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Abstract A novel explicit three-sub-step time integration method is proposed. From linear analysis, it is
designed to have at least second-order accuracy, tunable stability interval, tunable algorithmic dissipation and
no overshooting behaviour. A distinctive feature is that the size of its stability interval can be adjusted to control
the properties of the method. With the largest stability interval, the new method has better amplitude accuracy
and smaller dispersion error forwave propagation problems, comparedwith some existing second-order explicit
methods, and as the stability interval narrows, it shows improved period accuracy and stronger algorithmic
dissipation. By selecting an appropriate stability interval, the proposed method can achieve properties better
than or close to existing second-order methods, and by increasing or reducing the stability interval, it can be
used with higher efficiency or stronger dissipation. The new method is applied to solve some illustrative wave
propagation examples, and its numerical performance is compared with those of several widely used explicit
methods.

Keywords Explicit · Three-sub-step · Time integration method · Wave propagation problems

1 Introduction

Direct time integration methods are frequently employed to compute numerical solutions of ordinary dif-
ferential equations or differential-algebraic equations in multi-body dynamics, structural dynamics, wave
propagation problems, and many other branches of science and engineering. These methods use step-by-step
recursive schemes to find solutions at discrete time points and can be easily implemented to solve general linear
and nonlinear problems. If the factorization of the effective stiffness matrix is inevitable in the computational
procedure, the method is called implicit and explicit otherwise [3].

Generally, explicit methods have obvious advantages in terms of computational efficiency, since they only
need vector operations if the mass matrix (and also the damping matrix for those methods that deal with the
dampingmatrix implicitly, such as the central differencemethod,CDM) is diagonal.However, implicitmethods
can be, and usually are, designed to have unconditional stability, exploiting linear analysis, while explicit
methods can only be conditionally stable [8]. Therefore, while implicit, unconditionally stable methods have
no limitations on the time step size other than those dictated by accuracy, explicit methods are more practical
when their stability-critical time step size and that required by accuracy are of similar magnitude, such as wave
propagation problems [7,12,28].

H. Zhang · R. Zhang · Y. Xing
School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China

H. Zhang (B) · R. Zhang · A. Zanoni · P. Masarati
Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, 20156 Milano, Italy
E-mail: huimin.zhang@polimi.it

http://orcid.org/0000-0003-3129-0170
http://crossmark.crossref.org/dialog/?doi=10.1007/s00419-021-02075-0&domain=pdf


822 H. Zhang et al.

This paper focuses on explicit methods, so implicit ones are only briefly reviewed, only addressing those
aspects that are essential for the present discussion. Most implicit methods proposed since the 1970s are
designed to have second-order accuracy, unconditional stability and tunable algorithmic dissipation in the
linear regime, including the single-step single-solve methods [6,11,36,45], the linear multi-step methods
[26,27,43], and the composite multi-sub-step methods [5,9,13,16,18,23,29,40,44]. The single-step single-
solve methods, such as the HHT-α method [11] proposed by Hilber, Hughes and Taylor, the generalized-α
method [6,31,41], as well as the linear multi-step methods (see for example [43]) are limited by Dahlquist’s
barrier [8], which states that methods of higher than second-order accuracy cannot achieve unconditional
stability, so higher-order formulations of those schemes are not so attractive in practice. Optimal schemes of
second-order linear two-, three-, and four-step methods, and their equivalent single-step formulations, were
recently proposed in [43]. It was shown that the methods using solutions at more previous steps have higher
low-frequency accuracy under the same amount of algorithmic dissipation. The composite multi-sub-step
methods, such as the two-sub-step ones [4,5,16,18,29], the three-sub-step ones [13,23], and the general multi-
sub-step ones [9,44], have received a lot of attention during the past decade. Although these methods can be
designed to have higher-order accuracy and unconditional stability by usingmore sub-steps, their second-order
formulations are of most concern, since they can simultaneously offer strong high-frequency dissipation and
desirable low-frequency accuracy. Two sets of optimal schemes of the general n-sub-step method considering
different conditions can be found in [44].

In the class of explicit methods, owing to their conditional stability, a large stability interval is another
important design indicator, in addition to accuracy. The widely used CDM was shown to have the largest
stability limit among explicit methods [20], i.e. ω0�tmax ≤ 2, where ω0 is the system natural frequency and
�t is the time step size. However, CDM has no algorithmic dissipation, which plays an important role in
suppressing the inaccurate high-frequency dynamics. Besides, CDM can maintain its explicit feature only
when both the mass and damping matrices are diagonal. Although this implicit manner of dealing with the
damping matrix can improve the stability when applied to damped systems [12], most up-to-date explicit
methods employ the explicit treatment of the damping matrix, to ensure a high computational efficiency for
more general problems.

From the literature, the construction of explicit methods can be divided into single-step, multi-step and
multi-sub-step schemes. In addition to CDM, single-step explicit methods also include the Tchamwa–Wielgosz
scheme (TW) [25,34], the Chung-Lee method [7], the explicit generalized-α method (EG-α) [12], the general
single-step explicit schemes [24] and many others [15]. Reference 24 presents a detailed comparison of
existing explicit single-step methods and proposes several superior single-step schemes. All the recommended
methods have second-order accuracy, an acceptably broad stability region and tunable algorithmic dissipation.
The multi-step explicit methods, which employ the solutions of several previous steps in the scheme, have
received little attention during recent years. The representative Adams–Bashforth methods [2] are designed
to have higher-order accuracy, but due to their poor stability, they often need to be used with variable step
technology to control the growth of errors. Yang et al. [37,38] recently proposed several multi-step explicit
schemes, which use the accelerations of several previous steps, for nonlinear dynamics.

The multi-sub-step explicit methods, which solve the motion equations more than once per step, have been
greatly developed in recent years. The two-sub-step methods, represented by the Noh-Bathe method (NB)
[28], the Kim-Lee method [17], the Soares method [32], the explicit method based on displacement–velocity
relations [42], share equivalent spectral characteristics for undamped linear systems. They are designed to have
second-order accuracy, a large stability interval and tunable algorithmic dissipation. Compared with the above
single-step methods, the two-sub-step schemes allow a broader stability region under the equivalent amount
of calculations and the same degree of numerical dissipation. In Ref. 28, the NB method exhibits very good
performance in the analysis of wave propagation problems. Besides, worth of mention are some efforts devoted
to developing higher-order explicit methods [19,33,35] using two and more sub-steps. The improvement of
the accuracy order, however, often leads to a reduction of the stability region.

