
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

Abstract—To promote research on dynamic constrained

multiobjective optimization, we first propose a group of generic

test problems with challenging characteristics, including different

modes of the true Pareto front (e.g., convexity–concavity and

connectedness–disconnectedness) and the changing feasible

region. Subsequently, motivated by the challenges presented by

dynamism and constraints, we design a dynamic constrained

multiobjective optimization algorithm with a nondominated

solution selection operator, a mating selection strategy, a

population selection operator, a change detection method, and a

change response strategy. The designed nondominated solution

selection operator can obtain a nondominated population with

diversity when the environment changes. The mating selection

strategy and population selection operator can adaptively handle

infeasible solutions. If a change is detected, the proposed change

response strategy reuses some portion of the old solutions in

combination with randomly generated solutions to reinitialize the

population, and a steady-state update method is designed to

improve the retained previous solutions. Experimental results

show that the proposed test problems can be used to clearly

distinguish the performance of algorithms, and that the proposed

algorithm is very competitive for solving dynamic constrained

multiobjective optimization problems in comparison with

state-of-the-art algorithms.

Index Terms—Dynamic constrained multiobjective

optimization, test problems, population selection, change response

I. INTRODUCTION

ANY real-world optimization problems, particularly

online optimization problems or optimal control

problems, involve multiple objectives and constraints that may

change over time throughout the optimization [1]; such

problems can be called dynamic constrained multiobjective

optimization problems (DCMOPs). Without loss of generality,

This work was supported in part by the National Natural Science Foundation

of China under Grant 61988101, Grant 61525302, Grant 61590922, and Grant

61673331; in part by the National Key Research and Development Program of

China under Grant 2018YFB1701104; and in part by the Xingliao Plan of

Liaoning Province under Grant XLYC1808001. (Corresponding author:

Jinliang Ding.)

Q. Chen, J. Ding, and T. Chai are with the State Key Laboratory of

Synthetical Automation for Process Industries, Northeastern University,

Shenyang, 110819, China (e-mail: cqd0309@126.com;

jlding@mail.neu.edu.cn; tychai@mail.neu.edu.cn).

S. Yang is with the State Key Laboratory of Synthetical Automation for

Process Industries, Northeastern University, Shenyang, 110819, China, and

also with the Centre for Computational Intelligence. School of Computer

Science and Informatics, De Montfort University, Leicester, LE1 9BH, U. K.

(syang@dmu.ac.uk).

This paper has supplementary material.

a DCMOP can be mathematically formulated as follows:

 

1

1

min max

min (,) ((,),..., (,),..., (,))

(,) 0, 1,...,

(,) 0, 1,...,
. .

,..., ,...,

T

m M

k

k

j n

j j j

F t f t f t f t

h t k h

g t k g
s t

x x x

x x x



 
  
 
  

x x x x

x

x

x=

 (1)

where m is the objective function index, and M is the number of

objective functions. j is the decision variable index, and n is the

number of decision variables. x is a solution that consists of n

decision variables, and xj is the jth decision variable, which is
bounded by corresponding lower (x

min

j) and upper (x
max

j) bounds.

 is the decision space, and t represents a dynamic environment.

h and g are the numbers of dynamic equality and inequality

constraints, respectively. F(x, t) is the objective function vector

to be minimized at t, and fm(x, t) denotes the mth objective

function. hk(x, t) and gk(x, t) represent the kth equality and

inequality constraints, respectively, that vary with t.

If a solution satisfies all constraints, then it is called a

feasible solution; otherwise, it is called an infeasible solution.

For two feasible solutions x1 and x2 of a DCMOP at t, x1 is said

to dominate x2 if and only if fm(x1, t)≤fm(x2, t) for every m∈

{1,…,M} and fb(x1, t)<fb(x2, t) for at least one index b∈

{1,…,M}. If there is no other solution in  to dominate x1, then

x1 is a nondominated solution (i.e., a Pareto-optimal solution).

F(x1, t) is then called a Pareto-optimal objective vector at t. The

set of all Pareto-optimal solutions is called the Pareto-optimal

set (POS). Similarly, the set of all Pareto-optimal objective

vectors is called the Pareto-optimal front (POF).

The goal when solving a multiobjective optimization

problem (MOP) is to obtain a set of nondominated solutions, all

of which must be feasible. Compared with constrained MOPs

without dynamism (CMOPs) and dynamic MOPs without

constraints (DMOPs), DCMOPs are more challenging due to

the simultaneous presence of constraints and dynamism.

Specifically, a change is usually not observable and may even

be unknown, and it may arise in either the objective functions

or constraints. Detecting environmental changes is difficult if

they are unforeseen in DCMOPs. The feasible region of

objective functions (hereafter referred to simply as the feasible

region) is affected by constraints and may increase or decrease

with dynamism, changing the number of feasible solutions.

Abandoning infeasible solutions may be beneficial for

population convergence. However, some previous infeasible

solutions close to the boundary of the feasible region can easily

become feasible or even nondominated in new environments.

Qingda Chen, Student Member, IEEE, Jinliang Ding, Senior Member, IEEE,

Shengxiang Yang, Senior Member, IEEE, and Tianyou Chai, Fellow, IEEE

A Novel Evolutionary Algorithm for Dynamic

Constrained Multiobjective Optimization

Problems

M

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2

Therefore, determining how to best handle infeasible solutions

is a considerable challenge. For a DCMOP, the true POF of the

objective functions (hereafter called the true POF) may be

determined by the unconstrained POF (i.e., the POF of a

DCMOP without constraints) and bounds of the feasible region.

The true POF of a DCMOP may become disconnected when

the lower bound of the feasible region is irregular. An example

of the true POF of a DCMOP with two objectives (i.e., f1(x, t)

and f2(x, t)) is given in Fig. 1, and its functions are given in

Section S-I of the supplementary material. The

disconnectedness of the true POF may cause the population to

get stuck at local regions, decreasing the population diversity.

Thus determining how to design the population update strategy

that can quickly track the true POF and improve population

diversity is a challenging task. Furthermore, dynamism and

constraints can cause the true POF to move in an irregular

manner. Hence, designing an effective change response

strategy that can track the new POF is an arduous task.

In recent years, many contributions have been made

regarding attempts to solve CMOPs and DMOPs in several

important aspects, including benchmark problems [2]–[7], [63],

performance metrics [2], [8]–[11], and algorithms [12]–[23]. It

is worth noting that the moving peak benchmark problem

designed in [63] transforms the single objective problem

proposed in [56] into a two-objective problem by assigning a

random objective value into each individual, which is a good

attempt. However, many real-world problems are DCMOPs,

and the current states of both benchmark problem and

algorithm designs for DCMOPs are considerably less advanced

compared to those for CMOPs and DMOPs [24]. Azzouz et al.

[25] designed a set of test instances for DCMOPs and proposed

a dynamic constrained algorithm to solve them. However, the

true POSs in the designed test problems show only small

variations between t and t+1, making it difficult to test the

change response capability of an algorithm. Azzouz et al. [24]

proposed a dynamic constrained multiobjective evolutionary

algorithm (DC-MOEA) for solving the test problems designed

in [25]. However, this algorithm does not update the retained

previous feasible solutions when the environment changes,

resulting in a slow tracking ability when the change in the true

POS or POF between t and t+1 is large.
To advance the state of research on DCMOPs, we design a

set of test problems and propose a novel dynamic constrained
multiobjective evolutionary algorithm (dCMOEA) to solve
them. The main contributions of this work are as follows:
1) Following a few basic design principles proposed in [12]

and [56], two important characteristics of DCMOPs are
introduced into the test problems. Specifically, the true POF

in each proposed test problem is simultaneously determined

by the unconstrained POF and bounds of the feasible region,
causing the true POF to switch between different modes

(e.g., connected and disconnected). This characteristic is

useful for testing an algorithm’s convergence speed,

reactivity, and rapid tracking capability with respect to the
new true POF. The feasible region in each of the proposed

test problems can increase or decrease with dynamism in an

irregular manner, meaning that the number of infeasible

solutions and even the true POF of a DCMOP can change.

The second characteristic makes it possible to test an

algorithm’s capability of handling infeasible solutions.

2) The nondominated solutions in DCMOPs usually vary with

dynamism and constraints, and some previous

nondominated solutions may become infeasible or
dominated in a new environment. Based on this fact, we

propose a nondominated solution selection operator that is

suitable for DCMOPs. When a new environment arises, the

proposed nondominated solution selection operator can
reserve a part of nondominated solutions obtained in the

previous environment, increasing the diversity of the

nondominated set in a new environment.

3) For handling the infeasible solutions and improving

population diversity, the constraint handling technique
proposed in [15] is introduced into the designed mating

selection strategy and population selection operator.

Considering that the feasible region may vary with

dynamism, the population selection operator integrates the

information of the obtained feasible solutions. The

proposed operator can adaptively update the population,

balancing the trade-off between the population diversity

and convergence capability of dCMOEA.
4) For a DCMOP in which the environmental changes are

unforeseen, we propose a change detection strategy that can

accurately detect dynamism arising in either objective

functions or constraints. dCMOEA reinitializes a portion of

the solutions and reuses some previous solutions with
competitive performance (i.e., small objective function and

constraint violation values) when the environment changes.

Meanwhile, we exploit information collected from the

reinitialized solutions and an approximate feasibility ratio
to update the retained previous solutions, allowing the

proposed algorithm to quickly track the new POF.

The remainder of this paper is organized as follows. Section

II discusses some related work on the constraint handling

techniques used for CMOPs and the change response strategies

used for DMOPs. Section III presents the design of the test

problems. Section IV describes the framework of the proposed

dCMOEA, together with detailed descriptions of each

component of the algorithm. Performance metrics and a

comprehensive comparison of various multiobjective

evolutionary algorithms (MOEAs) on the test problems are

presented in Section V. Section VI offers a further discussion of

the proposed algorithm. Section VII outlines some conclusions

and suggests directions for future research.

II. RELATED WORK

Considering that there are few works on solving DCMOPs,

in this section, we first present some recent studies on

constraint handling techniques for CMOPs and then discuss the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

f
1

f
2

The bounds of the true feasible region The true POF

The true feasible regionThe unconstrained POF

Fig. 1. The diagram of the true POF of a DCMOP.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 3

change response strategies adopted in DMOPs.

A. Constraint Handling Techniques

The constraint handling techniques for CMOPs can be

divided into three categories [21]: techniques that place a

higher priority on feasible solutions to survive to the next

generation, techniques for balancing the trade-off between

feasibility and convergence, and techniques for repairing

infeasible solutions.

The first category is based on a preference for feasible

solutions, which are considered better than infeasible ones. The

constraint handling method proposed by Coello Coello and

Christiansen [26] simply ignores infeasible solutions, which

results in difficulty when solving problems with a narrow

feasible region. Deb et al. [13] designed a constrained

dominance relation in which a solution x1 is said to dominate x2

if 1) the former is feasible while the latter is not, 2) they are

both infeasible, but x1 has a smaller overall constraint violation,

or 3) both of them are feasible and x1 dominates x2. Following a

similar idea, Cheng et al. [27] updated the population on the

basis of the degree of constraint violation. Fonseca and

Flemming [28] designed a unified framework for solving

CMOPs in which a higher priority is assigned to the constraints

than to the objective functions, thus the search process

prioritizes finding feasible solutions over finding optimal ones.

Takahama et al. [29] and Asafuddoula et al. [30] proposed an

-constrained dominance relation in which the constraint

violation values of two solutions are not considered if they are

smaller than a certain threshold. In the method of [31],

infeasible solutions do not survive to the next generation if the

number of feasible solutions is sufficient. Fan et al. [32]

designed an angle-based constrained dominance principle in

which x1 dominates x2 if the former is feasible while the latter is

not. For a DCMOP, the feasible region can increase or decrease

with dynamism. Giving feasible solutions a higher priority is

beneficial for speeding up the convergence of an algorithm

when the feasible region is large. However, emphasizing the

importance of feasibility may reduce the population diversity.

Techniques in the second category try to balance the

trade-off between feasibility and convergence during the

evolutionary process. Angantyr et al. [33] and Young [34]

developed a constrained dominance relation by combining the

ranks of a solution based on its objective functions and

constraint violation values. Woldesenbet et al. [15] proposed a

new constraint handling technique in which each objective

function of a solution is modified in accordance with its

original objective function values and constraint violation

values. The dominance relation is determined on the basis of

the modified objective functions and the nondominated sorting

procedure proposed in the nondominated sorting genetic

algorithm II (NSGA-II [13]). To improve the population

diversity, Li et al. [35] developed a method in which the worst

solution is given a second chance for survival when it is

associated with an isolated subregion. To utilize useful

information included in infeasible solutions, Peng et al. [36]

introduced infeasible weights, which change with smaller

constraint violation values and better objective function values,

to maintain many well-diversified infeasible individuals. Ning

et al. [37] proposed a constrained nondominated sorting rank

approach in which each solution is associated with a

constrained nondomination rank in accordance with its Pareto

rank and constraint rank. Sorkhabi et al. [38] designed an

efficient approach for constraint handling in which infeasible

particles are evolved in the constraint region toward feasibility,

and feasible particles are evolved toward Pareto optimality.

However, for a DCMOP, a smaller feasible region may lead to a

reduction in the number of feasible solutions. In this case,

removing some feasible solutions may cause the algorithm to

fail to converge because the solutions in the POS are feasible.

Techniques in the last category aim to repair infeasible

solutions. In [39], Harada et al. proposed a constraint handling

method called Pareto descent repair, which incorporates the

gradient projection method. However, the gradient information

for DCMOPs is usually unavailable. Sigh et al. [40] used an

approximate descent direction method to reduce the degree of

constraint violation. Jiao et al. designed a feasible-guiding

strategy that aims to find feasible solutions close to the feasible

region in a feasible direction with the help of infeasible

solutions [41]. For a DCMOP, however, the feasible region

varies irregularly with dynamism, and it is difficult to find a

good feasible direction in which to repair infeasible solutions.

Additionally, there are some effective constraint handling

strategies to solve the constraints in single objective

optimization problems. Runarsson and Yao [58] proposed a

stochastic ranking in which a probability is introduced to

balance the objective and overall constraints violation

stochastically. This approach can significantly improve the

optimization performance without any special constrain

handling operator. In [59], they designed an improved

stochastic ranking in which comparison between two solutions

may be based on the overall constraint violation alone or

objective value alone as randomly determined. Thus, some

infeasible solutions with better value may be selected in

evolution. Allmendinger and Knowles [60] investigated two

interesting types of ephemeral resource constraints (ERCs): one

encodes periodic resource availabilities, and the other models

‘commitment’ constraints that make the evaluable part of the

space a function of earlier evaluations conducted. The studies

on both types of constraints are of great significance to

real-world applications, especially closed-loop optimization

settings. Note that ERCs are not standard constraints but

restrictions on a series of solutions that can be actually

evaluable at a given time during the optimization, arising

because of resourcing issues [61].

B. Change Response Strategies

The strategies for responding to changes can be divided into

the following three categories.

1) Diversity Enhancement: These methods increase the

population diversity by means of certain methodologies when a

change is detected. Woldesenbet and Yen [42] proposed a

dynamic EA with variable relocation that relocates solutions

based on the changes in the objective function values due to a

change in the environment and the average sensitivities of their

decision variables to the corresponding changes in the objective

space. Yang and Tinos [43] and Mavrovouniotis and Yang [45]

proposed a hybrid immigrant scheme based on memory-based

immigrants [44] and elitism-based immigrants, and these

methods are effective in dealing with changing DMOPs.

2) Memory Mechanism: These mechanisms reuse the past

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 4

information to improve the performance of EAs [56]. Goh and

Tan [11] proposed an idea based on comparing the potential of

new regions with past information to decide whether a

subpopulation should be initialized when an environmental

change occurs. Specifically, the particular subpopulation must

be reinitialized in the space from which the winner is sampled.

Wang and Li [46] designed a reinitialization strategy to respond

to environmental changes. In their reinitialization strategy, the

initialized solutions are chosen from the current population and

archived solutions with a probability of 0.2. In [47], Azzouz et

al. proposed generating some solutions via a memory-based

strategy that makes use of previous optimal solutions.

3) Prediction Strategy: Such a strategy usually predicts the

state of the new environment using existing information and

other learning techniques. Considering the properties of

continuous DMOPs, Zhou et al. proposed a population

prediction strategy that is divided into two parts: a center point

and a manifold [16]. A sequence of center points is used to

predict the new center, and the previous manifolds are

maintained to estimate the next manifold.

The three types of change response strategies discussed

above perform well for solving different DMOPs. Nevertheless,

for DCMOPs, the feasible region move with dynamism, and a

previously feasible region may become infeasible in a new

environment. In other words, previously feasible solutions may

become infeasible. Therefore, a change response strategy must

be designed with proper consideration of the constraints.

III. PROPOSED TEST PROBLEMS

Test problems play a crucial role in judging whether an

algorithm is a candidate for solving MOPs [3]–[4]. Currently,

test instances for DMOPs [3]–[5], [63] and CMOPs [6], [31],

[48] have been proposed. However, these test problems do not

consider dynamism and constraints simultaneously.

Analogous to the design principle of dynamic single-objective

test problems proposed in [56], the test problems of a DCMOP

should also be close to reality, easy to describe, simple, and

easy to analyze. In real-world applications of DCMOPs, the

objective functions and the feasible region may both change

with dynamism, changing the true POF. Specifically, the

bounds of the feasible region may be determined by the

unconstrained POF and constraints, and its true POF is a part of

the lower boundary of the feasible region. Dynamism and

constraints can change the lower boundary, causing the true

POF to alternate between connectedness and disconnectedness

as well as between convexity and concavity, which pose a

tremendous challenge for the convergence speed and response

capability of an algorithm. The feasible region may move with

dynamism, resulting in changes to the feasible solutions,

infeasible solutions, and nondominated solutions. Some

previously nondominated solutions may become dominated or

even infeasible in the new environment. Meanwhile, some

previously infeasible solutions may become feasible or even

nondominated. This possibility poses a challenge regarding an

algorithm’s capability of handling infeasible solutions. Based

on these characteristics arising in real-world applications, this

paper considers the four types of test problems, and the

real-world problems related to these four types are discussed in

Section S-II of the supplementary material.

Type I: The feasible region first increases with t and then

decreases, while the true POF changes from continuous to

disconnected and finally back to continuous.

Type II: The feasible region first decreases with t and then

increases, while the true POF changes from disconnected to

continuous and finally back to disconnected.

Type III: The feasible region first increases with t and then

decreases, while the true POF changes from disconnected to

continuous and finally back to disconnected.

Type IV: The feasible region first decreases with t and then

increases, while the true POF changes from continuous to

disconnected and finally back to continuous.

Considering that the objective functions in the electric power

supply problem studied in [49] oscillate among several

optimization modes, this study considers two cases for the

unconstrained POF of a DCMOP, called Case 1 and Case 2.

Case 1: The unconstrained POF has one mode that includes

convexity and concavity. Algorithms with fast convergence can

easily solve such problems

Case 2: The objective functions oscillate among several modes

that may include convexity and concavity.

For the real-world optimization problems especially for the

optimization of electric energy (e.g., the dynamic power supply

problem in magnesia grain manufacturing [49], the peaking

shaving and valley filling problem in plug-in electric vehicles

[62]), their objective functions and constraints may include

trigonometric functions. Additionally, constraints in real-world

problems usually cause the irregularity of feasible region,

leading to the irregularity of the true POF in DCMOPs.

Designing test problems with trigonometric functions can

easily reflect these characteristics arising in real-world

problems by adjusting the corresponding parameters. Based on

the above discussions and benchmarks designed in [4], [6], and

[48], this study proposes the following instance generator.

II

1 2

1

2

2

I I

II I

1

I

min (,) ((,), (,))

(,) (1 (,))((,) sin((,)))

(,) (1 (,))(() (,) sin((,)))

cos() ((,)) sin() (,) ()

sin((sin() (
. .

T

t t

t t

F t f t f t

obj f t g t h t A W h t

f t g t s t h t A W h t

f t e f t m t

a b
s t




 

 

 


  
    

     

  

x x x

x x x x

x x x x

x x

‘
2 1

1 2

(,)) cos() (,)))

(,)+ (,) () 0

() ()

d
c

f t e f t

sl f t f t z t

z t m t






  


  
 

x x

x x

‘

 (2)

In the objective functions, s(t) is a nonnegative dynamic

parameter that controls the movement of the unconstrained

POF. A large movement distance of s(t) causes the POF to also

exhibit a large movement. xI and xII are subvectors of x. h(xI, t)

is a nonnegative function such that 0h(xI, t)s(t). At controls

the curvature of the unconstrained POF, and Wt determines the

number of mixed concave and convex segments of the

unconstrained POF. Setting Wt properly can make the

unconstrained POF oscillate among several modes. g(xII, t) is a

nonnegative function that determines the starting position and

change of solutions in POS. The minimum value of g(xII, t) is

zero, so the objective functions can be formulated as follows:

 1 2

1 2

()
() 2 sin()

2
t t

f f s t
f f s t A W 

 
   (3)

Based on Equation (3), the unconstrained POFs with

different settings for s(t), At, and Wt are shown in Fig. 2.

In the constraints of Equation (2), the effects of parameters ,

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 5

a, b, c, d, and e on the feasible region caused by constraints are
described in [6]. Additionally, sl controls the slope of the upper
boundary of the feasible region caused by constraints. m(t) and
z(t) are nonnegative dynamic parameters that control the lower
and upper bounds, respectively, of the feasible region
determined by constraints.

To embody the characteristic changes for problems of Types

I-IV, s(t), m(t), and z(t) are set as follows:

()

()

()

s t t

m t v t

z t t

 


 

  
   
   

 (4)

where  controls the starting position of the unconstrained POF;

 and  control the starting positions of the lower and upper

bounds, respectively, of the feasible region;  controls the step

length of the unconstrained POF; and  and  control the step

lengths of the lower and upper bounds, respectively, of the

feasible region.

For Cases 1 and 2, one can select between these two cases by

setting Wt as desired.

Case 1: The unconstrained POF has one mode that includes

convexity and concavity, with Wt set to a constant.

