 and dm with a level of 3 yield the best 

result. In other words, mp and dm were set to 0.05 and 40, 

respectively. 

S-VI. PERFORMANCE RANKING OF EACH ALGORITHM 

The final rank of each algorithm under performance metrics 

for each test problem is indicated in Table S-IV. 

S-VII. COMPUTATIONAL TIME OF EACH ALGORITHM ON EACH 

TEST PROBLEM 

In Section V of this paper, we set the change frequency (t) as 

10, 15, and 20 (i.e., t=10, 15, and 20), and t=10 means that an 

algorithm iterates 10 generations in a dynamic environment. To 

further examine the performance of each algorithm, we 

compare the computational time of each algorithm in an 

environment. For a test problem with t=10 and nt=21, for 

example, the computational time means the time required for 

10 iterations of an algorithm. We use Equation (S-7) to 

calculate the average computational time required for the pth 

algorithm to run for t generations on the test problems. 

 
1 1

1 1 t

t t

nr

p p ij

i jt

CT T
r n

 
 

    (S-7) 

where 
tp ij

T  denotes the time that is required to iterate t times 

under the jth dynamic environment in the ith run of the pth 

algorithm. 
tp

CT   denotes the average computational time 

required for the pth algorithm to run for t generations. r is the 

number of runs of an algorithm on a test problem, 

The average computational time of each algorithm on each 

test problem with t=10, 15, and 20 is given in Table S-V. It can 

be seen from Table S-V that the computational time of 

dCMOEA is longer than that of DC-MOEA, DC-NSGA-II-A, 

DC-NSGA-II, and DC-NSGA-III on the most of the test 

problems. 

To eliminate the influence of running time on the algorithm’s 

performance, we used an elapsed CPU time limit of 

CP=2000ms as the termination criterion of each algorithm in 

each dynamic environment. The average values and standard 

deviations of the three performance metrics (i.e., HV, IGD, and 

SP) for DC-MOEA, DC-NSGA-II-A, DC-NSGA-II, 

TABLE S-II 

SENSITIVITY ANALYSIS ON DIFFERENT THRESHOLDS OF NUMBER OF THE NUMBER OF FEASIBLE 

SOLUTIONS 

Instance 

No. 
metrics 0 100 200 300 400 

1 

HV 3.49065 3.49285 3.48939 3.48679 3.48833 

IGD 0.04087 0.04024 0.04127 0.04192 0.0415 

SP 0.01360 0.01381 0.01330 0.01326 0.01391 

2 

HV 3.46302 3.46634 3.46176 3.46187 3.46345 

IGD 0.04264 0.04149 0.04279 0.04311 0.04242 

SP 0.01320 0.01412 0.01351 0.01364 0.01353 

3 

HV 3.48398 3.48799 3.48526 3.48581 3.48432 

IGD 0.04307 0.04207 0.04264 0.04257 0.04296 

SP 0.01531 0.01582 0.01507 0.01523 0.01500 

4 

HV 3.45399 3.45823 3.45304 3.45481 3.45249 

IGD 0.04097 0.03976 0.0413 0.04054 0.04171 

SP 0.01232 0.01297 0.01224 0.01247 0.0125 

5 

HV 3.50560 3.51164 3.50515 3.50667 3.49893 

IGD 0.05456 0.05310 0.05415 0.05413 0.05595 

SP 0.01460 0.01432 0.01482 0.01446 0.01445 

6 

HV 3.46023 3.46181 3.45962 3.4588 3.46096 

IGD 0.05377 0.05372 0.05417 0.0539 0.05385 

SP 0.01391 0.01416 0.01360 0.0138 0.01379 

7 

HV 3.49832 3.50450 3.49677 3.49849 3.49712 

IGD 0.05590 0.05456 0.05619 0.05612 0.05602 

SP 0.01608 0.01663 0.01594 0.01625 0.01621 

8 

HV 3.45648 3.45812 3.45276 3.45662 3.45516 

IGD 0.05201 0.05185 0.05271 0.05182 0.05214 

SP 0.01306 0.01294 0.01306 0.01247 0.01305 

.

TABLE S-III 

THE COMPUTATIONAL TIME OF EACH ALGORITHM ON EACH TEST PROBLEM WITH T=10, 15, AND 20

Parameters Level 1 Level 2 Level 3 Level 4 Level 5 

Cr 0.5 0.6 0.7 0.8 0.9 

dc 1 3 5 7 9 

mp 0.01 0.05 0.1 0.15 0.2 

dm 10 20 30 40 50 
. 