This paper presents a new explicit three-sub-step method, which splits the time interval [t, t + �t] into
[t, t +γ1�t], [t +γ1�t, t +γ2�t] and [t +γ2�t, t +�t], with 0 ≤ γ1 ≤ γ2 ≤ 1, and uses specially designed
explicit formulations in each sub-step. The formulations only require vector operations when a diagonal mass
matrix is used. According to the analysis of accuracy, stability, algorithmic dissipation and overshoot, the
optimal parameters of the proposed method, controlled by τb (τ = ω0�t), and the spectral radius ρb ∈ [0, 1],
at the bifurcation point (defined in detail later in Sect. 3.1), are determined. A distinctive feature of the new
method is that its properties can be adjusted by tuning τb, in addition to ρb. When τb is set to the allowable
maximum value, the proposed method has a larger stability domain and better amplitude accuracy than the
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NB method and single-step explicit methods. As τb decreases, the proposed method can offer better period
accuracy and stronger algorithmic dissipation. A comparative study of the proposed method with NB, EG-α
and TW is presented.

Since the explicit methods are commonly used to solve wave propagation problems, the dispersion analysis
for these problems is also performed, to support the selection of the parameters, including τb, ρb, and the
corresponding CFL number. For these problems, high dispersion accuracy is expected to provide accurate
solutions, while strong algorithmic dissipation is also important to filter out the inaccurate high-frequency
dynamics, which can greatly spoil the overall accuracy as the errors accumulate. For a given ρb, the proposed
method with a selected τb shows better or close properties compared to several widely used explicit methods.
As τb increases, it has higher efficiency and smaller dispersion error, and as τb gets smaller, it can offer
stronger high-frequency dissipation. Some benchmark problems are simulated to assess the performance of
the proposed method.

This paper is organized as follows. The formulations of the proposedmethod are presented in Sect. 2. Accu-
racy, stability, overshoot and dispersion analysis are discussed in Sect. 3. Numerical examples are presented
in Sect. 4, and conclusions are drawn in Sect. 5.

2 Formulations

Linear structural dynamics problems have the general form

Mẍ + Cẋ + Kx = R(t) (1)

where M, C and K are the constant mass, damping and stiffness matrices, respectively, ẍ, ẋ and x are
the acceleration, velocity and displacement vectors, respectively, and R is the external load vector, usually a
function of the time t . The initial displacement x0 and velocity ẋ0 are the initial conditions of the corresponding
Cauchy problem.

The proposed method divides each time step, spanning the interval [t, t + �t], into three sub-steps, as
[t, t + γ1�t], [t + γ1�t, t + γ2�t] and [t + γ2�t, t + �t] (0 ≤ γ1 ≤ γ2 ≤ 1). In the first sub-step, the
displacement, velocity and acceleration vectors are updated according to

Mẍt+γ1�t + Cẋt+γ1�t + Kxt+γ1�t = Rt+γ1�t (2a)

xt+γ1�t = xt + γ1�t ẋt + 1

2
γ 2
1 �t2 ẍt (2b)

ẋt+γ1�t = ẋt + γ1�t ẍt (2c)

In the second sub-step, we use

Mẍt+γ2�t + Cẋt+γ2�t + Kxt+γ2�t = Rt+γ2�t (3a)

xt+γ2�t = xt + γ2�t ẋt+ (3b)
1

2
γ2�t2

(
(γ2 − γ3)ẍt + γ3 ẍt+γ1�t

)

ẋt+γ2�t = ẋt + �t
(
(γ2 − γ4)ẍt + γ4 ẍt+γ1�t

)
(3c)

and in the last one

Mẍt+�t + Cẋt+�t + Kxt+�t

= Rt+�t (4a)

xt+�t

= xt + �t ẋt
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+ 1

2
�t2

(
(1 − γ5 − γ6)ẍt + γ5 ẍt+γ1�t + γ6 ẍt+γ2�t

)
(4b)

ẋt+�t

= ẋt + �t
(
(1 − γ7 − γ8)ẍt + γ7 ẍt+γ1�t + γ8 ẍt+γ2�t

)
(4c)

Finally, the velocity ẋt+�t is updated by

ẋt+�t =ẋt

+ �t
(
(1 − β1 − β2 − β3)ẍt + β1 ẍt+γ1�t + β2 ẍt+γ2�t + β3 ẍt+�t

)
(5)

Here γ1, γ2, γ3, γ4, γ5, γ6, γ7, γ8, β1, β2, β3 are control parameters to be determined. If the external load R
is known as a function of time, t , its exact values at the internal points can be used. Otherwise, if it is only
defined and sampled at discrete time points, the loads at t + γ1�t and t + γ2�t can be obtained for example
through linear interpolation, as

Rt+γ1�t = (1 − γ1)Rt + γ1Rt+�t (6a)

Rt+γ2�t = (1 − γ2)Rt + γ2Rt+�t (6b)

An approach for selecting the optimal loads at the internal points was given in [22].
From Eqs. (2)–(5), the proposed method employs a form similar to Taylor expansion at time t to predict

the displacement and velocity of each sub-step, and replaces the acceleration term with a linear combination
of accelerations at known time points. The method is essentially explicit, with a diagonal mass matrix. By
evaluating the internal force and the damping force at the element level prior to assembling, this method can
completely avoid matrix operations.

In terms of computational effort, the amount of calculation required for each sub-step of the proposed
method is equivalent to that required for each step of a single-step explicit method. Consequently, if the step
size of the proposed method is set as three times that of a single-step explicit method, or 3/2 times that of a
two-sub-step explicit method, their computational costs can be considered equivalent.