Case 2: The unconstrained POF oscillates among several

optimization modes that may include convexity and

concavity, with Wt=sin((t+1)). Note that  controls the

curvature of oscillation, while  determines the period of

oscillation (i.e., the period is 2/). Two diagrams are

given in Fig. 3 to illustrate the impacts of  and  on the

unconstrained POFs. Their objective functions are given in

Equations (5) and (6), respectively.

1 2

1 2

3.64 0.07
3.64 0.07 0.1sin(3sin(0.4))

2

f f t
f f t t 

  
    (5)

1 2
1 2

3.64 0.07
3.64 0.07 0.1sin(6sin(0.4))

2

f f t
f f t t 

  
    (6)

The ideas on scaling up the proposed test problems are

discussed in Section S-III of the supplementary material.

IV. PROPOSED DCMOEA

In a DCMOP, the true POF and feasible region vary with

dynamism. To handle infeasible solutions and respond to

changes, this paper designs an algorithm called dCMOEA,

whose basic framework is presented in Algorithm 1.

As shown in Algorithm 1, dCMOEA starts with an initial

population P. Then, the nondominated solution set A is

determined (line 4 of Algorithm 1). In the each generation, if a

new environment is detected, then a change response strategy

(line 8 of Algorithm 1) is used to update P, and a nondominated

solution selection operator (line 9 of Algorithm 1) is applied to

update A. Afterward, a mating selection operator (line 11 of

Algorithm 1) is used to select two parents (i.e., pi,1 and pi,2) for

generating the ith child qi (line 12 of Algorithm 1).

Subsequently, qi is stored in an offspring set Q. At the end of

each generation, a population selection operator (line 14 of

Algorithm 1) is applied to update P. Finally, a nondominated

solution selection operator (line 15 of Algorithm 1) is used to

update A. The above procedure is executed until the termination

condition is met. In the following sections, each component of

dCMOEA will be described in detail.

A. Initialization

In dCMOEA, the evolutionary process starts with an initial

population P with N solutions. For a DCMOP, it is difficult to

generate a feasible solution when the feasible region is small.

However, the solutions in the POS and POF must be feasible,

so this paper stipulates that there must be at least one feasible

solution in the initial population to prevent the absence of

nondominated solutions. During initialization, we first use

Equation (7) to generate the components of each solution.

 min max min

, ()
i j j j j

x x rand x x    (7)

where rand is a random number in the range [0, 1].

Subsequently, the constraint deviation values of each

solution are calculated using Equations (8) and (9).

(,) max{0, 0- (,)}, 1

(,) max{0, (,) }, 1

k i k i g

k i k i h

G t g t k n

H t h t c k n

  
    

x x

x x
 (8)

Algorithm 1 Framework of DCMOEA

1: Input: N (population size)

2: Output: a set of approximation POFs

3: Initialization: generate an initial parent population P randomly;

4: A=Nonselection(P, A)

5: while termination condition not met do

6: for i=1 to N do

7: if change is detected then

8: P=ChangeResponse(P);

9: A=Nonselection (P, A);

10: end if

11: pi,1 and pi,2=MatingSelection(P)

12: qi=GenerateOffspring(pi,1, pi,2);

13: end for

14: P=PopulationSelection(P, Q);

15: A=Nonselection(P, A);

16: end while

(a) (b)

(c) (d)

Fig. 2. The unconstrained POFs of test problems with different overall shapes.

0 1 2 3 4 5 6 7

3

4

5

6

7

8

f
1
+0.5t

f
2
+0.5t

t=10
t=9

t=8

t=7
t=6

t=5
t=4

t=3

t=2
t=1

0 1 2 3 4 5 6 7

3

4

5

6

7

8

f
1
+0.5t

f
2
+0.5t

t=10
t=9

t=8

t=7
t=6

t=5
t=4

t=3

t=2
t=1

(a) (b)

Fig.3. The unconstrained POFs of a DCMOP with (a)  = 6 and  = 0.4; and (b)

=3 and =0.4 at different times.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 6

1 1

(,) (,) (,)
g h

n n

i k i k i

k k

v t G t H t
 

  x x x (9)

where Gk(xi, t) and Hk(xi, t) denote the kth inequality and

equality constraint violations, respectively, at t. The parameter

c is a tolerance value for relaxing the equality constraints to

inequality constraints, and v(xi, t) is the total constraint

violation of xi at t. xi is a feasible solution if v(xi, t) is zero.

If there is no feasible solutions, then the initial population is

regenerated until there is at least one feasible solution.

B. Nondominated Solution Selection

The nondominated solution selection procedure aims to

preserve nondominated solutions from the Population P and A.

For a DCMOP, some solutions in A may become dominated

solutions or even infeasible solutions when a new environment

arises. To obtain nondominated solutions with diversity, we

propose that, when a change is detected, the infeasible and

dominated solutions in A are first removed, followed by the

infeasible and dominated solutions in P. Afterward, A is

updated according to the dominance relationship between

solutions in A and the nondominated solutions in P. Note that if

the environment changes, then the infeasible and dominated

solutions in P are removed, and A is updated according to the

dominance relationship between solutions in A and the

nondominated solutions in P. Specifically, when a new

environment is detected, the constraint deviation values of all

solutions in A are calculated using Equations (8) and (9), and

solutions with constraint deviation values larger than zero are

removed from A. Afterward, each solution in A is associated

with a fitness value, which can be calculated via Equation (10).

  () ' | 'F i i R i i   (10)

where R is the set of solutions, and i and i’ are the indices of two

different solutions in R. |・| represents the cardinality of a set,

and i’≺i indicates that i’ dominates i. F(i) is the fitness value of

the ith solution in R.

Subsequently, the dominated solutions in A are removed.

After it, there are two cases for A: one is that A becomes an

empty set, and another is that there is at least one solution in A.

To preserve nondominated solutions from the population P,

the constraint deviation values of each solution in P are

calculated using Equations (8) and (9). Afterward, all feasible

solutions in P are copied into an empty set S. Each solution in S

is associated with a fitness value according to Equation (10).

All nondominated solutions in S are copied into an empty set S’.

If A is empty, then all solutions in S’ are copied into A. If there

is at least one solution in A, then the dominance relations

between the solutions in A and S’ are assessed, and the

following three cases are considered:

1) If a solution in S’ is dominated by any solution in A, then this

solution in S’ is not considered.

2) If a solution in S’ is not dominated by any solution in A and

does not dominate any solution in A, then this solution in S’

is added to A.

3) If a solution in S’ is not dominated by any solution in A and

dominates some solutions in A, then all solutions dominated

by this solution in S’ are removed from A.

Last, some solutions in A must be removed if |A| is greater

than N. In this paper, the crowding distance operator applied in

NSGA-II is used to perform a truncation operation to ensure

that |A| is equal to N. The pseudocode for nondominated

solution selection is presented in Algorithm 2.

C. Mating Selection and Genetic Operators

Mating selection plays an important role in producing new

offspring. For MOPs, binary tournament selection based on the

dominance relationships between solutions is a common

selection method [18], [21], and [31]. Unlike CMOPs and

DMOPs, DCMOPs involve constraints and dynamism

simultaneously, implying that the feasible region of a DCMOP

varies with dynamism. Thus, the method used to select parents

from P influences the population diversity and convergence

speed of the algorithm. Simply selecting from among the

feasible solutions may reduce the diversity of the offspring,

while selecting an excess number of infeasible solutions may

slow the convergence speed of the algorithm. This study

proposes to modify the objective function values based on the

feasibility ratio of the solutions to balance the numbers of

feasible and infeasible solutions in the parent population. The

objective function value modification method proposed by

Woldesenbet et al. [15] is based on the feasibility ratio and does

not involve parameter tuning, which makes it easy to

implement in dCMOEA. Therefore, this method is adopted in

dCMOEA to modify the objective function values so that a

promising parent population can be obtained. Note that this

Algorithm 2 Non-dominated solution selection

1: Input: P, A, S=, S’=

2: Output: A

3: if a new environment is detected then

4: for i=1:|A|

5: Calculate constraint deviation value v(xi, t) of the ith solution in A

using Equations (8) and (9);

6: if v(xi, t) is not zero then

7: Remove the ith solution from A;

8: end if

9: end for

10: for i=1:|A|

11: Calculate the fitness value of the ith solution in A using Equation

(10);

12: end for

13: Remove solutions having a fitness value that is more than one from A;

14: end if

15: for i=1:N

16: Calculate constraint deviation value v(xi, t) of the ith solution in P;

17: if v(xi, t) is zero then

18: Add the ith solution into S;

19: end if

20: end for
21: Calculate fitness values of solutions in S using Equation (10);

22: Copy all solutions having a fitness value of zero in S to an empty set S’;

23: if A= then

24: All solutions in S’ are copied into A;

25: else
26: for i=1:|S’|

27: if the ith solution in S’ is dominated by anyone in A then

28: A remains unchanged;

29: else
30: if the ith solution in S’ is not dominated by any one in A, and it does

not dominate any one in A then

31: The ith solution in S’ is added into A;

32: else

33: All solutions in A dominated by ith solution are removed;

34: end if

35: end if

36: end for

37: end if

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 7

modification method includes a distance measure and an

adaptive penalty. The detailed modification procedure in

calculating the distance measure is as follows:

First, dCMOEA normalizes the objective values by

Equations (11)-(13).

 max

, max (,)
m t m

P
f f t




x
x (11)

 min

, min (,)m t m
P

f f t



x

x (12)

min

,

max min

, ,

(,)
(,)

m m t

m

m t m t

f t f
f t

f f






x
x (13)

where f
max

m,t and f
min

m,t denote the maximum and minimum of the

mth objective function value in F(x, t) at t, respectively.

(,)mf tx is the mth normalized objective function value of x at

t.

The total normalized constraint violation of a candidate

solution at t is then calculated by Equations (8), (9), and (14):

 max max
1 1, ,

(,) (,)1 1
(,)

g h
n n

k i k i

i

k kg hk t k t

G t H t
v t

n nG H 

  x x
x (14)

where (,)iv tx is the total constraint violation of xi at t. It is

worth noting that the smaller the value of (,)iv tx is, the better

the candidate solution.

The “distance” value of xi in the mth objective function

(denoted as dm(xi, t)) is obtained by Equation (15).

2 2

(,) (,) (,)
m i m i

d t f t v t x x x (15)

The “penalty” value of xi in the mth objective function

(denoted as pm(xi, t)) is obtained by Equation (16).

 (,) (1) (,) (,)
m i f i f m i

p t r v t r Y t    x x x (16)

where rf denotes the feasible ratio of the current population,

number of feasible solutions in current population

population size
fr  , and

0 if (,)=0
(,)=

(,) otherwise

i

m i

m i

v t
Y t

f t





x
x

x

，

，
.

The mth modified objective value of xi is formulated as

follows:

 ' (,)= (,) (,)
m m i m i

f t d t p tx x x (17)

After the objective function values of xi are modified, each

solution is assigned a fitness value in accordance with Equation

(10), and crowding distances are calculated using the method

proposed in NSGA-II. Then choosing two parents (i.e., pi,1 and

pi,2) for the ith child employs the mating selection operator

according to the fitness values and crowding distances of the

solutions in P. The pseudocode for mating selection is

presented in Algorithm 3.

Once a parent population has been constructed, the popular

simulated binary crossover (SBX) and polynomial mutation

(PM) operators proposed in [54] are used to generate offspring.

D. Population Selection Operator

For a DCMOP, if the feasible region decreases with

dynamism, then more infeasible solutions may arise.

Conversely, the number of infeasible solutions may decrease.

Therefore, handling infeasible solutions while considering
dynamism is key to obtaining a suitable set of approximations.

Simply discarding infeasible solutions might cause the

algorithm to become trapped in local optima [15] whereas

retaining more infeasible solutions may reduce the convergence
speed of the algorithm. Note that dCMOEA must have a high

convergence speed to allow it to track the POF quickly in the

case of fast and frequent changes. To balance the convergence

speed of the algorithm and the diversity of the population,

dCMOEA considers two cases for handling infeasible solutions:
the case where the number of feasible solutions of in P and Q is

less than or equal to the threshold NF, and the case where the

number of feasible solutions is more than NF.
a) The number of feasible solutions is fewer than or equal to

NF. For convenience of description, the solutions in P and Q

are copied to an empty set C. The feasible solutions in C are

allocated to a feasible set FC, and the infeasible ones are

allocated to an infeasible set IC. Considering that the solutions

in the POS must be feasible, we propose that all solutions in FC

should be retained for the next generation, and the remaining

N-|FC| solutions in the population should be chosen from the

infeasible solutions in IC. To select N-|FC| infeasible solutions

from IC, we first modify the objective function values of these

infeasible solutions. Because there are no feasible solutions in

IC, Equation (16) is modified as shown in Equation (18). In

other words, the objective function values of the infeasible

solutions in IC are revised in accordance with Equations (8),

(11)-(15), (17), and (18).

 () (,)m i ip t v tx x， (18)

Subsequently, each individual in IC is assigned a fitness

value that is calculated using Equation (10). Finally, we select

N-|FC| infeasible solutions by means of the fast nondominated

sorting and crowded-comparison operators proposed in [13].

b) The number of feasible solutions is more than NF. When

the number of feasible solutions is large, the number of feasible

solutions that are propagated to the next generation may also be

large. In this case, we propose to modify the objective function

values of all solutions in C in accordance with Equations

(11)-(17). Once the modified objective function values of all

solutions have been obtained, N solutions are chosen by means

of the fast nondominated sorting and crowded-comparison

Algorithm 3 Mating selection

1: Input: P

2: Output: pi,1, pi,2

3: for j=1:2

4: Random select two different individuals p1, p2 from P;

5: if F(p1)< F(p2) then

6: pi,j=p1;

7: else

8: if F(p1)> F(p2) then

9: pi,j=p2;

10: else

11: if d(p1)> d(p2)

12: pi,j=p1;

13: else

14: if d(p1)< d(p2) then

15: pi,j=p2;

16: else

17: Random select an individual from p1 and p2;

18: end if

19: end if

20: end if

21: end if

22: end for

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 8

operators proposed in [13].

The pseudocode for the population selection procedure is

presented in Algorithm 4.

E. Dynamism Handling

If the optimizer is aware of the changes in a DCMOP, then it

does not need to detect change; otherwise, change detection is

usually needed. When a change arises, change response has an

important role in tracking the new POF in a changing

environment. In this section, we first discuss the change

detection method that detects the changes arising in DCMOPs

with unforeseen environmental changes. Subsequently, the

proposed change response strategy is described.

1) Change Detection

The authors in [11], [16], [17], and [18] proposed that

changes can be detected by comparing previous objective

function values with re-evaluated ones. However, this change

detection method may also fail when only the constraints are

dynamic. For a DCMOP, an environmental change may arise in

either the objective functions or constraints. In this paper, we

propose that both the objective functions and constraints are

detected to accurately detect environmental changes. However,

detection will be computationally expensive if each individual

in the population is chosen as a detector. To improve detection

efficiency, the number of individuals chosen as detectors is

restricted to 10%N, which is suggested by [11] and [18]. The

steps to detect environmental changes are as follows:

Step 1: Randomly choose 10%N individuals from the

population.

Step 2: Let i=1;

Step 3: If i≤10%N, then recalculate each objective function

value for the ith solution; otherwise, the detection procedure

ends.

Step 4: If any of the recalculated objective function values of

the ith solution is different from their corresponding previous

value, then a change is successfully detected, and the

detection procedure ends; otherwise, go to Step 5.

Step 5: Recalculate the difference between the left- and

right-hand sides of each constraint. If this value differs from

the one in the previous generation, then a change is assumed

to be successfully detected, and the detection procedure ends;

otherwise, let i=i+1 and go back to Step 3.

2) Change Response

For a DCMOP, the true POF or feasible region may change

with t. The nondominated solutions in the POF obtained by an

algorithm at t-1 may have become dominated or infeasible.

Similarly, the infeasible solutions at t-1 may have become

feasible or nondominated. Additionally, a dynamic

environment may cause the feasible region to become larger or

smaller. Simply discarding all previous solutions and randomly

reinitializing the population might be beneficial for population

diversity, but more optimization time will be needed for the

algorithm to converge. In contrast, reusing all previous

solutions to search for new nondominated solutions may reduce

the population diversity. For these reasons, this paper adopts

random immigrants and memory schemes to reinitialize the

population when a new environment arises.

Based on the above discussion, the population in a new

environment will be composed of 50% reinitialized solutions

and 50% previous ones. Note that the reinitialized solutions are

generated using the method discussed in the Initialization

section and are copied into an empty set R. To choose 50% of

the previous solutions, all previous solutions are re-evaluated,

and their modified objective function values are calculated

using Equations (8), (9) and (11)-(15). Then, we select the

desired number of feasible previous solutions from the

population P by means of the fast nondominated sorting and

crowded-comparison operators proposed in [13].

To enable the algorithm track the new POF quickly, once a

new environment is detected, we exploit information collected

from the reinitialized solutions and new approximation of the

POF to update the retained previous solutions. Specifically, the

reinitialized solutions and retained solutions are first combined,

and the feasible solutions are then copied into a new set FS.

Each solution in FS is assigned a fitness value. Considering that

solutions with fitness values of less than two may be close to

the new POF, we propose that each modified solution should

include the information of these appealing solutions. For the ith

retained previous solution, Equation (19) is used to locate a new

position for each of its variables.

, , , ,()

i j i j rbest j i j
x x rand x x    (19)

where xrbest, j is the jth variable of a solution with a fitness value

less than the fitness values of two randomly solutions from FS.

However, the variable value obtained via Equation (19) may
be smaller or greater than the corresponding lower or upper

bound on that variable, making this variable infeasible. The

bound constraints on each decision variable are known, so such

infeasibilities can be repaired in a timely manner. Considering

that the feasible region may become smaller or larger with
dynamism, the feasibility ratio is considered in the repair

method. To quickly calculate the feasibility ratio, we use a rule

of thumb (i.e., calculating the percentage of feasible solutions

during the reinitialization stage) to estimate the feasibility ratio
at t. The calculation method is given in Equation (20).

 =
/ 2

NR

N
 (20)

where NR denotes the number of feasible solutions in the

Algorithm 4 Population selection procedure

1: Input: P, Q, C=, FC=, IC=

2: Output: P

3: Cope all solutions in P and Q to C.

4: Calculate the number of feasible solutions in P and Q;

5: if The number of feasible solutions≤NF then

6: All feasible solutions in C are assigned to FC, and infeasible ones are

allocated to IC.

7: Modify the objective function values of solutions in IC using

Equations (8), (11)-(15), (17), and (18).

8: Calculate the fitness value of each solution using Equation (10).

9: Choose N-|FC| infeasible solutions by fast nondominated sorting and

crow crowded-comparison operator.

10: Let P=, and cope all feasible solutions in FC and the selected

N-|FC| infeasible solutions to P.

11: else

12: Modify the objective function values of all solutions in C according

to Equations (11)-(17)

13: Calculate the fitness value of each solution, and choose N solutions

from C.

14: Let P=, and cope the selected N solutions to P.

15: end if

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 9

reinitialization stage.

For an infeasible variable that exceeds its lower bound, its

optimal value may be near to the corresponding lower bound.

Therefore, we find a feasible variable that is near its lower

bound. In contrast, a feasible variable close to its upper bound is

determined. When the feasible ratio is small, a minor revision is

made for the corresponding infeasible variable. Conversely, a

major revision is made. Based on the above discussions, this

study uses Equations (20), (21) and (22) to repair the jth
variable below x

min

j and Equations (20), (22) and (23) to repair

the jth variable above x
max

j

 min min

,()
j j i j j

x x r x x    (21)

 max max

,()
j j i j j

x x r x x    (22)

 r rand   (23)

The pseudocode for the change response procedure is

presented in Algorithm 5.

F. Computational Complexity of One Generation of dCMOEA

In the loop (lines 6–15 of Algorithm 1) of each generation,

computational resources are mainly consumed by the mating

selection, offspring reproduction, population selection, and

nondominated solution selection procedures, while other

procedures require less computational cost. Selecting parents

(i.e., the mating selection operator in line 11 of Algorithm 1)

takes O(MN) computations, where M is the number of

objectives. Generating an offspring solution (line 12 of

Algorithm 1) requires O(M) computations, so the offspring

reproduction takes O(MN) computations. The population

selection procedure (line 13 of Algorithm 1) requires O(MN2)

computations on the fitness assignment and O(N2logN)

computations on elitist preservation. The nondominated

solution selection procedure (line 15 of Algorithm 1) spends

O(MN2) computations. Thus, the overall computational

complexity of dCMOEA for one generation is O(MN2) or

O(N2logN), whichever is larger.

V. EXPERIMENTAL STUDY

In this section, we will examine the effectiveness of the

proposed test instances and dCMOEA. For the test instances, if

the performances of several representative algorithms are

clearly distinct, then this will show that the proposed test

instances are effective. For dCMOEA, if it can outperform all

algorithms considered for comparison on most or even some of

the test instances, then this will suggest that dCMOEA is

competitive for solving DCMOPs.

A. Compared Algorithms

Only a few MOEAs have already been proposed for solving

DCMOPs. Therefore, in addition to two algorithms for solving

DCMOPs (i.e., DC-MOEA, proposed in [24], and

DNSGA-II-A, proposed in [25]), this paper also considers three

representative constrained multiobjective optimization

algorithms for solving CMOPs (i.e., constrained NSGA-II

(C-NSGA-II) [15], constrained NSGA-III (C-NSGA-III) [31],

and constrained two-archive EA (C-TAEA) [21]) for

comparison. For handling dynamic environments, the

nondominated solution selection operator and the change

detection method proposed in this study and the restart scheme

for change response were incorporated into C-NSGA-II,

C-NSGA-III, and C-TAEA. The resulting algorithms are called

DC-NSGA-II, DC-NSGA-III, and DC-TAEA, respectively.

B. Parameter Settings

1) To study the impact of the change frequency (t), t was set

to values of 10, 15, and 20. The number of changes was

nt=21. To minimize the effect of static optimization, each

algorithm is allowed to run for 40 generations before the

first change, and the total number of generations was

ntt+40.