Fig. S-2. Factor-level trends of Cr and dc 
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Fig. S-3. Factor-level trends of mp and dm 
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DC-NSGA-III, and dCMOEA are given in Table S-VI. 

As seen from Table S-VI, dCMOEA performs significantly 

better than DC-MOEA, DC-NSGA-II-A, DC-NSGA-II, and 

DC-NSGA-III on most of the test problems in terms of the three 

metrics. Therefore, even with the same running time, the 

proposed algorithm still outperforms the others (i.e., 

DC-MOEA, DC-NSGA-II-A, DC-NSGA-II, and 

DC-NSGA-III). 

S-VIII. EVOLUTION CURVES OF AVERAGE IGD VALUES FOR 

THE THIRD TO EIGHT TEST PROBLEMS 

Fig. S-4 depicts the evolution curves of average IGD values 

for the third to eight test problems witht=10 and nt=21. 

S-IX. THE POFS OBTAINED BY THE COMPARED ALGORITHMS 

ON THE EIGHT TEST PROBLEMS 

Figures S-5–S-12 show the obtained POFs obtained by the 

compared algorithms on the eight test problems.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE S-IV 

PERFORMANCE RANKING ON THREE METRICS FOR TEST PROBLEMS. 

Instance No. Rank Ranking by HV Ranking by IGD Ranking by SP 

1 

1th dCMOEA dCMOEA dCMOEA 

2nd DC-NSGA-II DC-NSGA-II DC-NSGA-II 

3rd DC-NSGA-III DC-NSGA-III DC-TAEA 

4th DC-TAEA DC-TAEA DC-MOEA 

5th DC-MOEA DC-MOEA DC-NSGA-III 

6th DC-NSGA-II-A DC-NSGA-II-A DC-NSGA-II-A 

2 

1th dCMOEA dCMOEA dCMOEA 

2nd DC-NSGA-II DC-NSGA-II DC-NSGA-II 

3rd DC-TAEA DC-NSGA-III DC-TAEA 

4th DC-NSGA-III DC-TAEA DC-MOEA 

5th DC-MOEA DC-MOEA DC-NSGA-III 

6th DC-NSGA-II-A DC-NSGA-II-A DC-NSGA-II-A 

3 

1th dCMOEA dCMOEA dCMOEA 

2nd DC-NSGA-II DC-NSGA-II DC-NSGA-II 

3rd DC-NSGA-III DC-NSGA-III DC-TAEA 

4th DC-TAEA DC-TAEA DC-MOEA 

5th DC-MOEA DC-MOEA DC-NSGA-III 

6th DC-NSGA-II-A DC-NSGA-II-A DC-NSGA-II-A 

4 

1th dCMOEA dCMOEA dCMOEA 

2nd DC-NSGA-II DC-NSGA-II DC-NSGA-II 

3rd DC-TAEA DC-NSGA-III/DC-TAEA DC-TAEA 

4th DC-MOEA DC-MOEA DC-MOEA 

5th DC-NSGA-III DC-NSGA-II-A DC-NSGA-III 

6th DC-NSGA-II-A  DC-NSGA-II-A 

5 

1th dCMOEA dCMOEA dCMOEA 

2nd DC-NSGA-II DC-NSGA-II DC-NSGA-II 

3rd DC-NSGA-III DC-NSGA-III DC-TAEA 

4th DC-TAEA DC-TAEA DC-MOEA 

5th DC-MOEA DC-MOEA DC-NSGA-III 

6th DC-NSGA-II-A DC-NSGA-II-A DC-NSGA-II-A 

6 

1th dCMOEA dCMOEA dCMOEA 

2nd DC-NSGA-II DC-NSGA-II DC-NSGA-II 

3rd DC-TAEA DC-NSGA-III DC-TAEA 

4th DC-NSGA-III DC-TAEA DC-MOEA 

5th DC-MOEA DC-MOEA DC-NSGA-III 

6th DC-NSGA-II-A DC-NSGA-II-A DC-NSGA-II-A 

7 

1th dCMOEA dCMOEA dCMOEA 

2nd DC-NSGA-II DC-NSGA-II DC-NSGA-II 

3rd DC-NSGA-III DC-NSGA-III DC-TAEA 

4th DC-TAEA DC-TAEA DC-MOEA 

5th DC-MOEA DC-MOEA DC-NSGA-III 

6th DC-NSGA-II-A DC-NSGA-II-A DC-NSGA-II-A 

8 

1th dCMOEA dCMOEA dCMOEA 

2nd DC-NSGA-II DC-NSGA-II DC-NSGA-II 

3rd DC-NSGA-III/ DC-MOEA DC-NSGA-III DC-TAEA 