3 Properties

3.1 Accuracy and stability

When applied to the single-degree-of-freedom test model ẍ + 2ξ0ω0 ẋ + ω2
0x = 0, where ξ0 is the damping

ratio and ω0 is the natural frequency, the proposed method can be formulated in compact form as

Xt+�t = AXt , X = {x; ẋ; ẍ} (7)

where A is the amplification matrix, whose formulation, not presented here for the sake of conciseness, can
be obtained from Eqs. (2)–(5). The characteristic polynomial of the proposed method takes the form

λ3 − A1λ
2 + A2λ − A3 = 0 (8)

where λ denotes the characteristic root, and A j , j = 1, 2, 3, for the undamped case (ξ0 = 0) are

A1 =2 −
(
1

2
+ β1γ1 + β2γ2 + β3

)
τ 2 (9a)

+
(

γ 2
1 γ5

4
+ γ 2

2 γ6

4
+ β3γ1γ5

2
+ β3γ2γ6

2
+ β2γ1γ2γ3

2

)

τ 4

−
(

γ 2
1 γ2γ3γ6

8
+ β3γ1γ2γ3γ6

4

)

τ 6

A2 =1 −
(

−1

2
+ β1γ1 + β2γ2 + β3

)
τ 2 (9b)
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+
(

β1γ1

2
+ β2γ2

2
− γ1γ5

2
− γ2γ6

2
− β1γ

2
1

2
− β2γ

2
2

2

+γ 2
1 γ5

4
+ γ 2

2 γ6

4
+ β3γ1γ5

2
+ β3γ2γ6

2
+ β2γ1γ2γ3

2

)

τ 4

+ γ1γ2

(
γ3γ6

4
− β2γ3

4
+ β2γ1γ3

4
+ β1γ1γ6

4
− β2γ1γ5

4

−β1γ2γ6

4
+ β2γ2γ5

4
− β3γ3γ6

4
− γ1γ3γ6

8

)
τ 6

A3 =0 (9c)

The local truncation error is defined as

σ = x(t + �t) − A1x(t) + A2x(t − �t) − A3x(t − 2�t)

�t2
(10)

where x(t) denotes the exact solution at time t . The method is said to be �th-order accurate if σ = O(�t�)
[10]. Expanding Eq. (10) yields

σ =
(

β1γ1 + β2γ2 + β3 − 1

2

)
ω2
0�t ẋ(t)

− 1

6

(
3γ1γ5 + 3γ2γ6 − 6β1γ1 + 3β1γ

2
1 − 6β2γ2

+3β2γ
2
2 − 3β3 + 1

)
ω4
0�t2x(t) + O(�t3) (11)

Thus, the method is second-order accurate if

β1γ1 + β2γ2 + β3 − 1

2
= 0 (12)

and third-order accurate if, in addition to Eq. (12),

γ1γ5 + γ2γ6 − β1γ1 + β1γ
2
1 − β2γ2 + β2γ

2
2 − 1

6
= 0 (13)

When physical damping is considered (ξ0 �= 0), the method is naturally second-order accurate with Eq. (12),
whereas in addition to Eq. (13), the conditions for third-order accuracy also require

6 (−β1 − β2 + β1γ1 + β2γ2 − 2γ1γ7 − 2γ2γ8 − 2β2γ1γ4

+2β1γ1γ7 + 2β2γ1γ7 + 2β1γ2γ8 + 2β2γ2γ8) + 5 = 0 (14)

The proposed method is expected to be at least second-order accurate; hence, Eq. (12) is considered in the
following. Taking it into account, the coefficients A j , j = 1, 2, 3 in Eq. (9) can be rewritten as

A1 = 2 − τ 2 + p1τ
4 + p2τ

6 (15a)

A2 = 1 + q1τ
4 + q2τ

6 (15b)

A3 = 0 (15c)

with

p1 =γ 2
1 γ5

4
+ γ 2

2 γ6

4
+ β3γ1γ5

2
+ β3γ2γ6

2
+ β2γ1γ2γ3

2
(16a)

p2 = −
(

γ 2
1 γ2γ3γ6

8
+ β3γ1γ2γ3γ6

4

)

(16b)

q1 =β1γ1

2
+ β2γ2

2
− γ1γ5

2
− γ2γ6

2
− β1γ

2
1

2
− β2γ

2
2

2
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+ γ 2
1 γ5

4
+ γ 2

2 γ6

4
+ β3γ1γ5

2
+ β3γ2γ6

2
+ β2γ1γ2γ3

2
(16c)

q2 =γ1γ2

(
γ3γ6

4
− β2γ3

4
+ β2γ1γ3

4
+ β1γ1γ6

4
− β2γ1γ5

4

− β1γ2γ6

4
+ β2γ2γ5

4
− β3γ3γ6

4
− γ1γ3γ6

8

)
(16d)

used in the following for the sake of conciseness. After obtaining p1, p2, q1 and q2, the original parameters
βi , γi can be determined, although not uniquely, according to Eqs. (16).

From Eq. (9c), A3 = 0, so the two nonzero characteristic roots can be expressed as

λ1,2 =
A1 ±

√
A2
1 − 4A2

2
(17)

Since an oscillatory solution is expected for the undamped oscillator problem considered herein, λ1,2 should
be a pair of conjugate complex numbers for small values of τ and bifurcate into two real numbers when
approaching the stability limit. At the bifurcation point, denoted as τb, λ1,2 should be two equal real numbers,
and the spectral radius at this point, denoted as ρb = |λ1,2| ∈ [0, 1], is used to denote the degree of algorithmic
dissipation of the explicit method.

According to |λ1,2| = ρb at τ = τb, which imposes

|2 − τ 2b + p1τ
4
b + p2τ

6
b | = 2ρb (18a)

1 + q1τ
4
b + q2τ

6
b = ρ2

b (18b)

p1 and q1 can be expressed as

p1 = ±2ρb − 2 + τ 2b − p2τ 6b
τ 4b

(19a)

q1 = ρ2
b − 1 − q2τ 6b

τ 4b
(19b)

To simplify the expression, Pb ∈ [−1, 1] is used to replace ±ρb in the following analysis. Consequently, p1
and q1 can be rewritten as

p1 = 2Pb − 2 + τ 2b − p2τ 6b
τ 4b

(20a)

q1 = P2
b − 1 − q2τ 6b

τ 4b
(20b)

For 0 ≤ τ ≤ τb, A2
1 − 4A2 ≤ 0 needs to be satisfied to ensure that λ1,2 are conjugate complex numbers, to

avoid internal bifurcation. With the conditions in Eqs. (20), A2
1 − 4A2 can be expressed as

A2
1 − 4A2 = τ 2(τ 2 − τ 2b )

τ 8b
f (τ ) (21)

where

f (τ ) = p22τ
8
b τ 8 + (−p22τ

6
b + 2p2τ

2
b + 4p2Pb − 4p2

)
τ 4b τ 6

+ (−2p2τ
8
b + τ 4b + 4Pbτ

2
b − 4τ 2b + 4P2

b − 8Pb + 4
)
τ 4

+ (
4p2τ

6
b − 4q2τ

6
b − τ 4b + 4P2

b − 8Pb + 4
)
τ 2b τ 2 + 4τ 6b (22)