2) Settings of the Test Problems: According to [6], some of the

parameters used in Equation (2) were set as follows:

=-0.25, a=0.2, b=1, c=1, d=0.5, and e=1. To cause the

true POFs of the test problems to change in accordance with

the characteristics of problems of Types I-IV, ’, At, and z(t)

were set to -/16, 0.05, and 6, respectively, and s(t) and m(t)

were set as follows:

Type I:
() max(3.5 0.14 , 0.7+0.14)

() max(1.43-0.05 , 0.43+0.05)

s t t t

m t t t

   
   

Type II:
() max(2.5 0.05 , 1.5+0.05)

() max(1.16 0.075 , -0.34 0.075)

s t t t

m t t t

   
     

Type III:
() min(2.1 0.14 , 4.9-0.14)

() min(0.93 0.05 , 1.93-0.05)

s t t t

m t t t

   
    

Type IV:
() min(2 0.05 , 3-0.05)

() min(0.41 0.075 , 1.91-0.075)

s t t t

m t t t

   
    

In the designed test problems, h(xI, t) is set to x1, and g(xII,

t) is denoted as follows:

 2

2

() ((1 0.9 sin(0., 2)))
II

n

j

j

g xt t


    x (24)

To cause the objective functions to change in accordance

with the modes corresponding to Cases 1 and 2, Wt was set

as follows:

Case 1: Wt=2;

Algorithm 5 Change response

1: Input: P, CSC=, R=

2: Output: P

3: Generate N/2 solutions by the method in Section IV-A, and copy them

into R;

4: Calculate the feasibility ratio of solutions in R using Equation (20);

5: Calculate the modified objective values of all solutions in P;

6: Calculate the fitness values and crowing distances of all solutions in P;

7: Select 50% feasible old solutions from population P according to the

fitness values and crowing distances, and put them into a new set CS;

8: CSC=CSR

9: Calculate the constraint violation values of solutions in CSC;

10: for i=1:|FO|

11: Random select an individual with fitness value less than two from P;

12: for j=1:n

13: Generate jth variable xi, j by Equation (19);

14: if xi, j<
min

j
x then

15: Repair it by Equations (21) and (23);

16: else

17: if xi, j>
max

j
x then

18: Repair it by Equations (22) and (23);

19: end if

20: end if

21: end for

22: end for

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 10

Case 2: Wt=6sin(0.2(t+1)).

Base on the above settings, eight test problems can be

obtained, which are shown in Table I. The true POF and

POS of each problem are given in Section S-IV of the

supplementary material.
3) Decision Variables. Each test problem has ten decision

variables; x1[0, 1], and xj[0,2] for j≥2.

4) Algorithm Parameters: Both the parent population size N

and the offspring population size in all algorithms were set

to 200. NF was set to 100. In SBX, the crossover probability

(Cr) and the distribution index (dc) were set to 0.8 and 5,

respectively. In PM, the mutation probability (mp) and the

distribution index (dm) were set to 0.05 and 40, respectively.

The detailed experiments that select these parameters are

given in Section S-V of the supplementary material.

The other parameters for the five compared algorithms were

the same as those used in the referenced papers.

C. Performance Indicators

In our experimental studies, three performance metrics, i.e.,

the hypervolume (HV) [8], inverted generational distance (IGD)

[9], and Schott’s spacing metric (SP) [52] were adopted to

compare the algorithms’ performance. The HV and IGD

metrics simultaneously measure the diversity and convergence

of the results, and the SP metric measures how the solutions in

the discovered POF are distributed. Let POF* be the obtained

approximation set of POF.

1) HV: HV can assess the size of the area covered by the

obtained approximation set. The reference point for the

calculation of HV is set to (z1+1, z2+1), where z1 and z2 are the

maximum values of two objective values of the true POF. A

higher HV value means a better approximation set.
2) IGD: IGD is calculated by Equation (25).

1

1 POFn

i

iPOF

IGD d
n 

  (25)

where nPOF=|POF|, and di is the minimum Euclidean distance

between the ith member in POF and one in POF*. The lower the

IGD value, the better the obtained approximation set.

3) SP: Schott’s SP metric tests the distribution of the obtained

POF, and SP is calculated by Equation (26). Note that a smaller

SP value indicates a better quality of the results.

*

*

2

1

1
()

1

POF
n

i

iPOF

SP D D
n 

 
  (26)

where Di is the Euclidean distance between the ith solution and

its nearest member in POF*.D is the average value of Di.

D. Empirical Results

For each combination (nt, t) for a test problem, each

algorithm was run 30 times on each test instance, and the mean

and standard deviation of the results were recorded. Note that

the Wilcoxon rank-sum test [53] at the 0.05 significance level

was used to determine whether the performance of one

algorithm statistically differs from that of another algorithm

with respect to each performance metric.

To judge whether the proposed test instances are effective,

the ranking method described in [4] was used. Specifically, an

algorithm ranks the highest if it outperforms the largest number

of competitors, and the algorithm that outperforms the fewest

competitors will be assigned the worst rank. Multiple

algorithms may have the same rank if they outperform the same

number of other algorithms. Note that for each algorithm, the

average rank was calculated based on three combinations for a

given test problem. An algorithm was considered the best if it

had the smallest average rank. Conversely, an algorithm was

considered the worst if it had the largest average rank. Based on

this ranking method, the obtained rank of each algorithm is

listed in Section S-VI of the supplementary material.

It can be observed that dCMOEA achieves the best

performance in terms of all three metrics, followed by

DC-NSGA-II. DC-NSGA-II-A performs the worst among the

compared algorithms. DC-NSGA-III, DC-TAEA, and

DC-MOEA show different performances on different test

problems. The experimental results indicate that the designed

test problems can clearly distinguish the performance of each

algorithm. Therefore, the proposed test problems are effective.

To analyze the algorithms’ performance in terms of each of the

three metrics in detail, the obtained average results and

standard deviations for the HV, IGD, and SP metrics are shown

in Tables II-IV, respectively. The computational time of each

algorithm on each test problem is given in Section S-VII of the

supplementary material.

It can be observed from Table II that on all test problems,

dCMOEA achieves the best performance in terms of the HV

metric. Clearly, dCMOEA is more promising than the other

algorithms for solving these test instances. DC-NSGA-II

achieves the second-best performance. Note that dCMOEA

borrows the idea of modifying the objective function values

that is used in DC-NSGA-II. DC-NSGA-II-A also modifies the

objective function values, but it performs worse on all test

problems, which may imply that an effective method of

modifying the objective function values may be helpful for

handling the infeasible solutions arising in DCMOPs.

As seen in Table III, on the proposed test instances, all five

compared algorithms are outperformed by dCMOEA in terms

of the IGD metric. The results obtained by DC-NSGA-II are

second only to those obtained by dCMOEA, whereas

DNSGA-II-A performs the worst among the compared

algorithms. Overall, the experimental results demonstrate the

capability of dCMOEA for solving DCMOPs. As a supplement

to the tabular presentation, Fig. 4 shows the evolutionary curves

of the average IGD values on the first two test problems with

t=15 and nt=21. The evolutionary curves on the other test

problems are given in Section S-VIII of the supplementary

material. Note that the evolutionary curves of the results

obtained by DC-NSGA-II-A are not included because of its

poor performance. Compared with the other algorithms,

dCMOEA responds to environmental changes more steadily

and recovers faster for the most of the test problems, implying

its higher convergence performance. Nevertheless, dCMOEA

performs similarly to DC-NSGA-II but better than DC-MOEA,

DC-NSGA-III, and DC-TAEA on all test problems.

Table IV presents the results achieved by the six algorithms

in terms of the SP metric. This table shows that dCMOEA

achieves the best results on most of the test problems. For the

TABLE I

DIFFERENT BENCHMARKS THAT CONSIST OF TYPE I-IV AND CASE 1-2.

Instance No. 1 2 3 4

Combination Type I+Case 1 Type II+Case 1 Type III +Case 1 Type IV+Case 1

Instance No. 5 6 7 8

Combination Type I+Case 2 Type II+Case 2 Type III +Case 2 Type IV+Case 2

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 11

second and sixth test problems with nt=21 and t=15 and the

fifth test problem with nt=21 and t=20, however, DC-NSGA-II

shows a performance similar to that of dCMOEA. This

suggests that DC-NSGA-II is promising for problems with

slow changes, which may be because DC-NSGA-II has a slow

convergence capability. For all test problems, DC-MOEA,

DC-NSGA-II-A, DC-NSGA-III, and DC-TAEA fail to show

appealing performance in terms of the SP metric.

To judge the algorithms’ tracking capability, we also plotted

the final POFs of all algorithms over 21 time windows, as

presented in Section S-IX of the supplementary material. The

figures evidently show that dCMOEA is very capable of

tracking the true POF in each environment.

VI. DISCUSSION

A. Effectiveness of Each Component of dCMOEA

This subsection investigates the effects of different

components of dCMOEA, including three key components, i.e.,

the mating selection operator, the population selection operator,

and the change response strategy. To examine the effectiveness

of each component of dCMOEA, we adapted the original

dCMOEA into six variants. The first variant (dCMOEA-S1)

uses the mating selection operator designed in [31] to replace

the one proposed in this paper. In the second variant

(dCMOEA-S2), the population selection operator proposed in

this paper is replaced with that proposed in [31]. dCMOEA-S3

is the third variant, in which the population selection operator

designed in [24] is used to update the population. dCMOEA-S4

is the fourth variant, in which Equations (19)-(23), for updating

the retained previous solutions, are discarded. In the fifth

variant (dCMOEA-S5), all solutions are regenerated randomly

when a change is detected. The last variant of dCMOEA

(dCMOEA-S6) uses the change response strategy proposed in

[24] in place of the one designed in this paper. All variants were

compared with dCMOEA on the test problems with settings of

(t, nt)=(10, 21). The average values and standard deviations of

the three performance metrics (i.e., HV, IGD, and SP) for

TABLE III

MEAN AND STANDARD DEVIATION VALUES OF IGD METRIC OBTAINED BY SIX ALGORITHMS

Ins (t, nt) DC-MOEA DC-NSGA-II-A DC-NSGA-II DC-NSGA-III DC-TAEA dCMOEA

1

(10, 21) 0.36367(0.02941)‡ 0.55258(0.02763)‡ 0.10930(0.00523)‡ 0.14410(0.00597)‡ 0.16457(0.01049)‡ 0.09596(0.00535)

(15, 21) 0.16887(0.01251)‡ 0.56751(0.02677)‡ 0.06083(0.00205)‡ 0.08358(0.00422)‡ 0.08888(0.00544)‡ 0.05435(0.00281)

(20, 21) 0.09441(0.00773)‡ 0.55722(0.03576)‡ 0.04445(0.00222)‡ 0.05735(0.00223)‡ 0.05993(0.00304)‡ 0.04024(0.00137)

2

(10, 21) 0.26860(0.01767)‡ 0.57932(0.03038‡ 0.09618(0.00501)‡ 0.12791(0.00738)‡ 0.13335(0.00494)‡ 0.08331(0.00337)

(15, 21) 0.13074(0.00684)‡ 0.58435(0.03085)‡ 0.05715(0.00192)‡ 0.07684(0.00375)‡ 0.07781(0.00333)‡ 0.05322(0.00248)

(20, 21) 0.07730(0.00411)‡ 0.57726(0.03067)‡ 0.04439(0.00248)‡ 0.05539(0.00195)‡ 0.05565(0.00146)‡ 0.04149(0.00156)

3

(10, 21) 0.30675(0.02202)‡ 0.57476(0.03933)‡ 0.11023(0.00652)‡ 0.14496(0.00823)‡ 0.16487(0.00842)‡ 0.09489(0.00486)

(15, 21) 0.16845(0.01148)‡ 0.56217(0.03725)‡ 0.06393(0.00335)‡ 0.08444(0.00313)‡ 0.09009(0.00473)‡ 0.05579(0.00291)

(20, 21) 0.09344(0.00757)‡ 0.55948(0.04161)‡ 0.04667(0.00179)‡ 0.05834(0.00234)‡ 0.06222(0.00272)‡ 0.04207(0.00151)

4

(10, 21) 0.22815(0.01437)‡ 0.57868(0.03066)‡ 0.09464(0.00421)‡ 0.12588(0.00506)‡ 0.12843(0.00493)‡ 0.08380(0.00380)

(15, 21) 0.12929(0.00574)‡ 0.59578(0.02847)‡ 0.05494(0.00263)‡ 0.07436(0.00276)‡ 0.07368(0.00284)‡ 0.05071(0.00211)

(20, 21) 0.07888(0.00367)‡ 0.57842(0.03002)‡ 0.04259(0.00156)‡ 0.05302(0.00195)‡ 0.05332(0.00175)‡ 0.03976(0.00154)

5

(10, 21) 0.36912(0.03031)‡ 0.57969(0.03029)‡ 0.11566(0.00626)‡ 0.14714(0.00811)‡ 0.16843(0.01479)‡ 0.09758(0.00501)

(15, 21) 0.17614(0.01750)‡ 0.57996(0.03099)‡ 0.07126(0.00391)‡ 0.08955(0.00650)‡ 0.09520(0.00541)‡ 0.06384(0.00282)

(20, 21) 0.10185(0.01038)‡ 0.57734(0.03272)‡ 0.05745(0.00268)‡ 0.06588(0.00327)‡ 0.06973(0.00287)‡ 0.05310(0.00119)

6

(10, 21) 0.25978(0.01747)‡ 0.59926(0.03289)‡ 0.10008(0.00373)‡ 0.12845(0.00566)‡ 0.13359(0.00700)‡ 0.08608(0.00406)

(15, 21) 0.12993(0.00766)‡ 0.60718(0.03230)‡ 0.06609(0.00312)‡ 0.08190(0.00311)‡ 0.08209(0.00286)‡ 0.06087(0.00168)

(20, 21) 0.08208(0.00304)‡ 0.59382(0.03105)‡ 0.05554(0.00177)‡ 0.06221(0.00166)‡ 0.06465(0.00227)‡ 0.05372(0.00315)

7

(10, 21) 0.29880(0.02390)‡ 0.58474(0.03000)‡ 0.11773(0.00752)‡ 0.14594(0.00744)‡ 0.17153(0.01266)‡ 0.09728(0.00678)

(15, 21) 0.17010(0.01270)‡ 0.58376(0.03171)‡ 0.07361(0.00407)‡ 0.09092(0.00598)‡ 0.09753(0.00605)‡ 0.06482(0.00238)

(20, 21) 0.09553(0.00590)‡ 0.57417(0.03518)‡ 0.05955(0.00345)‡ 0.06847(0.00317)‡ 0.07274(0.00344)‡ 0.05456(0.00105)

8

(10, 21) 0.23048(0.01577)‡ 0.61377(0.03536)‡ 0.09832(0.00359)‡ 0.12798(0.00568)‡ 0.13090(0.00707)‡ 0.08715(0.00368)

(15, 21) 0.13034(0.00783)‡ 0.61393(0.03757)‡ 0.06507(0.00260)‡ 0.07936(0.00281)‡ 0.07983(0.00349)‡ 0.06048(0.00254)

(20, 21) 0.08536(0.00337)‡ 0.60355(0.03762)‡ 0.05362(0.00216)‡ 0.06088(0.00219)‡ 0.06320(0.00213)‡ 0.05185(0.00136)

TABLE II

MEAN AND STANDARD DEVIATION VALUES OF HV METRIC OBTAINED BY SIX ALGORITHMS

Ins (t, nt) DC-MOEA DC-NSGA-II-A DC-NSGA-II DC-NSGA-III DC-TAEA dCMOEA

1

(10, 21) 2.60374(0.06625)‡ 1.95383(0.05459)‡ 3.28327(0.01632)‡ 3.15395(0.02404)‡ 3.10990(0.03625)‡ 3.34912(0.01415)

(15, 21) 3.13594(0.03853)‡ 1.93553(0.06234)‡ 3.42097(0.01150)‡ 3.34736(0.01916)‡ 3.34060(0.02179)‡ 3.45703(0.00782)

(20, 21) 3.34229(0.02054)‡ 1.94408(0.08024)‡ 3.46887(0.01025)‡ 3.42745(0.01028)‡ 3.42957(0.01280)‡ 3.49285(0.00384)

2

(10, 21) 2.84153(0.04604)‡ 1.99146(0.05402)‡ 3.30633(0.01902)‡ 3.19755(0.02965)‡ 3.19393(0.01496)‡ 3.37086(0.00965)

(15, 21) 3.23280(0.01984)‡ 2.01934(0.05110)‡ 3.41326(0.01049)‡ 3.34945(0.01293)‡ 3.35799(0.01189)‡ 3.44178(0.00560)

(20, 21) 3.37416(0.01230)‡ 2.02867(0.05891)‡ 3.44747(0.00947)‡ 3.40669(0.00745)‡ 3.42321(0.00689)‡ 3.46634(0.00387)

3

(10, 21) 2.92464(0.06816)‡ 1.94140(0.07697)‡ 3.28102(0.02151)‡ 3.15196(0.02788)‡ 3.10785(0.03041)‡ 3.35154(0.01319)

(15, 21) 3.23733(0.03320)‡ 1.97205(0.06935)‡ 3.41084(0.01378)‡ 3.34460(0.01673)‡ 3.33664(0.01845)‡ 3.45268(0.00701)

(20, 21) 3.38523(0.01847)‡ 1.96287(0.07138)‡ 3.46071(0.00931)‡ 3.42168(0.00999)‡ 3.42387(0.01216)‡ 3.48799(0.00401)

4

(10, 21) 3.01242(0.04379)‡ 1.98642(0.06159)‡ 3.29439(0.01592)‡ 3.18965(0.02119)‡ 3.19466(0.01835)‡ 3.35571(0.01001)

(15, 21) 3.30370(0.01666)‡ 1.97185(0.05262)‡ 3.40346(0.01027)‡ 3.34250(0.01108)‡ 3.35474(0.01184)‡ 3.43481(0.00503)

(20, 21) 3.44553(0.01128)‡ 2.00037(0.05305)‡ 3.44100(0.00655)‡ 3.40424(0.00653)‡ 3.41575(0.00583)‡ 3.45823(0.00345)

5

(10, 21) 2.63167(0.05798)‡ 1.89519(0.06576)‡ 3.27981(0.02171)‡ 3.17105(0.02787)‡ 3.10670(0.04173)‡ 3.37017(0.01575)

(15, 21) 3.15213(0.04511)‡ 1.91493(0.07719)‡ 3.43042(0.01743)‡ 3.35195(0.02616)‡ 3.34925(0.02209)‡ 3.47585(0.00845)

(20, 21) 3.36440(0.03241)‡ 1.90705(0.05774)‡ 3.47698(0.01349)‡ 3.43951(0.01333)‡ 3.44036(0.01377)‡ 3.51164(0.00337)

6

(10, 21) 2.87412(0.04340)‡ 1.95560(0.06411)‡ 3.29883(0.01667)‡ 3.20263(0.02323)‡ 3.18370(0.02756)‡ 3.36944(0.01193)

(15, 21) 3.23933(0.02207)‡ 1.94743(0.04891)‡ 3.40850(0.01270)‡ 3.34589(0.01407)‡ 3.35631(0.01644)‡ 3.44045(0.00479)

(20, 21) 3.37102(0.00899)‡ 1.97885(0.05960)‡ 3.44211(0.00927)‡ 3.41022(0.00866)‡ 3.41913(0.00970)‡ 3.46181(0.00749)

7

(10, 21) 2.97546(0.06900)‡ 1.91102(0.06525)‡ 3.27378(0.03021)‡ 3.17135(0.02920)‡ 3.09705(0.03963)‡ 3.37201(0.02073)

(15, 21) 3.25330(0.03195)‡ 1.91702(0.06613)‡ 3.41681(0.01849)‡ 3.35258(0.02546)‡ 3.33658(0.02393)‡ 3.46858(0.00956)

(20, 21) 3.40318(0.02562)‡ 1.93060(0.06085)‡ 3.46750(0.01662)‡ 3.42836(0.01533)‡ 3.43049(0.01510)‡ 3.50450(0.00315)

8

(10, 21) 3.02515(0.04753)‡ 1.92511(0.06544)‡ 3.29749(0.01880)‡ 3.19295(0.02305)‡ 3.18289(0.02647)‡ 3.35664(0.01033)

(15, 21) 3.31749(0.02167)‡ 1.93232(0.06606)‡ 3.39846(0.01032)‡ 3.34062(0.01181)‡ 3.35233(0.01577)‡ 3.43260(0.00521)

(20, 21) 3.44713(0.01150)‡ 1.94073(0.06526)‡ 3.44152(0.00887)‡ 3.40309(0.01013)‡ 3.41177(0.01033)‡ 3.45812(0.00278)

‡ and † indicate dCMOEA performs significantly better than and equivalently to the corresponding algorithm, respectively.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 12

dCMOEA and its variants are given in Table V.

As seen from Table V, dCMOEA performs significantly

better than its variants on most of the test problems in terms of

all three metrics, implying that these three key components are

crucial for improving the performance of dCMOEA on

DCMOPs. The IGD values of dCMOEA on the last four test

problems are small, illustrating that dCMOEA has a better

convergence capability for DCMOPs with oscillating objective

function modes. Notably, dCMOEA-S3 shows similar

performance in terms of the IGD metric on the first four test and

the eighth problems, mainly because dCMOEA-S3 and

dCMOEA adopt the similar constraint handling techniques that

are from [15]. In addition, dCMOEA achieves quite small SP

values on all test problems, implying that dCMOEA can search

for nondominated solutions with a good distribution for

DCMOPs. Notably, dCMOEA-S5 shows similar performance

in terms of the SP metric on the sixth test problem, mainly due

to the diversity of the randomly generated solutions.