4th DC-TAEA DC-TAEA DC-MOEA 

5th DC-NSGA-II-A DC-MOEA DC-NSGA-III 

6th  DC-NSGA-II-A DC-NSGA-II-A 

 

 

TABLE S-V 

THE COMPUTATIONAL TIME OF EACH ALGORITHM ON EACH TEST PROBLEM WITH T=10, 15, AND 20

  DC-MOEA DC-NSGA-II-A DC-NSGA-II DC-NSGA-III DC-TAEA dCMOEA

Ins 1

t=10 1079.3 1158.0 1309.2 919.9 16391.7 1565.7 

t=15 1813.3 1831.4 2230.8 1497.9 24944.5 2437.0 

t=20 2372.4 2373.2 2966.1 2030.3 30668.0 3236.8 

Ins 2

t=10 991.9 1162.3 1262.9 896.5 13091.8 1498.4 

t=15 1668.7 1808.6 2005.4 1470.7 19857.0 2238.7 

t=20 2261.4 2276.9 2918.7 2013.1 29274.4 3244.2 

Ins 3

t=10 958.9 1145.2 1230.3 829.0 15897.3 1357.7 

t=15 1622.6 1795.1 1954.6 1353.8 24041.3 2115.9 

t=20 2146.6 2155.2 2845.4 1894.7 30641.0 3179.5 

Ins 4

t=10 1038.1 1032.6 1310.9 958.7 15046.7 1369.3 

t=15 1790.8 1826.5 2069.9 1441.9 18841.1 2110.8 

t=20 2369.8 2052.2 3036.2 2108.4 25892.7 3356.4 

Ins 5

t=10 1060.9 1008.0 1288.3 890.5 15891.3 1346.9 

t=15 1726.1 1747.7 2031.5 1391.1 24171.7 2073.8 

t=20 2388.9 2047.9 2913.0 2037.9 31323.5 3246.0 

Ins 6

t=10 986.2 1037.0 1267.4 893.7 14548.5 1415.6 

t=15 1569.7 1710.7 1836.7 1361.2 21218.1 2036.4 

t=20 2204.7 2080.4 2820.7 1976.7 30785.3 3007.4 

Ins 7

t=10 961.2 997.7 1191.4 838.5 17493.0 1453.6 

t=15 1506.9 1683.8 1790.2 1299.2 24459.3 2196.6 

t=20 2124.6 2237.4 2463.1 1882.8 31751.0 3160.1 

Ins 8

t=10 1041.9 1148.5 1231.8 934.0 12883.9 1589.9 

t=15 1661.4 1722.1 1902.8 1436.9 18468.9 2396.4 

t=20 2220.2 2357.7 3018.7 2073.7 24909.8 3112.5 

. 
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                                                                                          Instance 3                                                                                                                    Instance 4 

                       

                                                                                         Instance 5                                                                                                                             Instance 6 

                       

                                                                               Instance 7                                                                                                                             Instance 8 

Fig. S-4. Evolution curves of average IGD values for the third to eighth test problems witht=15 and nt=21. 

TABLE S-VI 

PERFORMANCE METRICS OF DC-MOEA, DC-NSGA-II-A, DC-NSGA-II, DC-NSGA-III, AND DCMOEA WHEN THE TERMINATION CRITERION OF EACH DYNAMIC ENVIRONMENT IS THE ELAPSED CPU TIME LIMIT OF 

CP=2000MS 

Ins Indicator DC-MOEA DC-NSGA-II-A DC-NSGA-II DC-NSGA-III dCMOEA 

1 

HV 3.42028(0.01367)‡ 1.95596(0.06050)‡ 3.46001(0.00800)‡ 3.46607(0.00762)‡ 3.48292(0.00540) 