From Eq. (21), the condition for A2
1 − 4A2 ≤ 0 for τ < τb changes to f (τ ) ≥ 0. Using x instead of τ 2, f (τ )

can be rewritten as an equivalent quartic function g(x), as

g(x) = a4x
4 + a3x

3 + a2x
2 + a1x + a0, x ≥ 0 (23a)
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a4 = p22τ
8
b (23b)

a3 = (−p22τ
6
b + 2p2τ

2
b + 4p2Pb − 4p2

)
τ 4b (23c)

a2 = −2p2τ
8
b + τ 4b + 4Pbτ

2
b − 4τ 2b + 4P2

b − 8Pb + 4 (23d)

a1 = (
4p2τ

6
b − 4q2τ

6
b − τ 4b + 4P2

b − 8Pb + 4
)
τ 2b (23e)

a0 = 4τ 6b (23f)

Since a4 ≥ 0, the condition g(x) ≥ 0 imposes that the plot of g(x) cannot cross the real axis for x ≥ 0. In
other words, the unary quartic equation g(x) = 0 can only have double real roots or complex roots in pairs
when x ≥ 0. Considering the critical situation that g(x) = 0 has exactly two double roots, which means that
g(x) can be expressed as the form (ax2 + bx + c)2, we can obtain the following conditions

a0
a4

=
(
a1
a3

)2

,
a2
a4

=
(

a3
2a4

)2

+ 2a1
a3

(24)

From Eq. (24), two sets of critical values of p2 and q2 are solved, as

p2 = −4τ 2b − 16τb + 8Pb − 8

τ 6b
(25a)

q2 = (τ 2b + 8τb + 2Pb + 14)(−τ 2b − 4τb + 2Pb − 2)

4τ 6b
(25b)

and

p2 = −4τ 2b + 16τb + 8Pb − 8

τ 6b
(26a)

q2 = (τ 2b − 8τb + 2Pb + 14)(−τ 2b + 4τb + 2Pb − 2)

4τ 6b
(26b)

If p2 and q2 satisfy Eqs. (25) or (26), g(x) ≥ 0 is naturally satisfied for x ≥ 0.
Besides, for 0 ≤ τ ≤ τb, the spectral radius can be expressed as the form ρ = |λ1,2| = √

A2 =√
1 + q1τ 4 + q2τ 6, so we have ρ = 1 at τ = 0, and ρ = ρb at τ = τb has been imposed. To ensure stability,

the spectral radius must show a decreasing, or at least unchanging, trend at the beginning. As dA2/dτ =
2τ 3(2q1 + 3q2τ 2), the monotonicity of ρ for τ → 0 is determined by q1, and the condition for stability
requires

q1 = P2
b − 1 − q2τ 6b

τ 4b
≤ 0 (27)

As long as Eq. (27) is satisfied and 0 ≤ ρb ≤ 1, the method can remain stable for 0 ≤ τ ≤ τb, since the
function A2(τ ) is either monotonously decreasing or increasing after decreasing in the interval τ ∈ [0, τb].

Once the relations p1, p2, q1, q2 with respect to ρb and τb are determined, Eq. (27) can be used to give the
allowable range of τb for a given Pb. If they are set by Eqs. (20) and (25), the range of τb for several Pb can
be solved as

Pb = −1, τb ∈ ∅; (28a)

Pb = −1/2, τb ∈ ∅; (28b)

Pb = 0, τb ∈ ∅; (28c)

Pb = 1/2, τb ∈ ∅; (28d)

Pb = 1, τb ∈ ∅. (28e)

If p1, p2, q1, q2 are set by Eqs. (20) and (26), the range of τb for several Pb can be solved as

Pb = −1, τb ∈ [2, 6]; (29a)

Pb = −1/2, τb ∈ [0.8093, 5.7955]; (29b)
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Pb = 0, τb ∈ [0.4575, 5.5425]; (29c)

Pb = 1/2, τb ∈ [0.2045, 5.1907]; (29d)

Pb = 1, τb ∈ [0, 4]. (29e)

As can be seen, the coefficients in Eqs. (20) and (26) with Pb = −ρb offer a considerable range of τb. When
ρb = 1, the maximum τb can reach 6. Since the CDM has τb = 2, which was proved to be the largest stability
domain among single-step explicit methods [20], and the two-sub-step NB method can achieve τb = 4 at
the most [28], it is reasonable to say that the coefficients in Eqs. (20) and (26) with Pb = −ρb can provide
the largest stability interval for the proposed three-sub-step method. Other possible values of p2 and q2 that
satisfy A1 − 4A2 ≤ 0 always make the maximum allowable value of τb smaller. Therefore, the coefficients in
Eqs. (20) and (26), where Pb is replaced by −ρb, are finally selected, expressed as

p1 = 5τ 2b − 16τb + 6ρb + 6

τ 4b
(30a)

p2 = −4τ 2b + 16τb − 8ρb − 8

τ 6b
(30b)

q1 = τ 4b − 12τ 3b + 48τ 2b − 8ρbτb − 72τb + 24ρb + 24

4τ 4b
(30c)

q2 = − (τ 2b − 8τb − 2ρb + 14)(τ 2b − 4τb + 2ρb + 2)

4τ 6b
(30d)

From the analysis, the coefficients in Eqs. (30) can ensure that λ1,2 are conjugate complex numbers in
τ ∈ [0, τb] and bifurcate into two real numbers at τ = τb. Moreover, they can maximize the allowable range
of τb, which needs to satisfy the condition q1 ≤ 0 to ensure stability in τ ∈ [0, τb].

The allowable range of τb can be solved from

τ 4b − 12τ 3b + 48τ 2b − 8ρbτb − 72τb + 24ρb + 24 ≤ 0 (31)

As ρb changes from 0 to 1, the maximum τb of the proposed method increases from 5.5425 to 6, while for
ρb ∈ [0, 1], the NB method [28] has τb ∈ [3.4142, 4], the EG-α method [12] has τb ∈ [1.4142, 2], and the
TW method [34] [25] has τb ∈ [1, 2]. Since 5.5425/3 > 3.4142/2 > 1.4142 > 1, or 1.8475 > 1.7071 >
1.4142 > 1, the proposed method can offer a broader stability interval for a given 0 ≤ ρb < 1.