In dCMOEA-S1, feasible solutions can be more easily

chosen for generating offspring. However, many feasible

solutions are far from the true POF. If there are many such

solutions in the parent population, then more poor children are

generated. Therefore, the poor performance of dCMOEA-S1

may be due to a large number of poor feasible solutions in the

parent population.

dCMOEA-S2 achieves the worst performance among the

compared variants on all test problems, which may be because

infeasible solutions are not considered if there are sufficient

feasible solutions. Indeed, some infeasible solutions close to

the true POF may carry promising population information and

generate competitive offspring. Simply abandoning them may

reduce the population diversity. The poor performance of

dCMOEA-S3 on some test problems may be attributable to the

fact that fewer feasible solutions are retained when the feasible

region is small. Note that the solutions in the POF must be

feasible. Fewer feasible solutions reduce the number of

nondominated solutions in the POF, decreasing the HV values

and increasing the IGD and SP values.

dCMOEA-S4 does not consider any information on the new

POF when an environmental change is detected, resulting in a

poor initial population in the search for nondominated solutions.

By contrast, when a change arises, dCMOEA-S5 completely

reinitializes the population. For a DCMOP, some previously

dominated solutions may become nondominated solutions in

the new environment. The initial population obtained by

dCMOEA-S5 has good diversity, but it miss many promising

previous solutions. In dCMOEA-S6, the retained solutions are

not updated. However, the previous feasible region may

become infeasible in the new environment, thus increasing the

number of infeasible solutions. Therefore, dCMOEA-S6 fails

to track the new POF.

In summary, by combining the three key components

proposed in dCMOEA, dCMOEA outperforms all compared

variants, showing that each component of dCMOEA plays an

TABLE IV

MEAN AND STANDARD DEVIATION VALUES OF SP METRIC OBTAINED BY SIX ALGORITHMS

Ins (t, nt) DC-MOEA DC-NSGA-II-A DC-NSGA-II DC-NSGA-III DC-TAEA dCMOEA

1

(10, 21) 0.14115(0.02533)‡ 0.29109(0.11887)‡ 0.04131(0.00840)‡ 0.12395(0.01604)‡ 0.07438(0.01458)‡ 0.02845(0.00260)

(15, 21) 0.05362(0.00779)‡ 0.24625(0.05206)‡ 0.02096(0.00185)‡ 0.07930(0.01323)‡ 0.03170(0.00553)‡ 0.01655(0.00181)

(20, 21) 0.02990(0.00363)‡ 0.25188(0.06279)‡ 0.01661(0.00134)‡ 0.06525(0.01930)‡ 0.02186(0.00183)‡ 0.01381(0.00137)

2

(10, 21) 0.11311(0.02056)‡ 0.31757(0.10076)‡ 0.03514(0.00633)‡ 0.14055(0.02545)‡ 0.05230(0.00653)‡ 0.02529(0.00202)

(15, 21) 0.04027(0.00336)‡ 0.29466(0.09136)‡ 0.01900(0.00174)† 0.09175(0.02244)‡ 0.02751(0.00448)‡ 0.01636(0.00154)

(20, 21) 0.02353(0.00190)‡ 0.27475(0.06815)‡ 0.01506(0.00129)‡ 0.06547(0.01725)‡ 0.02040(0.00154)‡ 0.01412(0.00125)

3

(10, 21) 0.14194(0.02043)‡ 0.26972(0.07586)‡ 0.04599(0.00890)‡ 0.12445(0.02877)‡ 0.08431(0.01878)‡ 0.02899(0.00188)

(15, 21) 0.06409(0.00839)‡ 0.25171(0.06333)‡ 0.02279(0.00179)‡ 0.08522(0.02013)‡ 0.03442(0.00950)‡ 0.01803(0.00170)

(20, 21) 0.03755(0.00704)‡ 0.26705(0.08285)‡ 0.01810(0.00157)‡ 0.06917(0.01913)‡ 0.02397(0.00194)‡ 0.01582(0.00141)

4

(10, 21) 0.10575(0.01617)‡ 0.29303(0.06676)‡ 0.03423(0.00594)‡ 0.14095(0.02076)‡ 0.05036(0.00875)‡ 0.02505(0.00213)

(15, 21) 0.03817(0.00336)‡ 0.30270(0.06437)‡ 0.01876(0.00350)‡ 0.09487(0.01947)‡ 0.02497(0.00284)‡ 0.01494(0.00130)

(20, 21) 0.02256(0.00192)‡ 0.29209(0.07005)‡ 0.01414(0.00116)‡ 0.06928(0.01617)‡ 0.01855(0.00140)‡ 0.01297(0.00160)

5

(10, 21) 0.14139(0.02591)‡ 0.27849(0.07592)‡ 0.04184(0.00569)‡ 0.12926(0.01884)‡ 0.08197(0.01788)‡ 0.02881(0.00259)

(15, 21) 0.05640(0.00986)‡ 0.29118(0.11025)‡ 0.02238(0.00182)‡ 0.08582(0.01797)‡ 0.03727(0.01080)‡ 0.01746(0.00142)

(20, 21) 0.03066(0.00231)‡ 0.30525(0.10851)‡ 0.01784(0.00130)† 0.05947(0.01589)‡ 0.02348(0.00328)‡ 0.01432(0.00106)

6

(10, 21) 0.12201(0.02190)‡ 0.26981(0.06150)‡ 0.03523(0.00380)‡ 0.12998(0.02777)‡ 0.05811(0.01227)‡ 0.02565(0.00207)

(15, 21) 0.04200(0.00352)‡ 0.32059(0.08405)‡ 0.01973(0.00145)† 0.08668(0.02374)‡ 0.02844(0.00256)‡ 0.01654(0.00139)

(20, 21) 0.02490(0.00172)‡ 0.29533(0.04826)‡ 0.01571(0.00123)‡ 0.07367(0.01697)‡ 0.02175(0.00233)‡ 0.01416(0.00097)

7

(10, 21) 0.15437(0.02601)‡ 0.28825(0.08546)‡ 0.04275(0.00577)‡ 0.13591(0.02666)‡ 0.08314(0.01816)‡ 0.02962(0.00218)

(15, 21) 0.06414(0.00963)‡ 0.26432(0.06374)‡ 0.02480(0.00231)‡ 0.09053(0.01809)‡ 0.04084(0.00871)‡ 0.01932(0.00160)

(20, 21) 0.03762(0.00478)‡ 0.27550(0.08123)‡ 0.01957(0.00135)‡ 0.06869(0.01996)‡ 0.02567(0.00279)‡ 0.01663(0.00112)

8

(10, 21) 0.11245(0.02100)‡ 0.31584(0.08201)‡ 0.03492(0.00513)‡ 0.14087(0.02686)‡ 0.05386(0.00959)‡ 0.02557(0.00186)

(15, 21) 0.03912(0.00413)‡ 0.27246(0.04382)‡ 0.01870(0.00167)‡ 0.10270(0.02206)‡ 0.02785(0.00579)‡ 0.01559(0.00142)

(20, 21) 0.02379(0.00246)‡ 0.29940(0.08554)‡ 0.01496(0.00122)‡ 0.07737(0.01465)‡ 0.01945(0.00177)‡ 0.01294(0.00158)

 (a) (b)

Fig. 4. Evolution curves of average IGD values for the first two test problems witht=15 and nt=21.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 13

important role in dealing with DCMOPs. Here, we would like

to explain the role of each key component in more detail. The

mating selection operator chooses the parents in accordance

with the modified objective functions, and infeasible solutions

with small constraint violations and objective function values

are given a high probability of selection, thereby improving the

diversity of the parents and allowing dCMOEA to utilize

infeasible solutions efficiently and effectively to generate

offspring with appealing performance. The population

selection strategy can balance the convergence rate of the

population with the population diversity. This is because when

the number of feasible solutions becomes small, dCMOEA can

retain all feasible solutions, thus helping to rapidly track the

new POF and POS, whereas when the number of feasible

solutions is large, infeasible solutions with small constraint

violations and objective function values are propagated to the

next generation, thereby diversifying the population.

Introducing random solutions in the change response stage can

allow the algorithm to explore more information on the new

environment to search for members of the population close to

the new POF, and the update strategy for the retained previous

solutions is beneficial for convergence when the new true POF

moves. In summary, these three key components of dCMOEA

play important roles in solving DCMOPs.

B. Influence of the Number of Decision Variables

Our preliminary experimental results show that the

computation time needed to obtain a feasible solution increases

as the number of decision variables increases. Indeed, for the

test problems with the current parameters, the computation time

is unacceptable when the number of decision variables is more

than 15. To examine the performance of dCMOEA on instances

with 15 and 20 decision variables, we revised z(t), which

controls the upper bound of the feasible region for the designed

instances. For test problems with 15 decision variables, z(t) was

revised to 8. The value of z(t) in test instances with 20 decision

variables was revised to 12. Considering that DNSGA-II-A,

DC-MOEA, and DC-TAEA performed poorly in the above

experiments, for the experiments reported in this subsection,

the test problems with 15 and 20 decision variables were solved

using only DC-NSGA-II, DC-NSGA-III, and dCMOEA. The

values and standard deviations of the three performance metrics

(i.e., HV, IGD, and MS) for these algorithms on the test

problems with 15 and 20 decision variables are listed in Section

S-X of the supplementary material.

It can be observed from the corresponding tables that
dCMOEA achieves the best performance on these instances

among the three tested algorithms, thus demonstrating that

dCMOEA can successfully solve DCMOPs with up to 20

decision variables.

VII. CONCLUSION

In a DCMOP, the true POF is determined by the

unconstrained POF and feasible region. This paper proposes a
set of test instances for DCMOPs that consider simultaneous

changes in the feasible region and unconstrained POF. The

unconstrained POFs in the proposed test problems exhibit two

modes. In one mode, their shapes remain unchanged with
dynamism; in the other mode, the shapes of POFs oscillate

among several optimization modes. During optimization, the

feasible region may increase or decrease with dynamism,

causing the true POF to become disconnected. The proposed
test problems can be used to judge an algorithm’s capability of

tracking the new POF and handling infeasible solutions.

Furthermore, six dynamic constrained MOEAs for

optimization were tested on eight test problems, and the results

were evaluated in terms of three performance metrics. The
comparison shows that the designed instances are effective and

useful for distinguishing the performance of each algorithm.
We also propose an algorithm called dCMOEA for handling

MOPs with time-varying constraints and objective functions. In

dCMOEA, the mating selection and population selection
operators apply the constraint handling mechanism proposed in
[15], allowing infeasible solutions with small constraint
violations and objective function values to play a useful role in
searching for nondominated solutions. The proposed selection
operator can adaptively select both feasible and infeasible
solutions for inclusion in the population, thus balancing the
trade-off between the population diversity and convergence
capability of dCMOEA. When a change is detected, dCMOEA

TABLE V

PERFORMANCE COMPARISON OF DCMOEA AND ITS VARIANTS WITH (t, nt)=(10, 21)

Ins Indicator dCMOEA-S1 dCMOEA-S2 dCMOEA-S3 dCMOEA-S4 dCMOEA-S5 dCMOEA-S6 dCMOEA

1

HV 3.23600(0.02333)‡ 3.09479(0.06197)‡ 3.34999(0.01763)† 3.24582(0.02456)‡ 3.34134(0.01844)† 2.94287(0.06076)‡ 3.34912(0.01415)

IGD 0.13381(0.00723)‡ 0.16633(0.02138)‡ 0.09321(0.00566) 0.13354(0.00885)‡ 0.09738(0.00539)† 0.24439(0.02179)‡ 0.09596(0.00535)

SP 0.04339(0.00659)‡ 0.09258(0.02439)‡ 0.03764(0.00385)‡ 0.03535(0.00361)‡ 0.03042(0.00291)‡ 0.04714(0.00536)‡ 0.02845(0.00260)

2

HV 3.28356(0.01647)‡ 3.08864(0.04281)‡ 3.36164(0.01060)‡ 3.29059(0.01483)‡ 3.35859(0.01104)‡ 3.05064(0.05367)‡ 3.37086(0.00965)

IGD 0.11552(0.00483)‡ 0.16810(0.01697)‡ 0.08449(0.00376)† 0.11485(0.00560)‡ 0.08666(0.00293)‡ 0.20389(0.01896)‡ 0.08331(0.00337)

SP 0.03791(0.00598)‡ 0.09838(0.03125)‡ 0.03393(0.00294)‡ 0.03169(0.00274)‡ 0.02725(0.00196)‡ 0.04325(0.00450)‡ 0.02529(0.00202)

3

HV 3.24221(0.03143)‡ 3.03914(0.05939)‡ 3.34662(0.01817)† 3.24791(0.02973)‡ 3.33345(0.01673)‡ 2.92370(0.06056)‡ 3.35154(0.01319)

IGD 0.13353(0.01137)‡ 0.18738(0.02449)‡ 0.09453(0.00621)† 0.13301(0.01042)‡ 0.09968(0.00496)‡ 0.24971(0.02220)‡ 0.09419(0.00486)

SP 0.04412(0.00665)‡ 0.11218(0.03120)‡ 0.03975(0.00302)‡ 0.03826(0.00257)‡ 0.03201(0.00267)‡ 0.04808(0.00574)‡ 0.02899(0.00188)

4

HV 3.26071(0.01831)‡ 3.10608(0.04318)‡ 3.34965(0.01406)† 3.28397(0.01422)‡ 3.35259(0.00967)† 3.03569(0.07549)‡ 3.35571(0.01001)

IGD 0.12000(0.00548)‡ 0.15818(0.01378)‡ 0.08258(0.00481)† 0.11280(0.00493)‡ 0.08440(0.00292)† 0.20570(0.02710)‡ 0.08380(0.00380)

SP 0.03653(0.00462)‡ 0.11037(0.02822)‡ 0.03310(0.00297)‡ 0.03100(0.00247)‡ 0.02616(0.00223)‡ 0.04201(0.00520)‡ 0.02505(0.00213)

5

HV 3.26599(0.02574)‡ 3.11162(0.05083)‡ 3.36187(0.01620)‡ 3.27393(0.02094)‡ 3.35415(0.01645)‡ 2.95660(0.06020)‡ 3.37017(0.01575)

IGD 0.13124(0.00737)‡ 0.17254(0.01723)‡ 0.09908(0.00471)‡ 0.13126(0.00754)‡ 0.10186(0.00478)‡ 0.24972(0.02242)‡ 0.09758(0.00501)

SP 0.04380(0.00604)‡ 0.08651(0.02872)‡ 0.03967(0.00702)‡ 0.03822(0.00406)‡ 0.03227(0.00253)‡ 0.04892(0.00585)‡ 0.02881(0.00259)

6

HV 3.29351(0.01474)‡ 3.11023(0.05243)‡ 3.36331(0.01023)‡ 3.29265(0.02000)‡ 3.35368(0.01153)‡ 3.08168(0.06303)‡ 3.36944(0.01193)

IGD 0.11368(0.00484)‡ 0.16535(0.01919)‡ 0.08872(0.00374)‡ 0.11474(0.00671)‡ 0.09106(0.00353)‡ 0.19333(0.02293)‡ 0.08608(0.00406)

SP 0.03697(0.00388)‡ 0.10095(0.02731)‡ 0.03479(0.00270)‡ 0.03282(0.00311)‡ 0.03001(0.00410)‡ 0.04270(0.00513)‡ 0.02565(0.00207)

7

HV 3.24416(0.04267)‡ 3.06303(0.07185)‡ 3.34695(0.02612)‡ 3.26656(0.03718)‡ 3.34290(0.01990)‡ 2.99122(0.07194)‡ 3.37201(0.02073)

IGD 0.13876(0.01520)‡ 0.19527(0.02842)‡ 0.10506(0.00857)‡ 0.13253(0.01313)‡ 0.10523(0.00514)‡ 0.23428(0.02559)‡ 0.09728(0.00678)

SP 0.04229(0.00459)‡ 0.08423(0.02570)‡ 0.04103(0.00437)‡ 0.03980(0.00407)‡ 0.03539(0.00387)‡ 0.04763(0.00529)‡ 0.02962(0.00218)

8

HV 3.25934(0.02773)‡ 3.09790(0.06117)‡ 3.35078(0.01355)‡ 3.28343(0.01573)‡ 3.34494(0.01371)‡ 3.02581(0.06788)‡ 3.35664(0.01033)

IGD 0.12095(0.00883)‡ 0.16716(0.02083)‡ 0.08733(0.00393)† 0.11382(0.00580)‡ 0.09054(0.00382)‡ 0.20989(0.02456)‡ 0.08715(0.00368)

SP 0.03863(0.00520)‡ 0.09564(0.03359)‡ 0.03351(0.00336)‡ 0.03215(0.00249)‡ 0.02816(0.00240)‡ 0.04590(0.00583)‡ 0.02557(0.00186)

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 14

reuses some previous solutions with small fitness values and
re-evaluates them. Afterward, dCMOEA updates these
previous solutions on the basis of useful information obtained
from the new environment, i.e., the feasibility ratio and the
newly obtained nondominated solutions, to provide a
reinitialized population for the algorithm.

Despite that dCMOEA has shown appealing performance on
the proposed test problems, this paper has several aspects that

limit its applicability in certain situations. The parameter

settings for s(t), m(t), and z(t) used in the proposed benchmark

problems depend heavily on trial and error. Moreover, this

study does not use dCMOEA to solve the DCMOPs with three
or many objectives. Regarding the change response, dCMOEA

is designed for tracking the new true POF with no consideration

about the transition cost of a new solution.

Considering that scalability plays a crucial role in designing
an efficient algorithm [55], in the future we will study the

scalable dynamic constrained many-objective optimization

algorithms and design the benchmark problems that are close to

real-world applications and can easily be extended to three or

more objective functions. In many real-world applications,

changing the production solution introduces additional cost

[64]. Thus, we will borrow the ideas proposed in [57] to design

a general framework that can find robust solutions. In addition,

there are other types of changes in the true POF and the feasible
region of objective functions, which we will study in the future.

REFERENCES

[1] K. Deb, N. U. B. Rao, and S. Karthik, “Dynamic multiobjective

optimization and decision-making using modified NSGA-II: A case study

on hydro-thermal power scheduling,” in Proc. 4th Int. Conf. Evol. Multi

Criterion Optim., vol. 3, 2007, pp. 803–817.

[2] M. Farina, K. Deb, and P. Amato, “Dynamic multiobjective optimization

problems: Test cases, approximations, and applications,” IEEE Trans.

Evol. Comput., vol. 8, no. 5, pp. 425–442, Oct. 2004.

[3] S. B. Gee, K. C. Tan, and H. A. Abbass, “A benchmark test suite for

dynamic evolutionary multiobjective optimization,” IEEE Trans. Cyber.,

vol. 47, no. 2, pp. 461–472, Feb. 2017.

[4] S. Y. Jiang and S. X. Yang, “Evolutionary dynamic multiobjective

optimization benchmarks and algorithm comparisons,” IEEE Trans.

Cyber., vol. 47, no. 1, pp. 198–211, Jan. 2017.

[5] Y. Jin and B. Sendhoff, “Constructing dynamic optimization test

problems using the multiobjective optimization concept,” in Proc.

EvoWorkshops Appl. Evol. Comput., 2004, pp. 525–536.

[6] K. Deb, A, Pratap, and T. Meyarivan, “Constrained test problems for

multiobjective evolutionary optimization,” in Proc. 1st Int. Conf.

Evolutionary Multi-Criterion Optimization, 2001, pp. 284–298.

[7] S. Biswas, S. Das, P. N. Suganthan, and C. A. Coello Coello,

“Evolutionary multiobjective optimization in dynamic environments: A

set of novel benchmark functions,” in Proc. IEEE Congr. Evol. Comput.,

Beijing, China, 2014, pp. 3192–3199.

[8] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: A

comparative case study and the strength Pareto approach,” IEEE Trans.

Evol. Comput., vol. 3, no. 4, pp. 257–271, Nov. 1999.

[9] C. A. C. Coello and M. R. Sierra, “A study of the parallelization of a

coevolutionary multiobjective evolutionary algorithm,” in Proc. Mexican

Int. Conf. Artif. Intell., 2004, pp. 688–697.

[10] C. K. Goh and K. C. Tan, “An investigation on noisy environment in

evolutionary multiobjective optimization,” IEEE Trans. Evol. Comput.,

vol. 11, no. 3, pp. 354–381, Jun. 2007.

[11] C. K. Goh and K. C. Tan, “A competitive-cooperative coevolutionary

paradigm for dynamic multiobjective optimization,” IEEE Trans. Evol.

Comput., vol. 13, no. 1, pp. 103–127, Feb. 2009.

[12] K. Deb, “Multiobjective genetic algorithms: Problem difficulties and

construction of test problems,” Evol. Comput., vol. 7, no. 3, pp. 205-230,

1999.

[13] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,

vol. 6, no. 2, pp. 182–197, Aug. 2002.

[14] S. Venkatraman, and G. G. Yen, “Genetric framework for constrained

optimization using genetic algorithms,” IEEE Trans. Evol. Comput., vol.

9, no. 4, pp. 424–435, Aug. 2005.

[15] Y. G. Woldesenbet, G. G. Yen, and B. G. Tessema, “Constraint handling

in multiobjective evolutionary optimization,” IEEE Trans. Evol. Comput.,

vol. 13, no. 3, pp. 514–525, Jun. 2009.

[16] A. Zhou, Y. Jin, and Q. Zhang, “A population prediction strategy for

evolutionary dynamic multiobjective optimization,” IEEE Trans. Cyber.,

vol. 44, no. 1, pp. 40–53, Jan. 2014.

[17] Y. Wu, Y. Jin, and X. Liu, “A directed search strategy for evolutionary

dynamic multiobjective optimization,” Soft Comput., vol. 19, no. 11, pp.

3221-3235, Nov. 2015.

[18] S. Y. Jiang and S. X. Yang, “A steady-state and generational evolutionary

algorithm for dynamic multiobjective optimization,” IEEE Trans. Evol.

Comput., vol. 21, no. 1, pp. 65–82, Feb. 2017.

[19] S. B. Gee, K. C. Tan, and C. Alippi, “Solving multiobjective optimization

problems in unknown dynamic environments: an inverse modeling

approach,” IEEE Trans. Cyber., vol. 47, no. 2, pp. 4223–4234, Dec. 2017.

[20] M. Jiang, Z. Q. Huang, L. M. Qiu, W. Z. Huang, and G. G. Yen, “Transfer

learning-based dynamic multiobjective optimization algorithms,” IEEE

Trans. Evol. Comput., vol. 22, no. 4, pp. 501–514, Aug. 2018.