IGD 0.06530(0.00479)‡ 0.55941(0.02783)‡ 0.04748(0.00217)‡ 0.04372(0.00206)† 0.04407(0.00208) 

SP 0.02100(0.00190)‡ 0.28754(0.11983)‡ 0.01725(0.00127)‡ 0.04929(0.01621)‡ 0.01476(0.00127) 

2 

HV 3.41652(0.00656)‡ 2.03286(0.05694)‡ 3.43709(0.01024)‡ 3.43683(0.00680)‡ 3.45826(0.00372) 

IGD 0.05959(0.00242)‡ 0.57744(0.03328)‡ 0.04786(0.00267)‡ 0.04489(0.00169)† 0.04518(0.00150) 

SP 0.01805(0.00147)‡ 0.27087(0.05832)‡ 0.01666(0.00356)‡ 0.05629(0.01778)‡ 0.01472(0.00131) 

3 

HV 3.45002(0.01501)‡ 1.96126(0.07233)‡ 3.45606(0.00884)‡ 3.45979(0.00977)‡ 3.47854(0.00422) 

IGD 0.06611(0.00462)‡ 0.56339(0.03208)‡ 0.04957(0.00243)‡ 0.04593(0.00183)† 0.04562(0.00150) 

SP 0.02681(0.00352)‡ 0.25218(0.06797)‡ 0.01938(0.00157)‡ 0.05469(0.01309)‡ 0.01607(0.00128) 

4 

HV 3.48568(0.00659) 1.99611(0.06786)‡ 3.43254(0.00786)‡ 3.42957(0.00684)‡ 3.45491(0.00521) 

IGD 0.06292(0.00208)‡ 0.57849(0.03928)‡ 0.04553(0.00156)‡ 0.04308(0.00158)‡ 0.04118(0.00246) 

SP 0.01764(0.00102)‡ 0.31397(0.08128)‡ 0.01532(0.00112)‡ 0.05786(0.01552)‡ 0.01345(0.00122) 

5 

HV 3.42831(0.01292)‡ 1.90029(0.06814)‡ 3.46388(0.01690)‡ ‡3.47716(0.01092)‡ 3.51900(0.00241) 

IGD 0.07515(0.00350)‡ 0.57517(0.03168)‡ 0.06155(0.00427)‡ 0.05541(0.00177)‡ 0.05032(0.00113) 

SP 0.02327(0.00171)‡ 0.30633(0.10234)‡ 0.01846(0.00154)‡ 0.04784(0.01133)‡ 0.01362(0.00102) 

6 

HV 3.41270(0.00803)‡ 1.96625(0.06804)‡ 3.43540(0.01153)‡ 3.43478(0.00637)‡ 3.46965(0.00248) 

IGD 0.06720(0.00220)‡ 0.59598(0.03641)‡ 0.05788(0.00261)‡ 0.05435(0.00108)‡ 0.05048(0.00095) 

SP 0.01990(0.00123)‡ 0.30314(0.07770)‡ 0.01696(0.00171)‡ 0.06117(0.01958)‡ 0.01327(0.00131) 

7 

HV 3.46214(0.03329)‡ 1.91381(0.05672)‡ 3.45509(0.01810)‡ 3.46492(0.01639)‡ 3.51152(0.00457) 

IGD 0.07860(0.00794)‡ 0.58786(0.03195)‡ 0.06312(0.00434)‡ 0.05815(0.00349)‡ 0.05195(0.00106) 

SP 0.03057(0.00472)‡ 0.27717(0.06678)‡ 0.02062(0.00239)‡ 0.05180(0.01481)‡ 0.01569(0.00124) 

8 

HV 3.49254(0.00730) 1.93954(0.06004)‡ 3.43038(0.01384)‡ 3.43042(0.00865)‡ 3.46412(0.00324) 

IGD 0.07078(0.00279)‡ 0.60735(0.03522)‡ 0.05584(0.00343)‡ 0.05320(0.00155)‡ 0.04938(0.00145) 

SP 0.01881(0.00186)‡ 0.29879(0.07863)‡ 0.01519(0.00180)‡ 0.06691(0.01500)‡ 0.01231(0.00100) 