Besides, from Eqs. (13) and (16), the method has third-order accuracy for undamped systems if p1 − q1 =
1/12, which requires

τ 3b − 9τ 2b + 21τb − 6ρb − 6 = 0 (32)

For example, if ρb = 0, the method has third-order accuracy with τb ≈ 5.1451; if ρb = 0.5, it has third-order
accuracy with τb ≈ 5.4495. For simplicity, the value of τb that makes the method achieve third-order accuracy
is denoted as τb3, and the maximum value of τb is denoted as τbm. Generally, τb3 < τbm for a given ρb ∈ [0, 1],
so the second-order schemes can offer a broader stability interval.

Considering the undamped case, Figs. 1 and 2, respectively, plot the spectral radii of the proposed three-
sub-step method (τb = τbm) and of the two-sub-step NB method for different values of ρb. It can be clearly
seen that under the same computational cost, that is τNew/3 = τNB/2, the proposed method allows a broader
stability interval for a given ρb and can better preserve low-frequency dynamics with τb = τbm.

Figures 3–4 present the amplitude decay ratio, which is the damping ratio ξ in the numerical solution
for the undamped model, of the proposed method (τb = τbm) and the NB method for different values of ρb,
respectively. Figures 5–6 present their period elongation ratio, which is the relative error of period, (T−T0)/T0,
of the numerical solution applied to the undamped model. As can be seen, as ρb decreases from 1 to 0, the
two methods both exhibit stronger amplitude decay and better period accuracy. The results also illustrate that
for a given ρb < 1, the proposed method with τb = τbm exhibits much smaller amplitude decay than the NB
method, but it has larger period error.

In addition to ρb, the new method has another adjustable parameter, τb. For comparison, Fig. 7 plots the
spectral radii, and Fig. 8 shows the amplitude decay ratios and period elongation ratios of the proposed method
with ρb = 0.0 and different τb, the NB method with p = 2−√

2 ≈ 0.5858 (ρb = 0.0), the EG-α method with
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Fig. 1 Spectral radii of the proposed method with τb = τbm and different values of ρb

Fig. 2 Spectral radii of the NB method with different values of ρb

Fig. 3 Amplitude decay ratios of the proposed method with τb = τbm and different values of ρb
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Fig. 4 Amplitude decay ratios of the NB method with different values of ρb

Fig. 5 Period elongation ratios of the proposed method with τb = τbm and different values of ρb

Fig. 6 Period elongation ratios of the NB method with different values of ρb
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Fig. 7 Spectral radii of the proposed method with ρb = 0.0 and some existing explicit methods

Fig. 8 Amplitude decay ratios and period elongation ratios of the proposed method with ρb = 0.0 and some existing explicit
methods

ρb = 0.0, the TW method with ϕ = 1.033 (ρb = 0.9361). All the second-order methods use ρb = 0.0, while
the first-order TW method uses ρb = 0.9361 as in [25] to avoid excessive loss of accuracy. Since in the NB
method p = 0.54, which corresponds to ρb = 0.45, is recommended [28], Figs. 9 and 10 also plot the spectral
characteristics of these methods, where the second-order methods use ρb = 0.45 and the TWmethod still uses
ϕ = 1.033. From Eqs. (31) and (32), with ρb = 0.0, the new method has τbm ≈ 5.5425 and τb3 ≈ 5.1451,
and with ρb = 0.45, the new method has τbm ≈ 5.7728 and τb3 ≈ 5.4241. In these figures, the abscissa is set
to τ/n, where n = 3 for the proposed method, n = 2 for the NB method, and n = 1 for the EG-α and TW
methods, to compare under equivalent computational costs.

The results illustrate that as τb decreases from τbm to τb3, the proposed method shows stronger algorithmic
dissipation and better period accuracy. With τb = τbm, its amplitude decay ratios are very close to 0 for
τ/n ≤ 0.4, and with τb = τb3, its period elongation ratios are quite small for τ/n ≤ 0.4. When τb is less than
τb3, the period accuracy no longer improves as τb decreases, so τb is best selected in the interval [τb3, τbm].

From Figs. 7–8, with ρb = 0, the NB method shows period accuracy close to that of the proposed method
with τb = τb3, but its amplitude accuracy and stability interval are not as good as those of the newmethod with
τb = 5.3. The EG-α method shows a narrow stability interval and poor accuracy in this case. From Figs. 9–10,
with ρb = 0.45, the NB and EG-α methods show spectral characteristics close to those of the newmethod with
τb = 5.6 or τb = 5.7. The TW method shows larger amplitude and period errors, especially for τ/n < 0.5, in
both cases.
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Fig. 9 Spectral radii of the proposed method with ρb = 0.45 and some existing explicit methods

Fig. 10 Amplitude decay ratios and period elongation ratios of the proposed method with ρb = 0.45 and some existing explicit
methods

From the comparisons, for a given 0 ≤ ρb < 1, the new method can offer higher-amplitude accuracy and a
broader stability interval than the EG-α and NB methods with τb close to τbm and higher period accuracy with
τb close to τb3. With a suitable τb ∈ (τb3, τb3), it can reproduce the spectral characteristics of these second-
order methods. Therefore, the schemes with τb = τbm are recommended for high-efficiency purposes because
of their maximum stability interval. These schemes are more conservative in the low-frequency domain, but
their phase accuracy is slightly reduced compared with the NB method. The schemes with τb = τb3 are more
suitable for high-accuracy or strong-dissipation purposes, as they possess favourable period accuracy and
large-amplitude decay.

3.2 Overshoot

So far, the parameters in the formulation cannot be uniquely determined yet. For linear analysis, as long as
they satisfy Eqs. (16) and (30), the proposed method can achieve the accuracy and stability characteristics
described in Sect. 3.1. However, the spectral characteristics only control the long-term behaviour of a method.
For the short-term behaviour at the initial steps or after sudden switches, the norm of the amplification matrix
A also needs to be considered to avoid overshoot [10]. If A has a large norm for the high-frequency dynamics,
the solutions may produce pathological growth at the initial steps, the so-called overshoot.
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Considering the test problem ẍ + ω2
0x = 0, the recursive scheme can also be expressed as

Xt+�t = AXt , X =
[
x
ẋ

]
, A =

[
a11 a12
a21 a22

]
(33)

with

a11 = 1 − 1

2
τ 2 +

(
γ 2
1 γ5

4
+ γ 2

2 γ6

4

)

τ 4 − γ 2
1 γ2γ3γ6

8
τ 6 (34a)

a12 = �t
(
1 −

(γ1γ5

2
+ γ2γ6

2

)
τ 2 + γ1γ2γ3γ6

4
τ 4

)
(34b)

a21 = ω2
0�t

(

−1 +
(

β3

2
+ β2γ

2
2

2
+ β1γ

2
1

2

)