[21] K. Li, R. Z. Chen, G. T. Fu, and X. Yao, “Two-archive evolutionary

algorithm for constrained multiobjective optimization,” IEEE Trans. Evol.

Comput., vol. 23, no. 2, pp. 303-315, Apr. 2019.

[22] D. Gong, B. Xu, Y. Zhang, Y. Guo, and S. Yang. “A Similarity-based

cooperative co-evolutionary algorithm for dynamic interval

multi-objective optimization problems,” IEEE Trans. Evol. Comput.,

2019, to be published. DOI: 10.1109/TEVC.2019.2912204.

[23] M. Rong, D. W. Gong, Y. Zhang, Y. C. Jin, and W. Pedrycz,

“Multidirectional prediction approach for dynamic multiobjective

optimization problems,” IEEE Trans. Cyber., vol. 49, no. 9, pp.

3362-3374, Sept. 2019.

[24] R. Azzouz, S. Bechikh, L. B. Said, and W. Trabelsi, “Handing

time-varying constraints and objectives in dynamic evolutionary

multiobjective optimization,” Swarm Evol. Comput., vol. 39, pp. 222–248,

Apr. 2018.

[25] R. Azzouz, S. Bechikh, and L. Ben Said, “Multiobjective optimization

with dynamic constraints and objective: new challenges for evolutionary

algorithm,” in Proc. Annu. Conf. Genet. Evol. Comput. (GECCO), 2016,

pp. 615–622.

[26] C. A. C. Coello and A. D. Christiansen, “MOSES: A multiobjective

optimization tool for engineering design,” Eng. Opt., vol. 31, no. 3, pp.

337–368, 1999.

[27] R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff, “A reference vector

guided evolutionary algorithm for many-objective optimization,” IEEE

Trans. Evol. Comput., vol. 20, no. 5, pp. 773–791, Oct. 2016.

[28] M. Cámara, J. Ortega, and F. de Toro, “A single front genetic algorithm

for parallel multiobjective optimization in dynamic environments,”

Neurocomputing, vol. 72, no. 16–18, pp. 3570–3579, Oct. 2009.

[29] T. Takahama and S. Sakai, “Efficient constrained optimization by the

-constrained rank-based differential evolution,” in Proc. IEEE World

Congr. Comput. Intell., Jun. 2012, pp. 1–8.

[30] M. Asafuddoula, T. Ray, and R. A. Sarker, “A decomposition-based

evolutionary algorithm for many objective optimization,” IEEE Trans.

Evol. Comput., vol. 19, no. 3, pp. 445–460, Jun. 2015.

[31] H. Jain and K. Deb, “An evolutionary many-objective optimization

algorithm using reference-point based nondominated sorting approach,

part II: handing constraints and extending to an adaptive approach,” IEEE

Trans. Evol. Comput., vol. 18, no. 4, pp. 602–622, Aug. 2014.

[32] Z. Fan, W. Li, X. Cai, K. Hu, H. Lin, and H. Li, “Angle-based constrained

dominance principle in MOEA/D for constrained multiobjective

optimization problems,” in Proc. IEEE Congr. Evol. Comput., 2016, pp.

460-467.

[33] A. Angantyr, J. Andersson, and J.-O. Aidanpaa, “Constrained

optimization based on a multiobjective evolutionary algorithm,” in Proc.

IEEE Congr. Evol. Comput., 2003, pp. 1560–1567.

[34] N. Young, “Blended ranking to cross infeasible regions in constrained

multiobjective problems,” in Proc. Int. Conf. Comput. Intell. Model.

Control Autom., 2005, pp. 191–196.

[35] K. Li, K. Deb, Q. Zhang, and S. Kwong, “An evolutionary manyobjective

optimization algorithm based on dominance and decomposition,” IEEE

Trans. Evol. Comput., vol. 19, no. 5, pp. 694–716, Dec. 2015.

[36] C. Peng, H. Liu, and F. Gu, “An evolutionary algorithm with directed

weights for constrained multiobjective optimization,” Appl. Soft Comput.,

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 15

vol. 60, pp. 613–622, Nov. 2017

[37] W. Ning, B. Guo, Y. Yan, X. Wu, J. Wu, and D. Zhao, “Constrained

multiobjective optimization using constrained nondominated sorting

combined with an improved hybrid multiobjective evolutionary

algorithm,” Eng. Opt., vol. 49, no. 10, pp. 1645–1664, Jan. 2017.

[38] A. E. Sorkhabi, M. D. Amiri, and A. R. Khanteymoori, “Duality evolution:

an efficient approach to constraint handling in multiobjective particle

swarm optimization,” Soft Comput., vol. 21, no. 24, pp. 7251–7267, Dec.

2017.

[39] K. Harada, J. Sakuma, I. Ono, and S. Kobayashi, “Constraint-handling

method for multiobjective function optimization: Pareto descent repair

operator,” in Proc. Int. Conf. Evol. Multi-Criterion Opt., 2007, pp.

364–374.

[40] H. K. Singh, T. Ray, and W. Smith, “C-PSA: constrained pareto

simulated annealing for constrained multiobjective optimization,” Inf.

Sci., vol. 180, no. 13, pp. 2499–2513, Jul. 2010.

[41] L. Jiao, J. Luo, R. Shang, and F. Liu, “A modified objective function

method with feasible-guiding strategy to solve constrained multiobjective

optimization problems,” Appl. Soft Comput., vol. 14, pp. 363–380, Jan.

2014.

[42] Y. G. Woldesenbet and G. G. Yen, “Dynamic evolutionary algorithm

with variable relocation,” IEEE Trans. Evol. Comput., vol. 13, no. 3, pp.

500-513, Jun. 2009.

[43] S. Yang and R. Tinós, “A hybrid immigrants scheme for genetic

algorithms in dynamic environments,” Int. J. Autom. Comput., vol. 4, no.

3, pp. 243–254, Jul. 2007.

[44] S. Yang, “Genetic algorithms with memory-and elitism-based immigrants

in dynamic environments,” Evol. Comput., vol. 16, no. 3, pp. 385–416,

Sept. 2008.

[45] M. Mavrovouniotis and S. Yang, “Genetic algorithms with adaptive

immigrants for dynamic environments,” in Proc. IEEE Congr. Evol.

Comput., Jun. 2013, pp. 2130–2137.

[46] Y. Wang and B. Li, “Multi-strategy ensemble evolutionary algorithm for

dynamic multiobjective optimization,” Memetic Comput., vol. 2, no. 1, pp.

3–24, Mar. 2010.

[47] R. Azzouz, S. Bechikh, and L. B. Said, “A dynamic multiobjective

evolutionary algorithm using a change severity-based adaptive population

management strategy,” Soft Comput., vol. 21, no. 4, pp. 885–906, Feb.

2017.

[48] J. P. Li, Y. Wang, S. X. Yang, and Z. X. Cai, “A comparative study of

constraint-handling techniques in evolutionary constrained

multiobjective optimization,” in Proc. IEEE Congr. Evol. Comput.,

Vancouver, BC, Canada, 2016, pp. 4175–4182.

[49] W. Kong, T. Chai, S. Yang, and J. Ding, “A hybrid evolutionary

multiobjective optimization strategy for the dynamic power supply

problem in magnesia grain manufacturing,” Appl. Soft Comput., vol. 13,

no. 5, pp. 2960-2969, 2013.

[50] R. Liu, J. Fan, and L. Jiao, “Integration of improved predictive model and

adaptive differential evolution based dynamic multiobjective

evolutionary optimization algorithm,” Appl. Intell., vol. 43, no. 1, pp.

192-207, 2015.

[51] H. Richter, “Detecting change in dynamic fitness landscapes,” in Proc.

IEEE Congr. Evol. Comput. (CEC). Trondherim, Norway, 2009, pp.

1613-1620.

[52] J. R. Schott, “Fault tolerant design using single and multicriteria genetic

algorithm optimization,” M.S. thesis, Dept. Aeronaut. Astronaut.,

Massachusetts Inst. Technol., Cambridge, MA, USA, 1995.

[53] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics

Bull., vol. 1, no. 6, pp. 80–83, 1945.

[54] K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous

search space,” in Complex Syst., Apr. 1995, vol. 9, pp. 115-148.

[55] D. Yazdani, M. N. Omidvar, J. Branke, T. T. Nguyen, and X. Yao,

“Scaling up dynamic optimization problems: a divide-and-conquer

approach,” IEEE Trans. Evol. Comput., DOI:

10.1109/TEVC.2019.2902626.

[56] J. Branke, “Memory enhanced evolutionary algorithms for changing

optimization problems,” in Proc. IEEE Congr. Evol. Comput. (CEC), vol.

3. Washington, DC, USA, 1999, pp. 1875–1882.

[57] D. Yazdani, T. T. Nguyen, and J. Branke, “Robust optimization over time

by learning problem space characteristics,” IEEE Trans. Evol. Comput.,

vol. 23, no. 1, pp. 143–155, Feb. 2019.

[58] T. P. Runarsson and X. Yao, “Stochastic ranking for constrained

evolutionary optimization,” IEEE Trans. Evol. Comput., vol. 4, no. 3, pp.

284–294, Sept. 2000.

[59] T. P. Runarsson and X. Yao, “Search biases in constrained evolutionary

optimization,” IEEE Trans. Syst., Man, Cybern., vol. 35, no. 2, pp.

233–243, May 2005.

[60] R. Allmendinger and J. Knowles, “On handling ephemeral resource

constraints in evolutionary search,” Evol. Comput., vol. 21, no. 3, pp.

497–531, Sept. 2013.

[61] R. Allmendinger, J. Handl, and J. Knowles, “Multiobjective optimization:

When objectives exhibit non-uniform latencies,” Eur. J. Oper. Res., vol.

243, no. 2, pp. 497–513, Jun. 2015.

[62] H. Liang, Y. Liu, F. Li, and Y. Shen, “Dynamic economic/emission

dispatch including PEVs for peak shaving and valley filling,” IEEE Trans.

Ind. Electron. Vol. 66, no. 4, pp. 2880-2890, Apr. 2019.

[63] L. T. Bui, J. Branke, and H. A. Abbass, “Multiobjective optimization for

dynamic environments,” in Proc. IEEE Congr. Evol. Comput., 2005, pp.

2349–2356.

[64] D. Yazdani, J. Branke, M. N. Omidvar, T. T. Nguyen, and X. Yao,

“Changing or keeping solutions in dynamic optimization problems with

switching costs,” in Proc. Annu. Conf. Genet. Evol. Comput. (GECCO),

Madrid, Spain, 2018, pp. 1095–1102.

Qingda Chen (S’19) received the B.S. degree from

Yantai University, Yantai, China, in 2013. Since 2014,

he has been working toward the Ph.D. degree in

control theory and control engineering at Northeastern

University.

His current research interests include computational

intelligence and its application in the industrial

processes.

Jinliang Ding (SM’14) received the Ph.D. degree

incontrol theory and control engineering from

Northeastern University, Shenyang, China, in 2012.

His current research interests include modeling,

plant-wide control and optimization for the complex

industrial systems, stochastic distribution control, and

multiobjective evolutionary algorithms and its

application.

Prof. Ding was a recipient of the Young Scholars

Science and Technology Award of China in 2016, the

National Science Fund for Distinguished Young

Scholars in 2015 and the National Technological Invention Award in 2013.

Shengxiang Yang (M’00–SM’14) received the B.Sc.

and M.Sc. degrees in automatic control and the Ph.D.

degree in systems engineering from Northeastern

University, Shenyang, China in 1993, 1996, and 1999,

respectively.

His current research interests include evolutionary

and genetic algorithms, swarm intelligence,

computational intelligence in dynamic and uncertain

environments, artificial neural networks for

scheduling, and relevant real-world applications.

Prof. Yang serves as an Associate Editor of the

IEEE TRANSACTIONS ON EVOLUTIONARY

COMPUTATION, IEEE TRANSACTIONS ON CYBERNETICS etc.

Tianyou Chai (M’90–SM’97–F’08) received the

Ph.D. degree in control theory and engineering from

Northeastern University, Shenyang, China, in 1985,

where he became a Professor in 1988 and a Chair

Professor in 2004.

His current research interests include adaptive

control, intelligent decoupling control, integrated

plant control and systems, and the development of

control technologies with applications to various

industrial processes.

Prof. Chai is a member of the Chinese Academy of

Engineering, an academician of International Eurasian Academy of Sciences,

and IFAC Fellow.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

This is the supplementary material to the paper entitled “A

Novel Evolutionary Algorithm for Dynamic Constrained

Multiobjective Optimization Problems”, submitted to IEEE

Transactions on Evolutionary Computation.

CONTENTS

Section S-I Mathematical functions described in Fig. 1.

Section S-II Real-world applications linking to the four

types of the proposed problems.

Section S-III Ideas on scaling up the proposed test

problems

Section S-IV True POF and POS of each test problem

Section S-V Algorithm parameter selection

Section S-VI Performance ranking of each algorithm.

Section S-VII Computational time of each algorithm on

each test problem.

Section S-VIII Evolution curves of average IGD values for

the third to eight test problems.

Section S-IX The POFs obtained by the compared

algorithms on the eight test problems.

Section S-X Three performance metrics of algorithms

on the test problems with 15 and 20 decision

variables.

This work was supported in part by the National Natural Science Foundation

of China under Grant 61988101, Grant 61525302, Grant 61590922, and Grant

61673331; in part by the National Key Research and Development Program of

China under Grant 2018YFB1701104; and in part by the Xingliao Plan of

Liaoning Province under Grant XLYC1808001. (Corresponding author:

Jinliang Ding.)

Q. Chen, J. Ding, and T. Chai are with the State Key Laboratory of

Synthetical Automation for Process Industries, Northeastern University,

Shenyang, 110819, China (e-mail: cqd0309@126.com;

jlding@mail.neu.edu.cn; tychai@mail.neu.edu.cn).

S. Yang is with the State Key Laboratory of Synthetical Automation for

Process Industries, Northeastern University, Shenyang, 110819, China, and

also with the Centre for Computational Intelligence. School of Computer

Science and Informatics, De Montfort University, Leicester, LE1 9BH, U. K.

(syang@dmu.ac.uk).

S-I. MATHEMATICAL FUNCTIONS DESCRIBED IN FIG. 1

In this paper, the true POF of a dynamic constrained

multiobjective optimization problem (DCMOP) is given in Fig.

1 of this paper, and the corresponding mathematical functions

of this DCMOP are Equation (S-1) in which t is set to 7.

1 2

10
2

1 1 1

2

10
2

2 1 1

2

2 1

min (,) ((,), (,))

(,) (1 (sin(0.05)))(0.05sin(4))

(,) (1 (sin(0.05)))(3 0.05 0.05sin(4))

(,) sin (,) (2.36 0.01)
4

. . 0.

T

j

j

j

j

F t f t f t

obj f t x t x x

f t x t t x x

f t f t t

s t

 

 








 
    


      


    





x x x

x

x

x x

6

2 1

1 2

2 sin(4 (sin() ((,) 1) cos() (,)))
16 16

0.73 (,)+ (,) 6 0

f t f t

f t f t

 






       

   



x x

x x

(S-1)

S-II. REAL-WORLD APPLICATIONS LINKING TO THE FOUR

TYPES OF THE PROPOSED PROBLEMS

The real-world multiobjective optimization problems (MOPs)

involved in the existing literature are mainly MOPs with

constraints or dynamism. To the best of our knowledge, the

real-world optimization problems solved in the existing

literature do not consider dynamism, constraints, and

multiobjective simultaneously. Indeed, many real-world

problems are DCMOPs. Considering this fact, we take the fluid

catalytic cracking-distillation (FCC-D) process, a DCMOP we

are working on, as an example to illustrate the four types of the

true POF and the feasible region mentioned in Section III of this

paper.

The FCC-D process is one of the most energy-consuming

steps in refineries, which involves complicated physical and

chemical reactions. In the FCC-D process, the heavy oil is

cracked into the light hydrocarbons in the presence of catalyst,

and then the light hydrocarbons are separated into different

products (i.e., gasoline, diesel, and natural gas) by the

distillation process. To minimize the energy consumption and

maximize the economic benefits of products, refineries usually

optimize the operating variables that control the stable

operation of production units according to production

constraints (i.e., yield constraints of different products). During

Qingda Chen, Student Member, IEEE, Jinliang Ding, Senior Member, IEEE,

Shengxiang Yang, Senior Member, IEEE, and Tianyou Chai, Fellow, IEEE

A Novel Evolutionary Algorithm for Dynamic

Constrained Multiobjective Optimization

Problems

—Supplementary Material

2 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

the optimization of the operating variables, the operator usually

changes the yield constraints of products to avoid large

production fluctuations and production accidents when the

production scenarios are switched. Therefore, optimizing the

operating variables of the FCC-D process is a DCMOP, which

aims at minimizing energy consumption and maximizing the

economic benefits of the products, and takes product yields as

dynamic constraints.

For the ease of readers understanding, we will describe the

mathematical model of the FCC-D process in Equation (S-2).

The definitions of the indices, variables and parameters

employed in the model are given as follows:

Indices

p Product index, p=1 (natural gas), 2 (gasoline), and 3

(diesel).

t Dynamic environment index.

w Pumparound (PA) index .

Variables

X(t) Operating variable vector at t.

xj(t) The jth operating variable at t.

YP(t) The pth product yield at t.

YP(t) Yield of pollutant at t.
HF(t) Mass flow rate of heavy oil at t.

CT(t) Temperature of the heated catalyst at t.
RT(t) Outlet temperature of the riser at t.

CF(t) Mass flow rate of the catalyst circulation rate at t.
SF(t) Flow rate of the stripping steam at t.

LF(t) Flow rate of the lifting steam at t.

PQw(t) Calorific value of heat recovery in the wth PA of the

fractionator at t.
HT(t) Temperature of the heavy oil at t.

Ylp (t) Lower bound of demand for the pth product at t.

Yup (t) Upper bound of demand for the pth product at t.

Parameters

PYp Unit price of the pth product.

cYS Unit price of removing pollutant

cSS Unit price of heavy oil

cFF Unit price of steam

 Heat transfer efficiency in the PAs

FT Energy required to raise 1 mol of heavy oil by 1 °C

lxj Lower bound of xj(t).

uxj Upper bound of xj(t).

The mathematical model of the FCC-D process can be

described as follows [i.e., Equation (S-2)]:

 

3

1

3

1

max ((),) (()) () ()

min ((),)=(() ()) () (() ())

 () ()

() 0, 1,

. .

product p p

p

energy

w

w

k

f t t Y t PY cYS YP t cSS HF t

obj f t t CT t t t

t HT t

RT t CF t SF LF cFF

PQ HF t FT

h t k

s t






      
      

    


 





X

X

  
              

                     1 2 3

, , , , , ,

, , , , , , ,

...,

() () ()

()

()=

,

()

,

p p p

p p

YP

j j j

t

CF t CT t SF t LF t HF t RT t HT t

t

h

Yl t Y t Y

CF t CT t SF t LF t HF t RT t HT t PQ t PQ t

u t

Y t g

YP t g

lx x

PQ t

t ux


  
 


   
  



X

X

(S-2)

where h is the number of equality constraints, and hk(x, t) is the

kth equality constraint. gp(X(t)) denotes the complicated

nonlinear relationship between the pth product yield and X(t)

gYP(CF(t), CT(t), SF(t), LF(t), HF(t), RT(t), HT(t)) denotes the

nonlinear relationship between the pollutant yield and

operating variables (i.e., CF(t), CT(t), SF(t), LF(t), HF(t), RT(t),

HT(t)). Note that the above nonlinear relationships can be

modeled either by using neural networks (e.g., reference [s1])

or by using [s2] as a rigorous model.

This paper uses t=1, 2, and 3 to denote different dynamic

environments of the DCMOP in the FCC-D process

(FCC-D-DCMOP). Subsequently, we provides the diagrams of

true POF and feasible regions arising in the four types

mentioned in Section III of this paper. Specifically, t=1 denotes

the current environment of the FCC-D-DCMOP, t=2 represents

the environment in which product yield constraints change due

to different production scenarios, and t=3 denotes the

environment in which the operator adjusts the product yield

constraints based on the optimized operating variables.

Note that the real POF and the feasible region of the

FCC-D-DCMOP, in practice, show hundreds of types that vary

with dynamic environments, and we only describe four typical

types corresponding to the test problems proposed in this paper.

1) Type I.

The feasible region of the FCC-D-DCMOP becomes small if

the feasible ranges of product yields are small at t=1 (e.g., Yup(t)

decreases, and Ylp(t) increases at t=1), which may lead to the

infeasibility of the unconstrained POF of the FCC-D-DCMOP

(i.e., the unconstrained POF is not in the feasible region) and

cause that the true POF of the FCC-D-DCMOP is only

determined by the lower bound of the feasible region. In

practice, the lower bound of the feasible region may be

continuous if the solutions (i.e, X(t)) corresponding to the lower

bound of the feasible region are far from the bound of X(t),

causing that the true POF of the FCC-D-DCMOP is continuous

at t=1, as shown in Fig. S-1-a).

The feasible region of the FCC-D-DCMOP becomes large

when the feasible ranges of product yields become large at t=2

(e.g., Yup(t) increases, and Ylp(t) decreases at t=2), which may

cause that the true POF of the FCC-D-DCMOP is determined

by both the unconstrained POF and the lower bound of the

feasible region. The true POF of the FCC-D-DCMOP may

fenergy

fproduct

True feasible regionThe unconstrained POF

Fig. S-1-a). Diagram of true POF and feasible region of objectives that

correspond to Type I at t=1

Bounds of the constrained region The true POF

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 3

change from continuous to disconnected if there are infeasible

regions on the bound of the feasible region, as shown in Fig.

S-1-b).

The operator needs to adjust the product yield constraints

(i.e., t=3) if the optimized operating variables differ greatly

from the current ones, which can avoid large production

fluctuations and production accidents when the operating

variables are switched. Narrowing the feasible range of product

yields leads to the decrease of the feasible region and the

movement of the true POF, which may cause that the true POF

of the FCC-D-DCMOP is determined by the unconstrained

POF and the lower bound of the feasible region. The true POF

may return to continuous from disconnected when a part of the

unconstrained POF coincides with the lower bound part of the

feasible region, as shown in Fig. S-1-c).