‡ and †  indicate dCMOEA performs significantly better than and equivalently to the corresponding algorithm, respectively. 
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Fig. S-5. Obtained POFs obtained by the compared algorithms on the first test problem. 
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Fig. S-6. Obtained POFs obtained by the compared algorithms on the second test problem. 
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Fig. S-7. Obtained POFs obtained by the compared algorithms on the third test problems. 
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Fig. S-8. Obtained POFs obtained by the compared algorithms on the fourth test problem.  
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Fig. S-9. Obtained POFs obtained by the compared algorithms on the fifth test problem. 
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Fig. S-10. Obtained POFs obtained by the compared algorithms on the fifth test problem. 
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Fig. S-11. Obtained POFs obtained by the compared algorithms on the seventh test problem. 
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Fig. S-12. Obtained POFs obtained by the compared algorithms on the eighth test problem. 
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S-X. THREE PERFORMANCE METRICS OF ALGORITHMS ON THE 

TEST PROBLEMS WITH 15 AND 20 DECISION VARIABLES 

Tables S-VII–S-IX give the values and standard deviations of 

the three performance metrics (i.e., HV, IGD, and MS) for these 

algorithms (i.e., DC-NSGA-II, DC-NSGA-III, and dCMOEA) 

on the test problems with 15 decision variables. The results of 

these algorithms on the test problems with 20 decision variables 

are given in Tables S-X–S-XII. 

[s1] M. Alhamdoosh and D. H. Wang, “Fast decorrelated neural network 

ensembles with random weights,” Inf. Sci., vol. 264, no. 6, pp. 104-117, 

Apr. 2014. 

[s2] Y. M. John, R. Patel, and I. M. Mujtaba, “Maximization of gasoline in an 

industrial fluidized catalytic cracking unit,” Energ. Fuel, vol. 31, no. 5, pp. 

5645-5661, 2017. 

[s3] D. C. Montgomery, Design and Analysis of Experiments. Hoboken, NJ, 

USA: Wiley, 2005. 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE S-VII 

STATISTIC RESULTS OF THE THREE COMPARED ALGORITHMS ON TEST PROBLEMS WITH 15 DECISION 

VARIABLES AND T=10 

Ins Indicator DC-NSGA-II DC-NSGA-III dCMOEA 

1 
HV 2.95561(0.03845) 2.71664(0.04526) 3.07657(0.04432) 

IGD  0.22164(0.01072) 0.28576(0.01551) 0.19730(0.01493) 

SP  0.08249(0.02708) 0.25777(0.05624) 0.04468(0.00519) 

2 
HV 3.04555(0.03332) 2.82611(0.02948) 3.17697(0.03777) 

IGD  0.18786(0.01023) 0.24986(0.00798) 0.15900(0.01451) 

SP  0.06232(0.01547) 0.24800(0.04405) 0.03812(0.00370) 

3 
HV 2.93815(0.03630) 2.70643(0.03838) 3.08019(0.05695) 

IGD  0.22849(0.01343) 0.28738(0.01364) 0.19555(0.02247) 

SP  0.08378(0.02467) 0.24008(0.04629) 0.04671(0.00825) 

4 
HV 3.04671(0.02292) 2.82254(0.03190) 3.14364(0.02389) 

IGD  0.18369(0.00673) 0.24763(0.00949) 0.16633(0.00858) 

SP  0.06516(0.01861) 0.23242(0.04734) 0.03724(0.00282) 

5 
HV 2.92605(0.04016) 2.72323(0.03660) 3.08923(0.05100) 

IGD  0.23497(0.01344) 0.29468(0.01245) 0.19696(0.01791) 

SP  0.08598(0.01794) 0.26784(0.05613) 0.04626(0.00428) 

6 
HV 3.02309(0.03391) 2.82055(0.03017) 3.17003(0.02427) 

IGD  0.19389(0.01060) 0.25246(0.00982) 0.15876(0.00768) 

SP  0.06429(0.01623) 0.25048(0.04104) 0.04156(0.00548) 

7 
HV 2.94013(0.03380) 2.71784(0.03460) 3.07288(0.05690) 

IGD  0.23214(0.01205) 0.29627(0.01335) 0.20485(0.02385) 

SP  0.08253(0.01929) 0.23726(0.04453) 0.04583(0.00621) 

8 
HV 3.02142(0.03148) 2.81701(0.03274) 3.13580(0.03975) 

IGD  0.19183(0.00998) 0.25197(0.00866) 0.16869(0.01484) 

SP  0.06223(0.01409) 0.23989(0.04734) 0.04035(0.00372) 