τ 2

−
(

β2γ
2
1 γ2γ3

4
+ β3γ

2
1 γ5

4
+ β3γ

2
2 γ6

4

)

τ 4 + β3γ
2
1 γ2γ3γ6

8
τ 6

)

(34c)

a22 = 1 − 1

2
τ 2 +

(
β2γ1γ2γ3

2
+ β3γ1γ5

2
+ β3γ2γ6

2

)
τ 4

− β3γ1γ2γ3γ6

4
τ 6 (34d)

As can be seen, a11, a12, a21, a22 contain the terms τ 4, and τ 6, so for a large τ close to τb, these elements may
have large absolute values, even though the spectral radius of A is small. The large elements may cause the
initial values to be enlarged abnormally during the first few steps, resulting in overshoot. To avoid overshoot
as much as possible, |a11|, |a12|, |a21|, and |a22| need to be as small as possible. From the spectral analysis,
a11, a12, a21, a22 satisfy the following conditions

a11 + a22 = A1 (35a)

a11a22 − a12a21 = A2 (35b)

where A1 and A2 are determined in Sect. 3.1. Thus, to make |a11| and |a22| as small as possible, an artificial
assumption a11 = a22 is introduced. From Eq. (34), it yields two conditions

γ 2
1 γ5

4
+ γ 2

2 γ6

4
= β2γ1γ2γ3

2
+ β3γ1γ5

2
+ β3γ2γ6

2
(36a)

−γ 2
1 γ2γ3γ6

8
= −β3γ1γ2γ3γ6

4
(36b)

Unfortunately, no condition can be used to constrain |a12| and |a21|. After combining Eqs. (12), (16) and
(36), one condition is still missing to determine all parameters, so another assumption γ2 = 2γ1, which imposes
that the first two sub-steps have equal size, is used. Then, the parameters can be obtained as

γ1 = 2

τb
, γ2 = 4

τb
, γ3 = 2

τb
, γ5 = τ 2b − 2ρb − 2

2τ 2b

γ6 = τ 2b − 4τb + 2ρb + 2

2τ 2b
, β1 = τb − ρb − 1

2τb

β2 = τ 2b − 4τb + 2ρb + 2

8τb
, β3 = 1

τb
(37)

To evaluate the overshoot characteristic of the proposed schemewith the parameters in Eq. (37), the 2-norm
of A, expressed as
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Fig. 11 ‖A‖2 of the proposed method using the parameters in Eq. (37) with τb = τbm and the NB method with p = 0.54

‖A‖2 =

√√√
√ S +

√
S2 − 4A2

2

2

S = a211 + a212 + a221 + a222 (38)

is employed, and ‖A‖2 is expected to be small to avoid large values in |a11|, |a12|, |a21| and |a22|. Figure 11
plots ‖A‖2 versus τ/τb of the proposed scheme with the parameters in Eq. (37) and τb = τbm, as well as the
NB method with p = 0.54. It can be seen that although the peak values of ‖A‖2 of the proposed schemes are
higher than that of the NB method, they are not greater than 3, which is still too small to cause observable
overshoot. When τ > 0.8τb, ‖A‖2 in all schemes reduces to a small value less than 2, which further prevents
the occurrence of high-frequency overshoot. Therefore, with the set of parameters in Eq. (37), the proposed
method possesses satisfactory overshoot characteristics.

Generally, overshoot occurs in implicit, unconditionally stable methods, but owing to the broad stability
region, the proposed explicit method also risks suffering from overshoot. For example, if a set of parameters
is chosen that only satisfies the spectral characteristics, as Eqs. (12) and (16), such as

γ1 = γ2 = 1, γ3 = 4(τ 2b − 4τb + 2ρb + 2)(τ 2b − 8τb − 2ρb − 2)

τ 3b (τ 3b − 12τ 2b + 28τb − 8ρb − 8)
,

γ5 = γ6 = −τ 3b − 12τ 2b + 28τb − 8ρb − 8

4τ 3b

β2 = (τ 3b − 12τ 2b + 28τb − 8ρb − 8)(τ 2b − 4τb − 6ρb − 6)

2τb(τ 2b − 8τb − 2ρb − 2)2

β3 = − τ 2b − 8τb − 2ρb + 30

2(τ 2b − 8τb − 2ρb − 2)
, β1 = 1

2
− β2 − β3 (39)

the corresponding ‖A‖2 with τb = τbm is shown in Fig. 12. The peak values can reach about 25 at τ ≈ 0.9τb,
which is large enough to cause noticeable overshoot. Therefore, the analysis of the overshoot characteristic is
also necessary for explicit methods with large stability limits.

For damped systems (ξ0 �= 0), the remaining three parameters γ4, γ7 and γ8 can be set as

γ4 = γ3 = 2

τb
, γ7 = 2

τb
(40a)

γ8 = 3τ 4b − 32τ 3b − (6ρb − 18)τ 2b + 96τb + 96ρb + 96

24τb
(
τ 2b − 8τb − 2ρb − 2

) (40b)
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Fig. 12 ‖A‖2 of the proposed method using the parameters in Eq. (39) with τb = τbm

Fig. 13 Spectral radii of the proposed method with τb = τbm for the damped system ξ0 = 0.05

where γ7 and γ8 satisfy the third-order accuracy condition in Eq. (14) to gain as high accuracy as possible.
Using the parameters in Eqs. (37) and (40), Fig. 13 plots the spectral radii of the proposedmethodwith τb = τbm
for the damped case ξ0 = 0.05. As can be seen, the internal bifurcation appears in a small interval, and the
stability limits are reduced compared with the undamped case. No optimal values of γ4, γ7 and γ8 were found
for arbitrary values of ξ , so Eq. (40) shows a selection considering high accuracy.

According to the analysis in Sects. 3.1 and 3.2, the parameters in Eqs. (37) and (40) are finally the recom-
mended ones for the proposed method considering accuracy, stability, algorithmic dissipation and overshoot
characteristics.

3.3 Dispersion analysis of wave propagating problems

In terms of wave propagation problems, Refs. [21,28] present a method to measure the dispersion error using
the displacement-based spatial discretizations. Following the procedure in Ref. [28], the dispersion analysis of
the proposed method is discussed in this subsection, to support the selection of suitable parameters, including
ρb, τb and the CFL number, for these problems.