It can be observed from Fig. S-1-a), Fig. S-1-b), and Fig.

S-1-c) that the true POF and the feasible region accord with the

characteristics discussed in Type I of this paper at t=1, t=2, and

t=3, respectively. (i.e., the feasible region first increases with

time t and then decreases, while the true POF changes from

continuous to disconnected and finally back to continuous).

2) Type II

The feasible region of the FCC-D-DCMOP becomes large if

the feasible ranges of product yields are large at t=1 (e.g., Yup(t)

increases, and Ylp(t) decreases at t=1), which may cause that the

true POF of the FCC-D-DCMOP is determined by both the

unconstrained POF and the lower bound of the feasible region.

The lower bound of the feasible region may be disconnected if

there are infeasible regions in the lower bound of the feasible

region, causing that the true POF of the FCC-D-DCMOP is

disconnected at t=1, as shown in Fig. S-1-d).

The feasible region of the FCC-D-DCMOP becomes small if

the feasible ranges of product yields are small at t=2 (e.g., Yup(t)

decreases, and Ylp(t) increases at t=2), which may lead to the

unconstrained POF of the FCC-D-DCMOP to be infeasible (i.e.,

the unconstrained POF is not in the feasible region) and cause

that the true POF of the FCC-D-DCMOP is only determined by

the lower bound of the feasible region. In practice, the lower

bound of the feasible region may be continuous when the

solutions (i.e, X(t)) corresponding to the lower bound of the

feasible region are far from the bound of X(t), causing the true

POF of the FCC-D-DCMOP to change from continuous to

disconnected at t=2, as shown in Fig. S-1-e).

The operator needs to adjust the product yield constraints

(i.e., t=3) if the optimized operating variables differ greatly

from the current ones, which can avoid large production

fluctuations and production accidents when the operating

variables are switched. Enlarging the feasible ranges of product

yields can lead to the increase of the feasible region of

objectives and the movement of the true POF, which may cause

that the true POF of the FCC-D-DCMOP is determined by both

fenergy

fproduct

True feasible regionThe unconstrained POF

Fig. S-1-b). The diagram of true POF and feasible region of objectives that

correspond to Type I at t=2

Bounds of the constrained region The true POF

fenergy

fproduct

True feasible regionThe unconstrained POF

Fig. S-1-c). The diagram of true POF and feasible region of objectives that

correspond to Type I at t=3

Bounds of the constrained region The true POF

fenergy

fproduct

True feasible regionThe unconstrained POF

Fig. S-1-d). The diagram of true POF and feasible region of objectives that

correspond to Type II at t=1

Bounds of the constrained region The true POF

fenergy

fproduct

True feasible regionThe unconstrained POF

Fig. S-1-e). The diagram of true POF and feasible region of objectives that

correspond to Type II at t=2

Bounds of the constrained region The true POF

4 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

the unconstrained POF and the lower bound of the feasible

region. The true POF may return to disconnected from

continuous if there are infeasible regions on the bound of the

feasible region, as shown in Fig. S-1-f).

It can be observed from Fig. S-1-d), Fig. S-1-e), and Fig.

S-1-f) that the true POF and the feasible region accord with the

characteristics discussed in Type II of this paper at t=1, t=2, and

t=3, respectively. (i.e., the feasible region first decreases with

time t and then increases, while the true POF changes from

disconnected to continuous and finally back to disconnected).

3) Type III

The feasible region of the FCC-D-DCMOP becomes small if

the feasible ranges of product yields are small at t=1 (e.g., Yup(t)

decreases, and Ylp(t) increases at t=1), which may lead to the

infeasibility of the unconstrained POF of the FCC-D-DCMOP

(i.e., the unconstrained POF is not in the feasible region) and

cause that the true POF of the FCC-D-DCMOP is only

determined by the lower bound of the feasible region. In

practice, the lower bound of the feasible region may be

disconnected if the solutions (i.e, X(t)) corresponding to the

lower bound of the feasible region are close to the bound of

X(t), causing the true POF of the FCC-D-DCMOP to be

disconnected at t=1, as shown in Fig. S-1-g).

The feasible region of the FCC-D-DCMOP becomes large

when the feasible ranges of product yields are large at t=2 (e.g.,

Yup(t) increases, and Ylp(t) decreases at t=2), which may cause

that the true POF of the FCC-D-DCMOP is determined by both

the unconstrained POF and the lower bound of the feasible

region. The true POF may return to continuous from

disconnected if a part of the unconstrained POF coincides with

the lower bound part of the feasible region, as shown in Fig.

S-1-h).

The operator has to adjust the product yield constraints (i.e.,

t=3) if the optimized operating variables differ greatly from the

current ones, which can avoid large production fluctuations and

production accidents when the operating variables are switched.

Narrowing the feasible range of product yields leads to the

decrease of the feasible region and the movement of the true

POF, which may cause that the true POF of the

FCC-D-DCMOP is determined by both the unconstrained POF

and the lower bound of the feasible region. The true POF may

return to disconnected from continuous if some infeasible

regions move to the bound of the feasible region, as shown in

Fig. S-1-i).

It can be observed from Fig. S-1-g), Fig. S-1-h), and Fig.

S-1-i) that the true POF and the feasible region accord with the

characteristics discussed in Type III of this paper at t=1, t=2,

and t=3, respectively. (i.e., the feasible region first increases

with time t and then decreases, while the true POF changes

from disconnected to continuous and finally back to

disconnected).

fenergy

fproduct

True feasible regionThe unconstrained POF

Fig. S-1-f). The diagram of true POF and feasible region of objectives that

correspond to Type II at t=3

Bounds of the constrained region The true POF

fenergy

fproduct

True feasible regionThe unconstrained POF

Fig. S-1-g). The diagram of true POF and feasible region of objectives that

correspond to Type III at t=1

Bounds of the constrained region The true POF

fenergy

fproduct

True feasible regionThe unconstrained POF

Fig. S-1-h). The diagram of true POF and feasible region of objectives that

correspond to Type III at t=2

Bounds of the constrained region The true POF

fenergy

fproduct

True feasible regionThe unconstrained POF

Fig. S-1-i). The diagram of true POF and feasible region of objectives that

correspond to Type III at t=3

Bounds of the constrained region The true POF

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 5

4) Type IV.

The feasible region of the FCC-D-DCMOP becomes small if

the feasible ranges of product yields are small at t=1 (e.g., Yup(t)

decreases, and Ylp(t) increases at t=1), which may lead to the

unconstrained POF of the FCC-D-DCMOP to be infeasible (i.e.,

the unconstrained POF is not in the feasible region) and cause

that the true POF of the FCC-D-DCMOP is only determined by

the lower bound of the feasible region. In practice, the lower

bound of the feasible region may be continuous if the solutions

(i.e, X(t)) corresponding to the lower bound of the feasible

region are far from the bound of X(t). Therefore, the true POF

of the FCC-D-DCMOP is continuous at t=1 if a part of the

unconstrained POF coincides with the lower bound part of the

feasible region, as shown in Fig. S-1-j).

The feasible region of the FCC-D-DCMOP becomes small if

the feasible ranges of product yields are small at t=2 (e.g., Yup(t)

decreases, and Ylp(t) increases at t=2), which may lead to the

infeasibility of the unconstrained POF of the FCC-D-DCMOP

(i.e., the unconstrained POF is not in the feasible region) and

cause that the true POF of the FCC-D-DCMOP is only

determined by the lower bound of the feasible region. In

practice, the lower bound of the feasible region may be

disconnected if the solutions (i.e, X(t)) corresponding to the

lower bound of the feasible region are close to the bound of X(t),

causing the true POF of the FCC-D-DCMOP to be

disconnected at t=1, as shown in Fig. S-1-k).

The operator has to adjust the product yield constraints (i.e.,

t=3) if the optimized operating variables differ greatly from the

current ones, which can avoid large production fluctuations and

production accidents when the operating variables are switched.

Enlarging the feasible range of product yields leads to the

increase of the feasible region of objectives and the movement

of the true POF, which may cause that the true POF of the

FCC-D-DCMOP is determined by the unconstrained POF and

the lower bound of the feasible region. The true POF may

return to continuous from disconnected when a part of the

unconstrained POF coincides with the lower bound part of the

feasible region, as shown in Fig. S-1-l). It can be observed from

Fig. S-1-j), Fig. S-1-k), and Fig. S-1-l) that the true POF and the

feasible region accord with the characteristics discussed in

Type IV of this paper at t=1, t=2, and t=3, respectively. (i.e., the

feasible region first decreases with time t and then increases,

while the true POF changes from continuous to disconnected

and finally back to continuous).

Remark: Indeed, the true POF and the feasible region of the

FCC-D-DCMOP show hundreds of types that vary with

dynamic environments, and we only describe four typical types

corresponding to the test problems proposed in this paper. In

the future, other types of the true POF and the feasible region

arising in real-world applications will be gradually explored.

S-III. IDEAS ON SCALING UP THE PROPOSED TEST PROBLEMS

The test problems proposed in Section III of this paper can be

extended from the perspectives of the decision space and the

objective space, as follows:

1) Decision Space

h(xI, t) and g(xII, t) in the proposed test problems determine

the decision space, where xIxII=x and xIxII=. Indeed, the

decision variables used in the proposed test problems can be

extended in any dimension as long as the following conditions

are satisfied:

a) The minimum value of g(xII, t) is zero.

b) h(xI, t) is set to x1, and it satisfies 0h(xI, t)s(t).

Note that for the test problems designed in this paper, the real

POF does not depend on the dimension of the decision

fenergy

fproduct

True feasible regionThe unconstrained POF

Fig. S-1-k). The diagram of true POF and feasible region of objectives that

correspond to Type IV at t=2

Bounds of the constrained region The true POF

fenergy

fproduct

True feasible regionThe unconstrained POF

Fig. S-1-j). The diagram of true POF and feasible region of objectives that

correspond to Type IV at t=1

Bounds of the constrained region The true POF

fenergy

fproduct

True feasible regionThe unconstrained POF

Fig. S-1-l). The diagram of true POF and feasible region of objectives that

correspond to Type IV at t=3

Bounds of the constrained region The true POF

6 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

variables. Therefore, the real POF and the feasible region of the

test problems can still change according to the four types

mentioned in this paper as long as the settings of s(t), m(t), and

z(t) are reasonable. We recommend that their settings (i.e., s(t),

m(t), and z(t)) are consistent with those used in our paper when

the dimensions of the test problem are extended.

2) Objective Function Space

In the proposed problems, the constraints cause the bound of

the feasible region of the objectives to be irregular, leading to

the true POF exhibiting different characteristics (i.e.,

disconnected and continuous) with dynamism. Therefore, we

should first consider how to scale up the feasible regions of the

objective functions.

In the proposed test problems, the irregularity of the bounds

of the objective functions is caused by

2 1sin((sin() ((,)) cos() (,)))
d

c
a b f t e f t       x x

‘ ‘ . Therefore,

2 1sin((sin() ((,)) cos() (,)))
d

c
a b f t e f t       x x

‘ ‘ needs to

involve each objective function once the number of objective

functions proposed in this paper is extended to M. Additionally,

2 1cos() ((,)) sin() (,) ()f t e f t m t     x x controls the

feasible regions of each objective function, so

2 1cos() ((,)) sin() (,) ()f t e f t m t     x x also needs to

involve each objective function. This paper provides an

example of scaling up the constraints used in the proposed test

problems, which is as follows:

 
 

 

2 1

2 1

1 2

cos() ((,))+,...,+((,)) sin() (,) ()

sin((sin() ((,)) ,..., ((,)) cos() (,)))
. .

(,)+ (,) ,..., (,) () 0

() ()

M

d
c

M

M

f t e f t e f t m t

a b f t e f t e f t
s t

sl f t f t f t z t

z t m t

 

  

       

         

     




x x x

x x x

x x x

‘ ‘ (S-3)

where M>2.

It can be ascertained from Section III of this paper that the

true POF of DCMOPs may be determined by the bound of

constraints. Therefore, the constraints must be considered when

scaling up the objective functions. The objective functions that

satisfy the following conditions can be used as the objectives

functions of the extended constraints (i.e., Equation (S-3)).

a) During the dynamic environments change, all objective

values in the unconstrained POF must be infeasible in at

least one environment.

b) The true POF of the extended DCMOP is determined by

the unconstrained POF in at least one environment.

This paper provides an example of the extended objective

functions (i.e., Equation (S-4)) for Equation (S-3), which is as

follows:

II

I

1

1

1

II

1

1

I

min (,) ((,),..., (,),..., (,))

(,) (() (,)) sin()

(,) (() (,)) sin()cos()

(,) (() (,))cos()

T

k M

M

t t i

i

M k

k t t i t M k

i

M t

F t f t f t f t

f t s t g t A W x

obj

f t s t g t A W x W x

f t s t g t W x



 







 

 

  

  


 





x x x x

x x

x x

x x

(S-4)

S-IV. TRUE POF AND POS OF EACH TEST PROBLEM

The true POF and POS of each test problem are given in

Table S-I.

S-V. ALGORITHM PARAMETER SELECTION

In this paper, we adopt the popular simulated binary

crossover (SBX) and polynomial mutation (PM) operators

proposed in [54] to generate offspring. The main parameters in

SBX and PM are the crossover probability (Cr), the distribution

index for SBX (dc), the mutation probability (mp), and the

distribution index for mutation (dm). Additionally, the other

parameters in dCMOEA are the population size (N) and the

threshold of the number of feasible solutions (NF).

According to our preliminary experiments, a larger N leads

to better performance of dCMOEA and a longer computation

time. To eliminate the disturbance of N on the algorithms’

performance comparison, N of all algorithms was set to 200

(i.e., N=200).

In Section IV-D, we proposed a population selection

operator that updates the population (i.e., P) according to

population and offspring (i.e., Q). The number of feasible

solutions in P and Q of each generation usually is not the same

(i.e., it may be zero, 100, 200, or 400). To determine NF, we set

NF to 0, 100, 200, 300, and 400 to analyze the sensitivity on NF

of dCMOEA. The results of sensitivity analysis on NF are

given in Table S-II based on the eight test problems.

It can be seen from Table S-II that dCMOEA with NF=100

can performs better than its variants on most of the test

problems in terms of three metrics, implying that NF=100 is

suitable for dCMOEA.

The parameters Cr and dc used in SBX are coupled to affect

the performance of dCMOEA, and a similar situation for the

other two parameters used in PM also arise. Therefore, Cr and

dc are determined first, followed by mp and dm. In this paper,

we use three performance metrics (i.e., HV, IGD, and SP) to

evaluate the performance of an algorithm. For HV, the larger

the value, the better the performance of an algorithm. For IGD

and SP, however, the lower the value, the better the

performance of an algorithm. To facilitate the analysis of the

four parameters on the performance of dCMOEA, we use the

average regularization indicator (ARI) to represent these three

metrics, which is calculated as Equations (S-5) and (S-6).

min max max

bf bf bf

bf

HV IGD SP
RI

HV IGD SP

    
         

 (S-5)

8

1

1

8
b bf

f

ARI RI


  (S-6)

where RIbf is the regularization value of the performance

metrics obtained by dCMOEA that uses the bth parameter

combination to solve the fth test problem. HVbf, IGDbf, and SPbf

are, respectively, the HV, IGD, and SP metrics obtained by

dCMOEA based on the bth parameter combination to solve the

fth test problem. ARIb denotes the sum of the average

regularization indicators of dCMOEA that uses the bth

parameter combination to solve eight test problem.

Table S-III provides the five levels of these four parameters

based on our preliminary experiments. For example, Cr, dc, mp,

and dm are, respectively, equal to 0.8, 7, 0.15, and 40 when

their levels are 4. For brevity, an orthogonal array L25 [i.e.,

these two parameters have 25 (i.e., 52) parameter combinations

under five levels] was used to examine the first two parameters

(i.e., Cr and dc). For each parameter combination (e.g., Cr=0.6

and dc=3), dCMOEA was independently executed 30 times on

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 7

TABLE S-I

THE TRUE POF AND POS OF EACH TEST PROBLEM

Instance

No.
Description Remarks

1

s(t)=max(3.5-0.14t, 0.7+0.14t); m(t)=max(1.43-0.05t, 0.43 +0.05t)

Wt=2; ݃ሺ୍୍ܠ, ሻݐ ൌ ∑ ሺݔ௝ െ ሺ1 െ 0.9 ൈ sin	ሺ0.2ݐሻሻଶௗ௝ୀଶ

f1(x, t)=(1+g(xII,t))(x1+0.05sin(Wtx1)); f2(x, t)=(1+g(xII,t))(s(t)-x1+0.05sin(Wtx1))

POS(t): 0≤x1≤s(t), xj=1-0.9sin(0.2t), j=2,…,d;

POF(t): ଵ݂ ൅ ଶ݂ ൌ ሻݐሺݏ ൅ ሺ	௧sinܣ2 ௧ܹ ௙భି௙మା௦ሺ௧ሻଶ ሻ

s.j. cos ସ ൈ ଶ݂ െ ݊݅ݏ ସ ൈ ଵ݂ െ ݉ሺݐሻ ൒ ܽ ൈ ቚsin	ሺ ൈ ሺ݊݅ݏ ିଵ଺ ൈ ሺ ଶ݂ െ 1ሻ ൅ ݏ݋ܿ ିଵ଺ ൈ ଵ݂ሻሻቚ଴.ହ
;

 ଵ݂ ൅ ଶ݂ െ 6 ൏ 0; m(t)<6

The unconstrained POF has one mode. The feasible

region first increases with time t and then decreases,

while the true POF changes from continuous to

disconnected and finally back to continuous.

2

s(t)=max(2.5-0.05t, 1.5+0.05t); m(t)=max(1.16-0.075t, -0.34+0.075t)

Wt=2; ݃ሺ୍୍ܠ, ሻݐ ൌ ∑ ሺݔ௝ െ ሺ1 െ 0.9 ൈ sin	ሺ0.2ݐሻሻଶௗ௝ୀଶ

f1(x, t)=(1+g(xII,t))(x1+0.05sin(Wtx1)); f2(x, t)=(1+g(xII,t))(s(t)-x1+0.05sin(Wtx1))

POS(t): 0≤x1≤s(t), xj=1-0.9sin(0.2t), j=2,…,d;

POF(t): ଵ݂ ൅ ଶ݂ ൌ ሻݐሺݏ ൅ ሺ	௧sinܣ2 ௧ܹ ௙భି௙మା௦ሺ௧ሻଶ ሻ

s.j. cos ସ ൈ ଶ݂ െ ݊݅ݏ ସ ൈ ଵ݂ െ ݉ሺݐሻ ൒ ܽ ൈ ቚsin	ሺ ൈ ሺ݊݅ݏ ିଵ଺ ൈ ሺ ଶ݂ െ 1ሻ ൅ ݏ݋ܿ ିଵ଺ ൈ ଵ݂ሻሻቚ଴.ହ
;

 ଵ݂ ൅ ଶ݂ െ 6 ൏ 0; m(t)<6

The unconstrained POF has one mode. The feasible

region first decreases with time t and then increases,

while the true POF changes from disconnected to

continuous and finally back to disconnected.

3

s(t)=max(2.1-0.14t, 4.9+0.14t); m(t)=max(0.93+0.05t, 1.93-0.05t)

Wt=2; ݃ሺ୍୍ܠ, ሻݐ ൌ ∑ ሺݔ௝ െ ሺ1 െ 0.9 ൈ sin	ሺ0.2ݐሻሻଶௗ௝ୀଶ

f1(x, t)=(1+g(xII,t))(x1+0.05sin(Wtx1)); f2(x, t)=(1+g(xII,t))(s(t)-x1+0.05sin(Wtx1))

POS(t): 0≤x1≤s(t), xj=1-0.9sin(0.2t), j=2,…,d;

POF(t): ଵ݂ ൅ ଶ݂ ൌ ሻݐሺݏ ൅ ሺ	௧sinܣ2 ௧ܹ ௙భି௙మା௦ሺ௧ሻଶ ሻ

s.j. cos ସ ൈ ଶ݂ െ ݊݅ݏ ସ ൈ ଵ݂ െ ݉ሺݐሻ ൒ ܽ ൈ ቚsin	ሺ ൈ ሺ݊݅ݏ ିଵ଺ ൈ ሺ ଶ݂ െ 1ሻ ൅ ݏ݋ܿ ିଵ଺ ൈ ଵ݂ሻሻቚ଴.ହ
;

 ଵ݂ ൅ ଶ݂ െ 6 ൏ 0; m(t)<6

The unconstrained POF has one mode. The feasible

region first increases with time t and then decreases,

while the true POF changes from disconnected to

continuous and finally back to disconnected.

4

s(t)=max(2+0.05t, 3-0.05t); m(t)=max(0.41+0.075t,1.91-0.075t)

Wt=2; ݃ሺ୍୍ܠ, ሻݐ ൌ ∑ ሺݔ௝ െ ሺ1 െ 0.9 ൈ sin	ሺ0.2ݐሻሻଶௗ௝ୀଶ

f1(x, t)=(1+g(xII,t))(x1+0.05sin(Wtx1)); f2(x, t)=(1+g(xII,t))(s(t)-x1+0.05sin(Wtx1))

POS(t): 0≤x1≤s(t), xj=1-0.9sin(0.2t), j=2,…,d;

POF(t): ଵ݂ ൅ ଶ݂ ൌ ሻݐሺݏ ൅ ሺ	௧sinܣ2 ௧ܹ ௙భି௙మା௦ሺ௧ሻଶ ሻ

s.j. cos ସ ൈ ଶ݂ െ ݊݅ݏ ସ ൈ ଵ݂ െ ݉ሺݐሻ ൒ ܽ ൈ ቚsin	ሺ ൈ ሺ݊݅ݏ ିଵ଺ ൈ ሺ ଶ݂ െ 1ሻ ൅ ݏ݋ܿ ିଵ଺ ൈ ଵ݂ሻሻቚ଴.ହ
;

 ଵ݂ ൅ ଶ݂ െ 6 ൏ 0; m(t)<6

The unconstrained POF has one mode. The feasible

region first decreases with time t and then increases,

while the true POF changes from continuous to

disconnected and finally back to continuous.