 

TABLE S-VIII 

STATISTIC RESULTS OF THE THREE COMPARED ALGORITHMS ON TEST PROBLEMS WITH 15 DECISION 

VARIABLES AND T=15 

Ins Indicator DC-NSGA-II DC-NSGA-III dCMOEA 

1 
HV 3.26166(0.02473) 3.10064(0.02337) 3.33491(0.01589) 

IGD  0.11810(0.00769) 0.16809(0.00737) 0.10484(0.00628) 

SP  0.03541(0.01141) 0.18341(0.04286) 0.02200(0.00147) 

2 
HV 3.29301(0.01727) 3.16679(0.02114) 3.35993(0.01110) 

IGD  0.10191(0.00455) 0.14221(0.00543) 0.09081(0.00400) 

SP  0.02771(0.00602) 0.15573(0.03687) 0.01961(0.00152) 

3 
HV 3.25308(0.03219) 3.08977(0.03268) 3.32878(0.03004) 

IGD  0.12021(0.01027) 0.17080(0.00940) 0.10736(0.01189) 

SP  0.03609(0.01153) 0.17350(0.03904) 0.02333(0.00159) 

4 
HV 3.29219(0.01704) 3.15399(0.02251) 3.34662(0.01393) 

IGD  0.09763(0.00456) 0.14145(0.00732) 0.09101(0.00536) 

SP  0.02634(0.00345) 0.18179(0.03329) 0.01791(0.00120) 

5 
HV 3.24134(0.02396) 3.09250(0.03797) 3.34417(0.02430) 

IGD  0.12794(0.00672) 0.17548(0.01275) 0.10806(0.00797) 

SP  0.03258(0.00305) 0.19911(0.05104) 0.02368(0.00175) 

6 
HV 3.28364(0.02645) 3.15064(0.03038) 3.35260(0.01125) 

IGD  0.10561(0.00655) 0.14745(0.00760) 0.09415(0.00366) 

SP  0.02935(0.00445) 0.16061(0.03214) 0.02038(0.00150) 

7 
HV 3.23989(0.03297) 3.11045(0.03148) 3.34284(0.03295) 

IGD  0.12949(0.00921) 0.16992(0.00901) 0.10903(0.01232) 

SP  0.03391(0.00427) 0.16614(0.03040) 0.02535(0.00201) 

8 
HV 3.27579(0.03015) 3.14596(0.02475) 3.34292(0.02463) 

IGD  0.10535(0.00700) 0.14512(0.00644) 0.09372(0.00799) 

SP  0.02774(0.00395) 0.18234(0.04376) 0.01928(0.00151) 

 

TABLE S-IX 

STATISTIC RESULTS OF THE THREE COMPARED ALGORITHMS ON TEST PROBLEMS WITH 15 DECISION 

VARIABLES AND T=20 

Ins Indicator DC-NSGA-II DC-NSGA-III dCMOEA 

1 
HV 3.37414(0.01367) 3.27083(0.01930) 3.42926(0.00895) 

IGD 0.07672(0.00324) 0.11075(0.00496) 0.06703(0.00412) 

SP 0.02140(0.00425) 0.14309(0.04702) 0.01508(0.00112) 

2 
HV 3.38071(0.01683) 3.29468(0.01822) 3.42353(0.01279) 

IGD 0.07026(0.00542) 0.09715(0.00497) 0.06352(0.00595) 

SP 0.01931(0.00429) 0.11906(0.02749) 0.01346(0.00095) 

3 
HV 3.36813(0.01459) 3.27253(0.02240) 3.42217(0.01544) 

IGD 0.07973(0.00350) 0.11039(0.00496) 0.06980(0.00591) 

SP 0.02187(0.00139) 0.13585(0.02686) 0.01631(0.00129) 

4 
HV 3.37570(0.01632) 3.28654(0.01673) 3.41747(0.00465) 

IGD 0.06799(0.00457) 0.09478(0.00384) 0.06069(0.00234) 

SP 0.01679(0.00113) 0.13267(0.03044) 0.01255(0.00094) 

5 
HV 3.37069(0.02909) 3.27013(0.02577) 3.44924(0.01267) 

IGD 0.08642(0.00629) 0.11615(0.00740) 0.07260(0.00364) 

SP 0.02265(0.00157) 0.13963(0.04095) 0.01597(0.00138) 