The scalar wave propagation equation

∂2u

∂t2
− c20∇2u = 0 (41)
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is employed as the model problem, where u is the field variable and c0 is the exact wave velocity. Considering
the 2-dimensional case, the exact solution has the form

u(x, y, t) = A0e
i(k0x cos θ+k0y sin θ−ω0t) (42)

where (x, y) is the spatial coordinate of the solution, ω0 is the exact frequency, k0 = ω0/c0 is the exact wave
number, and θ is the propagation angle measured from the x-axis.

In terms of the numerical solution, the governing equation after spatial discretization can be written as

MÜ + c20KU = 0 (43)

where U summarizes the numerical solutions of all nodes, and M and K are assembled by the corresponding
element matrices Me and Ke, respectively. Using 4-node elements, and assuming the element length �x =
�y = h, Me and Ke can be written as

Me = h2

4

⎡

⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎦ (44a)

Ke = 1

6

⎡

⎢
⎣

4 −1 −2 −1
−1 4 −1 −2
−2 −1 4 −1
−1 −2 −1 4

⎤

⎥
⎦ (44b)

where the lumped mass matrix is used to gain the efficiency advantage of explicit methods.
From Sect. 3.1, the modal degree of freedom x satisfies the recursive scheme

xt+�t − (
2 − τ 2 + p1τ

4 + p2τ
6) xt

+ (
1 + q1τ

4 + q2τ
6) xt−�t = 0 (45)

where p1, p2, q1 and q2 are obtained in Eq. (30) and τ = ω�t . Considering all modal degrees of freedom of
the problem in Eq. (43), we have

Xt+�t − (
2I − �t2Λ + p1�t4Λ2 + p2�t6Λ3) Xt

+ (
I + q1�t4Λ2 + q2�t6Λ3) Xt−�t = 0 (46)

where X is the vector collecting allmodal degrees of freedom,Λ is the corresponding diagonalmatrix composed
of all ω2

i , and I is the unit matrix. The finite element degrees of freedom can be expressed as

U = ΦX (47)

where Φ is the matrix composed of all corresponding eigenvectors, and it satisfies

c20KΦ = MΦΛ (48)

Multiply Eq. (46) at the left by Φ follows

Ut+�t − (
2I − c20�t2M−1K

+ p1c
4
0�t4M−1KM−1K

+p2c
6
0�t6M−1KM−1KM−1K

)
Ut

+ (
I + q1c

4
0�t4M−1KM−1K

+q2c
6
0�t6M−1KM−1KM−1K

)
Ut−�t = 0 (49)

According to the element matrices Me and Ke in Eq. (44), the row of global mass matrix M for nonboundary
nodes is

Row(M) = h2 [0 · · · 0 0 1 0 0 · · · 0] (50)
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So the term M−1 in Eq. (49) can be replaced by 1/h2. Using CFL = c0�t/h, we can obtain

Ut+�t − (
2I − CFL2K + p1CFL

4K 2 + p2CFL
6K 3)Ut

+ (
I + q1CFL

4K 2 + q2CFL
6K 3)Ut−�t = 0 (51)

Considering the middle node of a 4 4-node elements patch, the row of global stiffness matrix K is

Row(K ) = 1

3
[0 · · · 0 −1 −1 −1 −1 8 −1 −1 −1 −1 0 · · · 0] (52)

which means that the term KUt in Eq. (51) has the form

1

3

[
8u(nxh, nyh, nt�t)

− u((nx − 1)h, nyh, nt�t) − u((nx + 1)h, nyh, nt�t)

− u(nxh, (ny − 1)h, nt�t) − u(nxh, (ny + 1)h, nt�t)

− u((nx + 1)h, (ny + 1)h, nt�t) − u((nx + 1)h, (ny − 1)h, nt�t)

−u((nx − 1)h, (ny + 1)h, nt�t) − u((nx − 1)h, (ny − 1)h, nt�t)
]

(53)

where u(nxh, nyh, nt�t) denotes the numerical solution for the middle node (nxh, nyh) at time nt�t . The
expressions of the terms K 2Ut , K 3Ut , K 2Ut−�t , K 3Ut−�t in Eq. (51) can be obtained in the same way.

The numerical solution u(nxh, nyh, nt�t) can be written as a similar form to the exact solution in Eq. (42),
as

u(nxh, nyh, nt�t) = Aeikh(nx cos θ+ny sin θ−nt (CFL)(c/c0)) (54)

where c,ω and k = ω/c denote the numerical wave velocity, numerical frequency and numerical wave number,
respectively. In the process of spatial and time discretization, the dispersion error arises inevitably, and it can
be measured by (c − c0)/c0.

Using Eq. (54) to represent the numerical solutions in Eq. (53), the term KUt can be rewritten as

2

3
u(nxh, nyh, nt�t) [4 − cos(kh cos θ) − cos(kh sin θ)

− cos(kh(cos θ + sin θ)) − cos(kh(cos θ − sin θ))] (55)

The term K 2Ut has the form

4

9
u(nxh, nyh, nt�t) [4 − cos(kh cos θ) − cos(kh sin θ)

− cos(kh(cos θ + sin θ)) − cos(kh(cos θ − sin θ))]2 (56)

The term K 3Ut is

8

27
u(nxh, nyh, nt�t) [4 − cos(kh cos θ) − cos(kh sin θ)

− cos(kh(cos θ + sin θ)) − cos(kh(cos θ − sin θ))]3 (57)

Substituting Eqs. (55)–(57) into Eq. (51), we can obtain

u(nxh, nyh, (nt + 1)�t) − Â1u(nxh, nyh, nt�t)

+ Â2u(nxh, nyh, (nt − 1)�t) = 0 (58)

where

Â1 =2 − CFL2κ + p1CFL
4κ2 + p2CFL

6κ3 (59a)

Â2 =1 + q1CFL
4κ2 + q2CFL

6κ3 (59b)
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Fig. 14 Dispersion errors and spectral radii versus kh/π using the parameters θ = 0, ρb = 0.0, τb = τbm and different CFL
numbers

κ =2

3
[4 − cos(kh cos θ) − cos(kh sin θ)

− cos(kh(cos θ + sin θ)) − cos(kh(cos θ − sin θ))] (59c)