5

s(t)=max(3.5-0.14t, 0.7+0.14t); m(t)=max(1.43-0.05t, 0.43 +0.05t)

Wt=6sin(0.2(t+1)); ݃ሺ୍୍ܠ, ሻݐ ൌ ∑ ሺݔ௝ െ ሺ1 െ 0.9 ൈ sinሺ0.2ݐሻሻଶௗ௝ୀଶ

f1(x, t)=(1+g(xII,t))(x1+0.05sin(Wtx1)); f2(x, t)=(1+g(xII,t))(s(t)-x1+0.05sin(Wtx1))

POS(t): 0≤x1≤s(t), xj=1-0.9sin(0.2t), j=2,…,d;

POF(t): ଵ݂ ൅ ଶ݂ ൌ ሻݐሺݏ ൅ ሺ	௧sinܣ2 ௧ܹ ௙భି௙మା௦ሺ௧ሻଶ ሻ

s.j. cos ସ ൈ ଶ݂ െ ݊݅ݏ ସ ൈ ଵ݂ െ ݉ሺݐሻ ൒ ܽ ൈ ቚsin	ሺ ൈ ሺ݊݅ݏ ିଵ଺ ൈ ሺ ଶ݂ െ 1ሻ ൅ ݏ݋ܿ ିଵ଺ ൈ ଵ݂ሻሻቚ଴.ହ
;

 ଵ݂ ൅ ଶ݂ െ 6 ൏ 0; m(t)<6

The unconstrained POF oscillates among ten

optimization modes. The feasible region first

increases with time t and then decreases, while the

true POF changes from continuous to disconnected

and finally back to continuous.

6

s(t)=max(2.5-0.05t, 1.5+0.05t); m(t)=max(1.16-0.075t, -0.34+0.075t)

Wt=6sin(0.2(t+1)); ݃ሺ୍୍ܠ, ሻݐ ൌ ∑ ሺݔ௝ െ ሺ1 െ 0.9 ൈ sinሺ0.2ݐሻሻଶௗ௝ୀଶ

f1(x, t)=(1+g(xII,t))(x1+0.05sin(Wtx1)); f2(x, t)=(1+g(xII,t))(s(t)-x1+0.05sin(Wtx1))

POS(t): 0≤x1≤s(t), xj=1-0.9sin(0.2t), j=2,…,d;

POF(t): ଵ݂ ൅ ଶ݂ ൌ ሻݐሺݏ ൅ ሺ	௧sinܣ2 ௧ܹ ௙భି௙మା௦ሺ௧ሻଶ ሻ

s.j. cos ସ ൈ ଶ݂ െ ݊݅ݏ ସ ൈ ଵ݂ െ ݉ሺݐሻ ൒ ܽ ൈ ቚsin	ሺ ൈ ሺ݊݅ݏ ିଵ଺ ൈ ሺ ଶ݂ െ 1ሻ ൅ ݏ݋ܿ ିଵ଺ ൈ ଵ݂ሻሻቚ଴.ହ
;

 ଵ݂ ൅ ଶ݂ െ 6 ൏ 0; m(t)<6

The unconstrained POF oscillates among ten

optimization modes. The feasible region first

decreases with time t and then increases, while the

true POF changes from disconnected to continuous

and finally back to disconnected.

7

s(t)=max(2.1-0.14t, 4.9+0.14t); m(t)=max(0.93+0.05t, 1.93-0.05t)

Wt=6sin(0.2(t+1)); ݃ሺ୍୍ܠ, ሻݐ ൌ ∑ ሺݔ௝ െ ሺ1 െ 0.9 ൈ sinሺ0.2ݐሻሻଶௗ௝ୀଶ

f1(x, t)=(1+g(xII,t))(x1+0.05sin(Wtx1)); f2(x, t)=(1+g(xII,t))(s(t)-x1+0.05sin(Wtx1))

POS(t): 0≤x1≤s(t), xj=1-0.9sin(0.2t), j=2,…,d;

POF(t): ଵ݂ ൅ ଶ݂ ൌ ሻݐሺݏ ൅ ሺ	௧sinܣ2 ௧ܹ ௙భି௙మା௦ሺ௧ሻଶ ሻ

s.j. cos ସ ൈ ଶ݂ െ ݊݅ݏ ସ ൈ ଵ݂ െ ݉ሺݐሻ ൒ ܽ ൈ ቚsin	ሺ ൈ ሺ݊݅ݏ ିଵ଺ ൈ ሺ ଶ݂ െ 1ሻ ൅ ݏ݋ܿ ିଵ଺ ൈ ଵ݂ሻሻቚ଴.ହ
;

 ଵ݂ ൅ ଶ݂ െ 6 ൏ 0; m(t)<6

The unconstrained POF oscillates among ten

optimization modes. The feasible region first

increases with time t and then decreases, while the

true POF changes from disconnected to continuous

and finally back to disconnected.

8

s(t)=max(2+0.05t, 3-0.05t); m(t)=max(0.41+0.075t,1.91-0.075t)

Wt=6sin(0.2(t+1)); ݃ሺ୍୍ܠ, ሻݐ ൌ ∑ ሺݔ௝ െ ሺ1 െ 0.9 ൈ sinሺ0.2ݐሻሻଶௗ௝ୀଶ

f1(x, t)=(1+g(xII,t))(x1+0.05sin(Wtx1)); f2(x, t)=(1+g(xII,t))(s(t)-x1+0.05sin(Wtx1))

POS(t): 0≤x1≤s(t), xj=1-0.9sin(0.2t), j=2,…,d;

POF(t): ଵ݂ ൅ ଶ݂ ൌ ሻݐሺݏ ൅ ሺ	௧sinܣ2 ௧ܹ ௙భି௙మା௦ሺ௧ሻଶ ሻ

s.j. cos ସ ൈ ଶ݂ െ ݊݅ݏ ସ ൈ ଵ݂ െ ݉ሺݐሻ ൒ ܽ ൈ ቚsin	ሺ ൈ ሺ݊݅ݏ ିଵ଺ ൈ ሺ ଶ݂ െ 1ሻ ൅ ݏ݋ܿ ିଵ଺ ൈ ଵ݂ሻሻቚ଴.ହ
;

 ଵ݂ ൅ ଶ݂ െ 6 ൏ 0; m(t)<6

The unconstrained POF oscillates among ten

optimization modes. The feasible region first

decreases with time t and then increases, while the

true POF changes from continuous to disconnected

and finally back to continuous.

8 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

each test problem to obtain the corresponding HV, IGD, and SP.

Subsequently, we use Equations (S-3) and (S-4) to calculate the

ARIb of dCMOEA that uses the bth combination of Cr and dc.

Then, the Taguchi method proposed in [s3] to examine the

impacts of parameters on the performance of dCMOEA and the

factor-level trends of ARIb of Cr and dc can be obtained, which

are given in Fig. S-2.

It can be seen from Table S-III and Fig. S-2 that Cr with a

level of 4 and dc with a level of 3 yield the best result. A small

value of Cr results in a good exploitation capability but poor

exploration capability. Similarly, a large value of Cr results in a

good exploration capability but poor exploitation capability.

Thus, Cr was set to 0.8 to balance the exploitation and

exploration capabilities of dCMOEA. For a similar reason, dc

was set to 5.

The method using to determine mp and dm is used to

determine Cr and dc. The factor-level trends of mp and dm are

given in Fig. S-2. It can be seen from Table S-III and Fig. S-3

that mp with a level of 4 and dm with a level of 3 yield the best

result. In other words, mp and dm were set to 0.05 and 40,

respectively.

S-VI. PERFORMANCE RANKING OF EACH ALGORITHM

The final rank of each algorithm under performance metrics

for each test problem is indicated in Table S-IV.

S-VII. COMPUTATIONAL TIME OF EACH ALGORITHM ON EACH

TEST PROBLEM

In Section V of this paper, we set the change frequency (t) as

10, 15, and 20 (i.e., t=10, 15, and 20), and t=10 means that an

algorithm iterates 10 generations in a dynamic environment. To

further examine the performance of each algorithm, we

compare the computational time of each algorithm in an

environment. For a test problem with t=10 and nt=21, for

example, the computational time means the time required for

10 iterations of an algorithm. We use Equation (S-7) to

calculate the average computational time required for the pth

algorithm to run for t generations on the test problems.

1 1

1 1 t

t t

nr

p p ij

i jt

CT T
r n

 
 

  (S-7)

where
tp ij

T  denotes the time that is required to iterate t times

under the jth dynamic environment in the ith run of the pth

algorithm.
tp

CT  denotes the average computational time

required for the pth algorithm to run for t generations. r is the

number of runs of an algorithm on a test problem,

The average computational time of each algorithm on each

test problem with t=10, 15, and 20 is given in Table S-V. It can

be seen from Table S-V that the computational time of

dCMOEA is longer than that of DC-MOEA, DC-NSGA-II-A,

DC-NSGA-II, and DC-NSGA-III on the most of the test

problems.

To eliminate the influence of running time on the algorithm’s

performance, we used an elapsed CPU time limit of

CP=2000ms as the termination criterion of each algorithm in

each dynamic environment. The average values and standard

deviations of the three performance metrics (i.e., HV, IGD, and

SP) for DC-MOEA, DC-NSGA-II-A, DC-NSGA-II,

TABLE S-II

SENSITIVITY ANALYSIS ON DIFFERENT THRESHOLDS OF NUMBER OF THE NUMBER OF FEASIBLE

SOLUTIONS

Instance

No.
metrics 0 100 200 300 400

1

HV 3.49065 3.49285 3.48939 3.48679 3.48833

IGD 0.04087 0.04024 0.04127 0.04192 0.0415

SP 0.01360 0.01381 0.01330 0.01326 0.01391

2

HV 3.46302 3.46634 3.46176 3.46187 3.46345

IGD 0.04264 0.04149 0.04279 0.04311 0.04242

SP 0.01320 0.01412 0.01351 0.01364 0.01353

3

HV 3.48398 3.48799 3.48526 3.48581 3.48432

IGD 0.04307 0.04207 0.04264 0.04257 0.04296

SP 0.01531 0.01582 0.01507 0.01523 0.01500

4

HV 3.45399 3.45823 3.45304 3.45481 3.45249

IGD 0.04097 0.03976 0.0413 0.04054 0.04171

SP 0.01232 0.01297 0.01224 0.01247 0.0125

5

HV 3.50560 3.51164 3.50515 3.50667 3.49893

IGD 0.05456 0.05310 0.05415 0.05413 0.05595

SP 0.01460 0.01432 0.01482 0.01446 0.01445

6

HV 3.46023 3.46181 3.45962 3.4588 3.46096

IGD 0.05377 0.05372 0.05417 0.0539 0.05385

SP 0.01391 0.01416 0.01360 0.0138 0.01379

7

HV 3.49832 3.50450 3.49677 3.49849 3.49712

IGD 0.05590 0.05456 0.05619 0.05612 0.05602

SP 0.01608 0.01663 0.01594 0.01625 0.01621

8

HV 3.45648 3.45812 3.45276 3.45662 3.45516

IGD 0.05201 0.05185 0.05271 0.05182 0.05214

SP 0.01306 0.01294 0.01306 0.01247 0.01305

.

TABLE S-III

THE COMPUTATIONAL TIME OF EACH ALGORITHM ON EACH TEST PROBLEM WITH T=10, 15, AND 20

Parameters Level 1 Level 2 Level 3 Level 4 Level 5

Cr 0.5 0.6 0.7 0.8 0.9

dc 1 3 5 7 9

mp 0.01 0.05 0.1 0.15 0.2

dm 10 20 30 40 50
.

Fig. S-2. Factor-level trends of Cr and dc

54321

2.5

2.0

1.5

1.0

0.5

54321

Cr

T
h
e
 a

v
e
ra

g
e
 v

a
lu

e
 o

f
A

R
I
o

n
 e

ig
h
t
te

s
t

p
ro

b
le

m

dc

Level number of Cr Level number of dc

Fig. S-3. Factor-level trends of mp and dm

54321

2.50

2.25

2.00

1.75

1.50

54321

mp

T
h

e
 a

v
e
ra

g
e
 A

R
I

o
f

m
p

 a
n

d
 d

m

dm

Level number of mp Level number of dm

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 9

DC-NSGA-III, and dCMOEA are given in Table S-VI.

As seen from Table S-VI, dCMOEA performs significantly

better than DC-MOEA, DC-NSGA-II-A, DC-NSGA-II, and

DC-NSGA-III on most of the test problems in terms of the three

metrics. Therefore, even with the same running time, the

proposed algorithm still outperforms the others (i.e.,

DC-MOEA, DC-NSGA-II-A, DC-NSGA-II, and

DC-NSGA-III).

S-VIII. EVOLUTION CURVES OF AVERAGE IGD VALUES FOR

THE THIRD TO EIGHT TEST PROBLEMS

Fig. S-4 depicts the evolution curves of average IGD values

for the third to eight test problems witht=10 and nt=21.

S-IX. THE POFS OBTAINED BY THE COMPARED ALGORITHMS

ON THE EIGHT TEST PROBLEMS

Figures S-5–S-12 show the obtained POFs obtained by the

compared algorithms on the eight test problems.

TABLE S-IV

PERFORMANCE RANKING ON THREE METRICS FOR TEST PROBLEMS.

Instance No. Rank Ranking by HV Ranking by IGD Ranking by SP

1

1th dCMOEA dCMOEA dCMOEA

2nd DC-NSGA-II DC-NSGA-II DC-NSGA-II

3rd DC-NSGA-III DC-NSGA-III DC-TAEA

4th DC-TAEA DC-TAEA DC-MOEA

5th DC-MOEA DC-MOEA DC-NSGA-III

6th DC-NSGA-II-A DC-NSGA-II-A DC-NSGA-II-A

2

1th dCMOEA dCMOEA dCMOEA

2nd DC-NSGA-II DC-NSGA-II DC-NSGA-II

3rd DC-TAEA DC-NSGA-III DC-TAEA

4th DC-NSGA-III DC-TAEA DC-MOEA

5th DC-MOEA DC-MOEA DC-NSGA-III

6th DC-NSGA-II-A DC-NSGA-II-A DC-NSGA-II-A

3

1th dCMOEA dCMOEA dCMOEA

2nd DC-NSGA-II DC-NSGA-II DC-NSGA-II

3rd DC-NSGA-III DC-NSGA-III DC-TAEA

4th DC-TAEA DC-TAEA DC-MOEA

5th DC-MOEA DC-MOEA DC-NSGA-III

6th DC-NSGA-II-A DC-NSGA-II-A DC-NSGA-II-A

4

1th dCMOEA dCMOEA dCMOEA

2nd DC-NSGA-II DC-NSGA-II DC-NSGA-II

3rd DC-TAEA DC-NSGA-III/DC-TAEA DC-TAEA

4th DC-MOEA DC-MOEA DC-MOEA

5th DC-NSGA-III DC-NSGA-II-A DC-NSGA-III

6th DC-NSGA-II-A DC-NSGA-II-A

5

1th dCMOEA dCMOEA dCMOEA

2nd DC-NSGA-II DC-NSGA-II DC-NSGA-II

3rd DC-NSGA-III DC-NSGA-III DC-TAEA

4th DC-TAEA DC-TAEA DC-MOEA

5th DC-MOEA DC-MOEA DC-NSGA-III

6th DC-NSGA-II-A DC-NSGA-II-A DC-NSGA-II-A

6

1th dCMOEA dCMOEA dCMOEA

2nd DC-NSGA-II DC-NSGA-II DC-NSGA-II

3rd DC-TAEA DC-NSGA-III DC-TAEA

4th DC-NSGA-III DC-TAEA DC-MOEA

5th DC-MOEA DC-MOEA DC-NSGA-III

6th DC-NSGA-II-A DC-NSGA-II-A DC-NSGA-II-A

7

1th dCMOEA dCMOEA dCMOEA

2nd DC-NSGA-II DC-NSGA-II DC-NSGA-II

3rd DC-NSGA-III DC-NSGA-III DC-TAEA

4th DC-TAEA DC-TAEA DC-MOEA

5th DC-MOEA DC-MOEA DC-NSGA-III

6th DC-NSGA-II-A DC-NSGA-II-A DC-NSGA-II-A

8

1th dCMOEA dCMOEA dCMOEA

2nd DC-NSGA-II DC-NSGA-II DC-NSGA-II

3rd DC-NSGA-III/ DC-MOEA DC-NSGA-III DC-TAEA

4th DC-TAEA DC-TAEA DC-MOEA

5th DC-NSGA-II-A DC-MOEA DC-NSGA-III

6th DC-NSGA-II-A DC-NSGA-II-A

TABLE S-V

THE COMPUTATIONAL TIME OF EACH ALGORITHM ON EACH TEST PROBLEM WITH T=10, 15, AND 20

 DC-MOEA DC-NSGA-II-A DC-NSGA-II DC-NSGA-III DC-TAEA dCMOEA

Ins 1

t=10 1079.3 1158.0 1309.2 919.9 16391.7 1565.7

t=15 1813.3 1831.4 2230.8 1497.9 24944.5 2437.0

t=20 2372.4 2373.2 2966.1 2030.3 30668.0 3236.8

Ins 2

t=10 991.9 1162.3 1262.9 896.5 13091.8 1498.4

t=15 1668.7 1808.6 2005.4 1470.7 19857.0 2238.7

t=20 2261.4 2276.9 2918.7 2013.1 29274.4 3244.2

Ins 3

t=10 958.9 1145.2 1230.3 829.0 15897.3 1357.7

t=15 1622.6 1795.1 1954.6 1353.8 24041.3 2115.9

t=20 2146.6 2155.2 2845.4 1894.7 30641.0 3179.5

Ins 4

t=10 1038.1 1032.6 1310.9 958.7 15046.7 1369.3

t=15 1790.8 1826.5 2069.9 1441.9 18841.1 2110.8

t=20 2369.8 2052.2 3036.2 2108.4 25892.7 3356.4

Ins 5

t=10 1060.9 1008.0 1288.3 890.5 15891.3 1346.9

t=15 1726.1 1747.7 2031.5 1391.1 24171.7 2073.8

t=20 2388.9 2047.9 2913.0 2037.9 31323.5 3246.0

Ins 6

t=10 986.2 1037.0 1267.4 893.7 14548.5 1415.6

t=15 1569.7 1710.7 1836.7 1361.2 21218.1 2036.4

t=20 2204.7 2080.4 2820.7 1976.7 30785.3 3007.4

Ins 7

t=10 961.2 997.7 1191.4 838.5 17493.0 1453.6

t=15 1506.9 1683.8 1790.2 1299.2 24459.3 2196.6

t=20 2124.6 2237.4 2463.1 1882.8 31751.0 3160.1

Ins 8

t=10 1041.9 1148.5 1231.8 934.0 12883.9 1589.9

t=15 1661.4 1722.1 1902.8 1436.9 18468.9 2396.4

t=20 2220.2 2357.7 3018.7 2073.7 24909.8 3112.5

.

10 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

 Instance 3 Instance 4

 Instance 5 Instance 6

 Instance 7 Instance 8

Fig. S-4. Evolution curves of average IGD values for the third to eighth test problems witht=15 and nt=21.

TABLE S-VI

PERFORMANCE METRICS OF DC-MOEA, DC-NSGA-II-A, DC-NSGA-II, DC-NSGA-III, AND DCMOEA WHEN THE TERMINATION CRITERION OF EACH DYNAMIC ENVIRONMENT IS THE ELAPSED CPU TIME LIMIT OF

CP=2000MS

Ins Indicator DC-MOEA DC-NSGA-II-A DC-NSGA-II DC-NSGA-III dCMOEA

1

HV 3.42028(0.01367)‡ 1.95596(0.06050)‡ 3.46001(0.00800)‡ 3.46607(0.00762)‡ 3.48292(0.00540)

IGD 0.06530(0.00479)‡ 0.55941(0.02783)‡ 0.04748(0.00217)‡ 0.04372(0.00206)† 0.04407(0.00208)

SP 0.02100(0.00190)‡ 0.28754(0.11983)‡ 0.01725(0.00127)‡ 0.04929(0.01621)‡ 0.01476(0.00127)

2

HV 3.41652(0.00656)‡ 2.03286(0.05694)‡ 3.43709(0.01024)‡ 3.43683(0.00680)‡ 3.45826(0.00372)

IGD 0.05959(0.00242)‡ 0.57744(0.03328)‡ 0.04786(0.00267)‡ 0.04489(0.00169)† 0.04518(0.00150)

SP 0.01805(0.00147)‡ 0.27087(0.05832)‡ 0.01666(0.00356)‡ 0.05629(0.01778)‡ 0.01472(0.00131)

3

HV 3.45002(0.01501)‡ 1.96126(0.07233)‡ 3.45606(0.00884)‡ 3.45979(0.00977)‡ 3.47854(0.00422)

IGD 0.06611(0.00462)‡ 0.56339(0.03208)‡ 0.04957(0.00243)‡ 0.04593(0.00183)† 0.04562(0.00150)

SP 0.02681(0.00352)‡ 0.25218(0.06797)‡ 0.01938(0.00157)‡ 0.05469(0.01309)‡ 0.01607(0.00128)

4

HV 3.48568(0.00659) 1.99611(0.06786)‡ 3.43254(0.00786)‡ 3.42957(0.00684)‡ 3.45491(0.00521)

IGD 0.06292(0.00208)‡ 0.57849(0.03928)‡ 0.04553(0.00156)‡ 0.04308(0.00158)‡ 0.04118(0.00246)

SP 0.01764(0.00102)‡ 0.31397(0.08128)‡ 0.01532(0.00112)‡ 0.05786(0.01552)‡ 0.01345(0.00122)

5

HV 3.42831(0.01292)‡ 1.90029(0.06814)‡ 3.46388(0.01690)‡ ‡3.47716(0.01092)‡ 3.51900(0.00241)

IGD 0.07515(0.00350)‡ 0.57517(0.03168)‡ 0.06155(0.00427)‡ 0.05541(0.00177)‡ 0.05032(0.00113)

SP 0.02327(0.00171)‡ 0.30633(0.10234)‡ 0.01846(0.00154)‡ 0.04784(0.01133)‡ 0.01362(0.00102)

6

HV 3.41270(0.00803)‡ 1.96625(0.06804)‡ 3.43540(0.01153)‡ 3.43478(0.00637)‡ 3.46965(0.00248)

IGD 0.06720(0.00220)‡ 0.59598(0.03641)‡ 0.05788(0.00261)‡ 0.05435(0.00108)‡ 0.05048(0.00095)

SP 0.01990(0.00123)‡ 0.30314(0.07770)‡ 0.01696(0.00171)‡ 0.06117(0.01958)‡ 0.01327(0.00131)

7

HV 3.46214(0.03329)‡ 1.91381(0.05672)‡ 3.45509(0.01810)‡ 3.46492(0.01639)‡ 3.51152(0.00457)

IGD 0.07860(0.00794)‡ 0.58786(0.03195)‡ 0.06312(0.00434)‡ 0.05815(0.00349)‡ 0.05195(0.00106)

SP 0.03057(0.00472)‡ 0.27717(0.06678)‡ 0.02062(0.00239)‡ 0.05180(0.01481)‡ 0.01569(0.00124)

8

HV 3.49254(0.00730) 1.93954(0.06004)‡ 3.43038(0.01384)‡ 3.43042(0.00865)‡ 3.46412(0.00324)

IGD 0.07078(0.00279)‡ 0.60735(0.03522)‡ 0.05584(0.00343)‡ 0.05320(0.00155)‡ 0.04938(0.00145)

SP 0.01881(0.00186)‡ 0.29879(0.07863)‡ 0.01519(0.00180)‡ 0.06691(0.01500)‡ 0.01231(0.00100)

‡ and † indicate dCMOEA performs significantly better than and equivalently to the corresponding algorithm, respectively.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

1

DC-MOEA DC-NSGA-II-A

DC-NSGA-II DC-NSGA-III

DC-TAEA dCMOEA

Fig. S-5. Obtained POFs obtained by the compared algorithms on the first test problem.