6 
HV 3.37158(0.01845) 3.29438(0.01977) 3.41892(0.00837) 

IGD 0.07657(0.00428) 0.09920(0.00410) 0.06948(0.00322) 

SP 0.01909(0.00161) 0.12696(0.03420) 0.01441(0.00103) 

7 
HV 3.36137(0.03189) 3.26438(0.02859) 3.44012(0.01927) 

IGD 0.08931(0.00761) 0.11806(0.00687) 0.07370(0.00277) 

SP 0.02462(0.00316) 0.12776(0.03288) 0.01776(0.00102) 

8 
HV 3.36956(0.01475) 3.28433(0.01690) 3.41302(0.00614) 

IGD 0.07456(0.00337) 0.09937(0.00416) 0.06758(0.00242) 

SP 0.01836(0.00174) 0.13312(0.03946) 0.01381(0.00080) 

 

TABLE S-X 

STATISTIC RESULTS OF THE THREE COMPARED ALGORITHMS ON TEST PROBLEMS WITH 20 DECISION 

VARIABLES AND T=10 

Ins Indicator DC-NSGA-II DC-NSGA-III dCMOEA 

1 
HV 2.46101(0.06867) 2.15308(0.05064) 2.60879(0.06029) 
IGD 0.39943(0.02527) 0.49303(0.02918) 0.36733(0.02349) 
SP 0.11399(0.03403) 0.47251(0.08141) 0.07339(0.01500) 

2 
HV 2.65836(0.03044) 2.32834(0.04449) 2.84469(0.03805) 
IGD 0.32515(0.01001) 0.42900(0.01758) 0.27805(0.01420) 
SP 0.08591(0.01680) 0.39985(0.10046) 0.05793(0.00707) 

3 
HV 2.44064(0.05276) 2.12862(0.04705) 2.64504(0.06816) 
IGD 0.40801(0.02062) 0.51164(0.01780) 0.35603(0.03056) 
SP 0.12594(0.03605) 0.40724(0.08440) 0.06637(0.01018) 

4 
HV 2.63752(0.04306) 2.33186(0.04964) 2.81244(0.06428) 
IGD 0.32536(0.01532) 0.42376(0.01982) 0.28422(0.02353) 
SP 0.09582(0.02913) 0.42987(0.08518) 0.05863(0.00719) 

5 
HV 2.42237(0.06522) 2.12443(0.06244) 2.62456(0.06490) 
IGD 0.42872(0.02622) 0.52313(0.02623) 0.36884(0.02601) 
SP 0.12531(0.03076) 0.42483(0.08529) 0.07403(0.01646) 

6 
HV 2.60910(0.04052) 2.31038(0.05384) 2.84768(0.03996) 
IGD 0.34569(0.01647) 0.44344(0.02366) 0.27439(0.01585) 
SP 0.11013(0.02887) 0.42365(0.08678) 0.06443(0.00825) 

7 
HV 2.40782(0.05399) 2.10162(0.05985) 2.62790(0.07623) 
IGD 0.43175(0.02467) 0.53468(0.02545) 0.36861(0.03287) 
SP 0.12788(0.03366) 0.40795(0.08804) 0.06936(0.00939) 

8 
HV 2.62186(0.04274) 2.28635(0.05430) 2.80565(0.05456) 
IGD 0.33446(0.01578) 0.45240(0.02144) 0.28490(0.01931) 
SP 0.09567(0.02576) 0.41556(0.07941) 0.06207(0.00705) 
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TABLE S-XI 

STATISTIC RESULTS OF THE THREE COMPARED ALGORITHMS ON TEST PROBLEMS WITH 20 DECISION 

VARIABLES AND T=15 

Ins Indicator DC-NSGA-II DC-NSGA-III dCMOEA 

1 
HV 2.99175(0.03964) 2.73604(0.05486) 3.09502(0.04121) 

IGD  0.21273(0.01448) 0.29390(0.01775) 0.19442(0.01614) 

SP  0.04755(0.00557) 0.33048(0.08027) 0.03316(0.00361) 

2 
HV 3.10505(0.02876) 2.86168(0.02896) 3.21185(0.01903) 

IGD  0.16986(0.00899) 0.24754(0.00969) 0.14988(0.00718) 

SP  0.03864(0.00844) 0.30651(0.07453) 0.02627(0.00244) 