0 2 4 6 8 10 12
2

4

6

8

10

12

14

16

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . DC-MOEA

12 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

DC-MOEA DC-NSGA-II-A

DC-NSGA-II DC-NSGA-III

DC-TAEA dCMOEA

Fig. S-6. Obtained POFs obtained by the compared algorithms on the second test problem.

0 2 4 6 8 10 12
2

4

6

8

10

12

14

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . DC-MOEA

0 2 4 6 8 10 12
2

4

6

8

10

12

14

16

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . DC-NSGA-II-A

0 2 4 6 8 10 12
2

4

6

8

10

12

14

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . DC-NSGA-II

0 2 4 6 8 10 12
2

4

6

8

10

12

14

16

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . DC-NSGA-III

0 2 4 6 8 10 12
2

4

6

8

10

12

14

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . DC-TAEA

0 2 4 6 8 10 12
2

4

6

8

10

12

14

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . dCMOEA

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

3

DC-MOEA DC-NSGA-II-A

DC-NSGA-II DC-NSGA-III

DC-TAEA dCMOEA

Fig. S-7. Obtained POFs obtained by the compared algorithms on the third test problems.

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . DC-MOEA

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

16

18

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . DC-NSGA-II-A

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . DC-NSGA-II

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . DC-NSGA-III

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . DC-TAEA

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . dCMOEA

14 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

DC-MOEA DC-NSGA-II-A

DC-NSGA-II DC-NSGA-III

DC-TAEA dCMOEA

Fig. S-8. Obtained POFs obtained by the compared algorithms on the fourth test problem.

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . DC-MOEA

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

16

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . DC-NSGA-II-A

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . DC-NSGA-II

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

f
1
+0.5*t

2
+0.5*t

 The true POF

 . DC-NSGA-III

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . DC-TAEA

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . dCMOEA

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

5

DC-MOEA DC-NSGA-II-A

DC-NSGA-II DC-NSGA-III

DC-TAEA dCMOEA

Fig. S-9. Obtained POFs obtained by the compared algorithms on the fifth test problem.

0 2 4 6 8 10 12
0

5

10

15

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . DC-MOEA

0 2 4 6 8 10 12
0

5

10

15

20

25

30

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . DC-NSGA-II-A

0 2 4 6 8 10 12
2

4

6

8

10

12

14

16

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . DC-NSGA-II

0 2 4 6 8 10 12
2

4

6

8

10

12

14

16

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . DC-NSGA-III

0 2 4 6 8 10 12
2

4

6

8

10

12

14

16

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . DC-TAEA

0 2 4 6 8 10 12
2

4

6

8

10

12

14

16

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . dCMOEA

16 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

DC-MOEA DC-NSGA-II-A

DC-NSGA-II DC-NSGA-III

DC-TAEA dCMOEA

Fig. S-10. Obtained POFs obtained by the compared algorithms on the fifth test problem.

0 2 4 6 8 10 12
0

5

10

15

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . DC-MOEA

0 2 4 6 8 10 12
0

5

10

15

20

25

30

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . DC-NSGA-II-A

0 2 4 6 8 10 12
2

4

6

8

10

12

14

16

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . DC-NSGA-II

0 2 4 6 8 10 12
2

4

6

8

10

12

14

16

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . DC-NSGA-III

0 2 4 6 8 10 12
2

4

6

8

10

12

14

16

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . DC-TAEA

0 2 4 6 8 10 12
2

4

6

8

10

12

14

16

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . dCMOEA

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

7

DC-MOEA DC-NSGA-II-A

DC-NSGA-II DC-NSGA-III

DC-TAEA dCMOEA

Fig. S-11. Obtained POFs obtained by the compared algorithms on the seventh test problem.

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . DC-MOEA

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . DC-NSGA-II-A

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . DC-NSGA-II

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . DC-NSGA-III

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . DC-TAEA

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . dCMOEA

18 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

DC-MOEA DC-NSGA-II-A

DC-NSGA-II DC-NSGA-III

DC-TAEA dCMOEA

Fig. S-12. Obtained POFs obtained by the compared algorithms on the eighth test problem.

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . dCMOEA

0 2 4 6 8 10 12
0

5

10

15

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . DC-NSGA-II-A

0 2 4 6 8 10 12
0

5

10

15

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . DC-NSGA-II-A

0 2 4 6 8 10 12
0

5

10

15

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . DC-NSGA-III

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . DC-TAEA

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

f
1
+0.5*t

f
2
+0.5*t

 The true POF

 . dCMOEA

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

9

S-X. THREE PERFORMANCE METRICS OF ALGORITHMS ON THE

TEST PROBLEMS WITH 15 AND 20 DECISION VARIABLES

Tables S-VII–S-IX give the values and standard deviations of

the three performance metrics (i.e., HV, IGD, and MS) for these

algorithms (i.e., DC-NSGA-II, DC-NSGA-III, and dCMOEA)

on the test problems with 15 decision variables. The results of

these algorithms on the test problems with 20 decision variables

are given in Tables S-X–S-XII.

[s1] M. Alhamdoosh and D. H. Wang, “Fast decorrelated neural network

ensembles with random weights,” Inf. Sci., vol. 264, no. 6, pp. 104-117,

Apr. 2014.

[s2] Y. M. John, R. Patel, and I. M. Mujtaba, “Maximization of gasoline in an

industrial fluidized catalytic cracking unit,” Energ. Fuel, vol. 31, no. 5, pp.

5645-5661, 2017.

[s3] D. C. Montgomery, Design and Analysis of Experiments. Hoboken, NJ,

USA: Wiley, 2005.

TABLE S-VII

STATISTIC RESULTS OF THE THREE COMPARED ALGORITHMS ON TEST PROBLEMS WITH 15 DECISION

VARIABLES AND T=10

Ins Indicator DC-NSGA-II DC-NSGA-III dCMOEA

1
HV 2.95561(0.03845) 2.71664(0.04526) 3.07657(0.04432)

IGD 0.22164(0.01072) 0.28576(0.01551) 0.19730(0.01493)

SP 0.08249(0.02708) 0.25777(0.05624) 0.04468(0.00519)

2
HV 3.04555(0.03332) 2.82611(0.02948) 3.17697(0.03777)

IGD 0.18786(0.01023) 0.24986(0.00798) 0.15900(0.01451)

SP 0.06232(0.01547) 0.24800(0.04405) 0.03812(0.00370)

3
HV 2.93815(0.03630) 2.70643(0.03838) 3.08019(0.05695)

IGD 0.22849(0.01343) 0.28738(0.01364) 0.19555(0.02247)

SP 0.08378(0.02467) 0.24008(0.04629) 0.04671(0.00825)

4
HV 3.04671(0.02292) 2.82254(0.03190) 3.14364(0.02389)

IGD 0.18369(0.00673) 0.24763(0.00949) 0.16633(0.00858)

SP 0.06516(0.01861) 0.23242(0.04734) 0.03724(0.00282)

5
HV 2.92605(0.04016) 2.72323(0.03660) 3.08923(0.05100)

IGD 0.23497(0.01344) 0.29468(0.01245) 0.19696(0.01791)

SP 0.08598(0.01794) 0.26784(0.05613) 0.04626(0.00428)

6
HV 3.02309(0.03391) 2.82055(0.03017) 3.17003(0.02427)

IGD 0.19389(0.01060) 0.25246(0.00982) 0.15876(0.00768)

SP 0.06429(0.01623) 0.25048(0.04104) 0.04156(0.00548)

7
HV 2.94013(0.03380) 2.71784(0.03460) 3.07288(0.05690)

IGD 0.23214(0.01205) 0.29627(0.01335) 0.20485(0.02385)

SP 0.08253(0.01929) 0.23726(0.04453) 0.04583(0.00621)

8
HV 3.02142(0.03148) 2.81701(0.03274) 3.13580(0.03975)

IGD 0.19183(0.00998) 0.25197(0.00866) 0.16869(0.01484)

SP 0.06223(0.01409) 0.23989(0.04734) 0.04035(0.00372)

TABLE S-VIII

STATISTIC RESULTS OF THE THREE COMPARED ALGORITHMS ON TEST PROBLEMS WITH 15 DECISION

VARIABLES AND T=15

Ins Indicator DC-NSGA-II DC-NSGA-III dCMOEA

1
HV 3.26166(0.02473) 3.10064(0.02337) 3.33491(0.01589)

IGD 0.11810(0.00769) 0.16809(0.00737) 0.10484(0.00628)

SP 0.03541(0.01141) 0.18341(0.04286) 0.02200(0.00147)

2
HV 3.29301(0.01727) 3.16679(0.02114) 3.35993(0.01110)

IGD 0.10191(0.00455) 0.14221(0.00543) 0.09081(0.00400)

SP 0.02771(0.00602) 0.15573(0.03687) 0.01961(0.00152)

3
HV 3.25308(0.03219) 3.08977(0.03268) 3.32878(0.03004)

IGD 0.12021(0.01027) 0.17080(0.00940) 0.10736(0.01189)

SP 0.03609(0.01153) 0.17350(0.03904) 0.02333(0.00159)

4
HV 3.29219(0.01704) 3.15399(0.02251) 3.34662(0.01393)

IGD 0.09763(0.00456) 0.14145(0.00732) 0.09101(0.00536)

SP 0.02634(0.00345) 0.18179(0.03329) 0.01791(0.00120)

5
HV 3.24134(0.02396) 3.09250(0.03797) 3.34417(0.02430)

IGD 0.12794(0.00672) 0.17548(0.01275) 0.10806(0.00797)

SP 0.03258(0.00305) 0.19911(0.05104) 0.02368(0.00175)

6
HV 3.28364(0.02645) 3.15064(0.03038) 3.35260(0.01125)

IGD 0.10561(0.00655) 0.14745(0.00760) 0.09415(0.00366)

SP 0.02935(0.00445) 0.16061(0.03214) 0.02038(0.00150)

7
HV 3.23989(0.03297) 3.11045(0.03148) 3.34284(0.03295)

IGD 0.12949(0.00921) 0.16992(0.00901) 0.10903(0.01232)

SP 0.03391(0.00427) 0.16614(0.03040) 0.02535(0.00201)

8
HV 3.27579(0.03015) 3.14596(0.02475) 3.34292(0.02463)

IGD 0.10535(0.00700) 0.14512(0.00644) 0.09372(0.00799)

SP 0.02774(0.00395) 0.18234(0.04376) 0.01928(0.00151)

TABLE S-IX

STATISTIC RESULTS OF THE THREE COMPARED ALGORITHMS ON TEST PROBLEMS WITH 15 DECISION

VARIABLES AND T=20

Ins Indicator DC-NSGA-II DC-NSGA-III dCMOEA

1
HV 3.37414(0.01367) 3.27083(0.01930) 3.42926(0.00895)

IGD 0.07672(0.00324) 0.11075(0.00496) 0.06703(0.00412)

SP 0.02140(0.00425) 0.14309(0.04702) 0.01508(0.00112)

2
HV 3.38071(0.01683) 3.29468(0.01822) 3.42353(0.01279)

IGD 0.07026(0.00542) 0.09715(0.00497) 0.06352(0.00595)

SP 0.01931(0.00429) 0.11906(0.02749) 0.01346(0.00095)

3
HV 3.36813(0.01459) 3.27253(0.02240) 3.42217(0.01544)

IGD 0.07973(0.00350) 0.11039(0.00496) 0.06980(0.00591)

SP 0.02187(0.00139) 0.13585(0.02686) 0.01631(0.00129)

4
HV 3.37570(0.01632) 3.28654(0.01673) 3.41747(0.00465)

IGD 0.06799(0.00457) 0.09478(0.00384) 0.06069(0.00234)

SP 0.01679(0.00113) 0.13267(0.03044) 0.01255(0.00094)

5
HV 3.37069(0.02909) 3.27013(0.02577) 3.44924(0.01267)

IGD 0.08642(0.00629) 0.11615(0.00740) 0.07260(0.00364)

SP 0.02265(0.00157) 0.13963(0.04095) 0.01597(0.00138)

6
HV 3.37158(0.01845) 3.29438(0.01977) 3.41892(0.00837)

IGD 0.07657(0.00428) 0.09920(0.00410) 0.06948(0.00322)

SP 0.01909(0.00161) 0.12696(0.03420) 0.01441(0.00103)

7
HV 3.36137(0.03189) 3.26438(0.02859) 3.44012(0.01927)

IGD 0.08931(0.00761) 0.11806(0.00687) 0.07370(0.00277)

SP 0.02462(0.00316) 0.12776(0.03288) 0.01776(0.00102)

8
HV 3.36956(0.01475) 3.28433(0.01690) 3.41302(0.00614)

IGD 0.07456(0.00337) 0.09937(0.00416) 0.06758(0.00242)

SP 0.01836(0.00174) 0.13312(0.03946) 0.01381(0.00080)

TABLE S-X

STATISTIC RESULTS OF THE THREE COMPARED ALGORITHMS ON TEST PROBLEMS WITH 20 DECISION

VARIABLES AND T=10

Ins Indicator DC-NSGA-II DC-NSGA-III dCMOEA

1
HV 2.46101(0.06867) 2.15308(0.05064) 2.60879(0.06029)
IGD 0.39943(0.02527) 0.49303(0.02918) 0.36733(0.02349)
SP 0.11399(0.03403) 0.47251(0.08141) 0.07339(0.01500)

2
HV 2.65836(0.03044) 2.32834(0.04449) 2.84469(0.03805)
IGD 0.32515(0.01001) 0.42900(0.01758) 0.27805(0.01420)
SP 0.08591(0.01680) 0.39985(0.10046) 0.05793(0.00707)

3
HV 2.44064(0.05276) 2.12862(0.04705) 2.64504(0.06816)
IGD 0.40801(0.02062) 0.51164(0.01780) 0.35603(0.03056)
SP 0.12594(0.03605) 0.40724(0.08440) 0.06637(0.01018)

4
HV 2.63752(0.04306) 2.33186(0.04964) 2.81244(0.06428)
IGD 0.32536(0.01532) 0.42376(0.01982) 0.28422(0.02353)
SP 0.09582(0.02913) 0.42987(0.08518) 0.05863(0.00719)

5
HV 2.42237(0.06522) 2.12443(0.06244) 2.62456(0.06490)
IGD 0.42872(0.02622) 0.52313(0.02623) 0.36884(0.02601)
SP 0.12531(0.03076) 0.42483(0.08529) 0.07403(0.01646)

6
HV 2.60910(0.04052) 2.31038(0.05384) 2.84768(0.03996)
IGD 0.34569(0.01647) 0.44344(0.02366) 0.27439(0.01585)
SP 0.11013(0.02887) 0.42365(0.08678) 0.06443(0.00825)

7
HV 2.40782(0.05399) 2.10162(0.05985) 2.62790(0.07623)
IGD 0.43175(0.02467) 0.53468(0.02545) 0.36861(0.03287)
SP 0.12788(0.03366) 0.40795(0.08804) 0.06936(0.00939)

8
HV 2.62186(0.04274) 2.28635(0.05430) 2.80565(0.05456)
IGD 0.33446(0.01578) 0.45240(0.02144) 0.28490(0.01931)
SP 0.09567(0.02576) 0.41556(0.07941) 0.06207(0.00705)

20 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

TABLE S-XI

STATISTIC RESULTS OF THE THREE COMPARED ALGORITHMS ON TEST PROBLEMS WITH 20 DECISION

VARIABLES AND T=15

Ins Indicator DC-NSGA-II DC-NSGA-III dCMOEA

1
HV 2.99175(0.03964) 2.73604(0.05486) 3.09502(0.04121)

IGD 0.21273(0.01448) 0.29390(0.01775) 0.19442(0.01614)

SP 0.04755(0.00557) 0.33048(0.08027) 0.03316(0.00361)

2
HV 3.10505(0.02876) 2.86168(0.02896) 3.21185(0.01903)

IGD 0.16986(0.00899) 0.24754(0.00969) 0.14988(0.00718)

SP 0.03864(0.00844) 0.30651(0.07453) 0.02627(0.00244)

3
HV 2.98844(0.03836) 2.72258(0.05321) 3.08711(0.06343)

IGD 0.21324(0.01382) 0.29803(0.01852) 0.19860(0.02728)

SP 0.05173(0.01671) 0.32764(0.08317) 0.03419(0.00262)

4
HV 3.10153(0.02342) 2.85421(0.03439) 3.17731(0.05114)

IGD 0.16652(0.00685) 0.24521(0.01194) 0.15792(0.01958)

SP 0.04025(0.00955) 0.31903(0.07458) 0.02594(0.00226)

5
HV 2.96950(0.04691) 2.72226(0.05009) 3.11278(0.03584)

IGD 0.22522(0.01547) 0.30830(0.01672) 0.19155(0.01335)

SP 0.05318(0.01196) 0.34777(0.06148) 0.03527(0.00359)

6
HV 3.08356(0.04182) 2.83883(0.03859) 3.21087(0.02122)

IGD 0.17503(0.01153) 0.25629(0.01275) 0.14742(0.00719)

SP 0.04158(0.00542) 0.30272(0.08688) 0.02858(0.00218)

7
HV 2.97017(0.04580) 2.70561(0.04851) 3.09921(0.05977)

IGD 0.22356(0.01541) 0.31223(0.01765) 0.19792(0.02236)

SP 0.05207(0.00824) 0.34496(0.08266) 0.03688(0.00430)

8
HV 3.07434(0.03415) 2.84302(0.03142) 3.18531(0.04201)

IGD 0.17324(0.01034) 0.25339(0.01085) 0.15401(0.01758)

SP 0.04032(0.00354) 0.32526(0.07144) 0.02787(0.00235)

TABLE S-XII

STATISTIC RESULTS OF THE THREE COMPARED ALGORITHMS ON TEST PROBLEMS WITH 20 DECISION

VARIABLES AND T=20

Ins Indicator DC-NSGA-II DC-NSGA-III dCMOEA

1

HV 3.22532(0.02751) 3.03690(0.03052) 3.30644(0.02241)

IGD 0.13188(0.00965) 0.19382(0.00858) 0.11694(0.00862)

SP 0.02800(0.00198) 0.25148(0.06941) 0.01900(0.00178)

2

HV 3.28536(0.01835) 3.11828(0.02190) 3.35219(0.01192)

IGD 0.10783(0.00487) 0.16145(0.00626) 0.09639(0.00482)

SP 0.02382(0.00136) 0.22809(0.05975) 0.01605(0.00095)

3

HV 3.21682(0.03162) 3.03655(0.03823) 3.28854(0.04665)

IGD 0.13517(0.00963) 0.19409(0.01195) 0.12412(0.01932)

SP 0.02913(0.00392) 0.25096(0.07053) 0.02032(0.00177)

4

HV 3.26925(0.01741) 3.10962(0.02253) 3.33032(0.02938)

IGD 0.10763(0.00532) 0.15952(0.00619) 0.09913(0.01137)

SP 0.02284(0.00152) 0.23149(0.06193) 0.01542(0.00128)

5

HV 3.19646(0.04413) 3.00460(0.04191) 3.31384(0.02694)

IGD 0.14596(0.01450) 0.20924(0.01355) 0.12001(0.00973)

SP 0.03231(0.00418) 0.29157(0.08143) 0.02151(0.00185)

6

HV 3.25965(0.02539) 3.08380(0.03825) 3.33587(0.02909)

IGD 0.11513(0.00689) 0.17088(0.01125) 0.10210(0.01133)

SP 0.02714(0.00281) 0.23181(0.05326) 0.01735(0.00112)

7

HV 3.19837(0.04319) 3.00263(0.03698) 3.31185(0.02598)

IGD 0.14354(0.01303) 0.20818(0.01281) 0.12038(0.01002)

SP 0.03175(0.00236) 0.26979(0.06914) 0.02202(0.00155)

8

HV 3.24394(0.03493) 3.08310(0.03243) 3.33412(0.01652)

IGD 0.11673(0.01006) 0.16823(0.01038) 0.09845(0.00535)

SP 0.02530(0.00192) 0.25538(0.06303) 0.01665(0.00111)