3 
HV 2.98844(0.03836) 2.72258(0.05321) 3.08711(0.06343) 

IGD  0.21324(0.01382) 0.29803(0.01852) 0.19860(0.02728) 

SP  0.05173(0.01671) 0.32764(0.08317) 0.03419(0.00262) 

4 
HV 3.10153(0.02342) 2.85421(0.03439) 3.17731(0.05114) 

IGD  0.16652(0.00685) 0.24521(0.01194) 0.15792(0.01958) 

SP  0.04025(0.00955) 0.31903(0.07458) 0.02594(0.00226) 

5 
HV 2.96950(0.04691) 2.72226(0.05009) 3.11278(0.03584) 

IGD  0.22522(0.01547) 0.30830(0.01672) 0.19155(0.01335) 

SP  0.05318(0.01196) 0.34777(0.06148) 0.03527(0.00359) 

6 
HV 3.08356(0.04182) 2.83883(0.03859) 3.21087(0.02122) 

IGD  0.17503(0.01153) 0.25629(0.01275) 0.14742(0.00719) 

SP  0.04158(0.00542) 0.30272(0.08688) 0.02858(0.00218) 

7 
HV 2.97017(0.04580) 2.70561(0.04851) 3.09921(0.05977) 

IGD  0.22356(0.01541) 0.31223(0.01765) 0.19792(0.02236) 

SP  0.05207(0.00824) 0.34496(0.08266) 0.03688(0.00430) 

8 
HV 3.07434(0.03415) 2.84302(0.03142) 3.18531(0.04201) 

IGD  0.17324(0.01034) 0.25339(0.01085) 0.15401(0.01758) 

SP  0.04032(0.00354) 0.32526(0.07144) 0.02787(0.00235) 

 

TABLE S-XII 

STATISTIC RESULTS OF THE THREE COMPARED ALGORITHMS ON TEST PROBLEMS WITH 20 DECISION 

VARIABLES AND T=20 

Ins Indicator DC-NSGA-II DC-NSGA-III dCMOEA 

1

HV 3.22532(0.02751) 3.03690(0.03052) 3.30644(0.02241) 

IGD 0.13188(0.00965) 0.19382(0.00858) 0.11694(0.00862) 

SP 0.02800(0.00198) 0.25148(0.06941) 0.01900(0.00178) 

2

HV 3.28536(0.01835) 3.11828(0.02190) 3.35219(0.01192) 

IGD 0.10783(0.00487) 0.16145(0.00626) 0.09639(0.00482) 

SP 0.02382(0.00136) 0.22809(0.05975) 0.01605(0.00095) 

3

HV 3.21682(0.03162) 3.03655(0.03823) 3.28854(0.04665) 

IGD 0.13517(0.00963) 0.19409(0.01195) 0.12412(0.01932) 

SP 0.02913(0.00392) 0.25096(0.07053) 0.02032(0.00177) 

4

HV 3.26925(0.01741) 3.10962(0.02253) 3.33032(0.02938) 

IGD 0.10763(0.00532) 0.15952(0.00619) 0.09913(0.01137) 

SP 0.02284(0.00152) 0.23149(0.06193) 0.01542(0.00128) 

5

HV 3.19646(0.04413) 3.00460(0.04191) 3.31384(0.02694) 

IGD 0.14596(0.01450) 0.20924(0.01355) 0.12001(0.00973) 

SP 0.03231(0.00418) 0.29157(0.08143) 0.02151(0.00185) 

6

HV 3.25965(0.02539) 3.08380(0.03825) 3.33587(0.02909) 

IGD 0.11513(0.00689) 0.17088(0.01125) 0.10210(0.01133)

SP 0.02714(0.00281) 0.23181(0.05326) 0.01735(0.00112) 

7

HV 3.19837(0.04319) 3.00263(0.03698) 3.31185(0.02598) 

IGD 0.14354(0.01303) 0.20818(0.01281) 0.12038(0.01002) 

SP 0.03175(0.00236) 0.26979(0.06914) 0.02202(0.00155) 

8

HV 3.24394(0.03493) 3.08310(0.03243) 3.33412(0.01652) 

IGD 0.11673(0.01006) 0.16823(0.01038) 0.09845(0.00535) 

SP 0.02530(0.00192) 0.25538(0.06303) 0.01665(0.00111) 

 