The error caused by spatial discretization is reflected by κ . The numerical solution in time domain can be
expressed as the form

u(nt�t) = λ̂nt u(0), λ̂ = e(−ξ̂±i)kh(CFL)c/c0 (60)

where ξ̂ is the algorithmic dissipation ratio, and λ̂ is a complex number to provide oscillatory solutions. From
Eq. (58), λ̂ can be solved by

λ̂2 − Â1λ̂ + Â2 = 0 (61)

It follows that

c

c0
= � λ̂

kh(CFL)
= 1

kh(CFL)
arccos

⎛

⎝ Â1

2
√
Â2

⎞

⎠ (62a)

ξ̂ = − ln |λ̂|
kh(CFL)c/c0

= − ln Â2

2kh(CFL)c/c0
(62b)

Consequently, when CFL, kh, θ and the algorithmic parameters are specified, the dispersion error (c− c0)/c0
can be solved by Eq. (62a). The dispersion error is expected to be close to 0 for all participating modes.
However, since the higher modes of about kh/π > 0.6 [21,30] cannot be resolved spatially or cannot be
accurately described by the time step size, their participation can greatly pollute the overall solution and cause
loss of accuracy. Therefore, the algorithmic dissipation is expected to increase rapidly when kh/π > 0.6 to
filter out the higher modes. Considering different CFL numbers, algorithmic parameters and θ , the dispersion

error (c− c0)/c0 and the degree of algorithmic dissipation, represented by the spectral radius ρ = |λ̂| =
√
Â2,

versus kh/π are discussed in the following.
Using θ = 0 and different CFL numbers, Fig. 14 shows the dispersion errors and spectral radii of the

proposed method with ρb = 0.0 and τb = τbm. The results illustrate that as the CFL number increases, the
dispersion error gets smaller, and the algorithmic dissipation gets stronger. With CFL = τb/2, the bifurcation
point of the spectral radius is exactly at kh/π = 1.0, so the algorithmic dissipation can play its role to a great
extent. The conclusion also applies to other explicit schemes. As shown in Eq. (59), if kh/π = 1, θ = 0 and
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Fig. 15 Dispersion errors and spectral radii versus kh/π using the parameters θ = 0, τb = τbm, CFL = τb/2 and different ρb

Fig. 16 Dispersion errors and spectral radii versus kh/π of the proposed method with ρb = 0.0 and several existing methods at
θ = 0 using CFL= τb/2

CFL = τb/2, the spectral radius is exactly at the bifurcation point. With CFL > τb/2, the spectral radius will
bifurcate when kh/π < 1. Consequently, the CFL number is best set as τb/2.

Using θ = 0 and CFL = τb/2, Fig. 15 plots the dispersion errors and spectral radii of the proposed method
with τb = τbm and different values of ρb. The results show that as ρb gets smaller, the dispersion error increases
for the modes with kh/π ≤ 0.6, and the algorithmic dissipation gets stronger for those with kh/π > 0.6.
When ρb = 1, the scheme with τb = τbm has no dispersion error, but also no dissipation, like the CDM. Since
in the proposed method also τb is adjustable, two cases, ρb = 0.0 and ρb = 0.45, with different τb ∈ [τb3, τbm]
are discussed in the following.

Considering θ = 0 and CFL = τb/2, Fig. 16 plots the dispersion errors and spectral radii of the proposed
method with ρb = 0.0 and different τb, the NB method with p = 0.5858 (CFL = 1.70), the EG-α method
with ρb = 0.0 (CFL = 0.70) and the TW method with ϕ = 1.033 (CFL = 0.96), and Fig. 17 plots the
dispersion errors and spectral radii of the proposed method with ρb = 0.45 and different τb, the NB method
with p = 0.54 (CFL = 1.85), the EG-α method with ρb = 0.45 (CFL = 0.90) and the TW method with
ϕ = 1.033 (CFL = 0.96).

As can be seen, the proposed method with τb = τbm shows the smallest dispersion error for the modes with
kh/π ≤ 0.5, and as τb decreases, the dispersion accuracy worsens, but the range of discarded modes increases.
With ρb = 0.0, the proposed method with τb = 5.40 presents a spectral radius very close to that of the NB
and EG-α methods, but its dispersion errors are clearly smaller for the participating modes. With ρb = 0.45,
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Fig. 17 Dispersion errors and spectral radii versus kh/π of the proposed method with ρb = 0.45 and several existing methods
at θ = 0 using CFL= τb/2

Fig. 18 Dispersion errors and spectral radii versus kh/π of the proposed method with ρb = 0.0 and several existing methods at
θ = π/6 using CFL= τb/2

the case τb = 5.70 shows a spectral radius almost identical to that of the NB method, stronger algorithmic
dissipation than the EG-α method for kh/π > 0.5 and also smaller dispersion error than these two methods
for kh/π ≤ 0.5. The TW method exhibits good dispersion accuracy, but the smallest algorithmic dissipation
for kh/π > 0.6. Despite this fact, the TW method shows powerful filtering ability in the numerical examples
in Sect. 4.

From the comparisons, among the second-order methods, with ρb = 0.0 and ρb = 0.45, the proposed
method with τb = 5.40 and τb = 5.70, correspondingly, is superior to the EG-α and NB methods, because
they have better dispersion accuracy for the participating modes, and stronger or at least equivalent algorithmic
dissipation for the discarded modes. With a larger τb ≤ τbm, the proposed method has smaller dispersion error,
and with a smaller τb ≥ τb3, it better dissipates the unwanted modes.

Considering θ = π/6 and CFL = τb/2, Figs. 18 and 19 show the dispersion errors and spectral radii of the
employed methods with ρb = 0.0 and ρb = 0.45, respectively. Figures 20 and 21 show the analogous results
considering θ = π/4 and CFL = τb/2. These results indicate that the proposed method with τb = 5.40 for
the case ρb = 0.0, and τb = 5.70 for ρb = 0.45, still holds a certain accuracy advantage for different angles
over the NB and EG-α methods, but their gap decreases as θ increases. From the plots, with θ > 0 the spectral
radii have not dropped to ρb when kh/π = 1.0, so the effect of increasing θ is similar to that of reducing the
CFL number, which ensures the stability of the methods at different angles, and also reduces the differences
between these methods.
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Fig. 19 Dispersion errors and spectral radii versus kh/π of the proposed method with ρb = 0.45 and several existing methods
at θ = π/6 using CFL= τb/2

Fig. 20 Dispersion errors and spectral radii versus kh/π of the proposed method with ρb = 0.0 and several existing methods at
θ = π/4 using CFL= τb/2

Fig. 21 Dispersion errors and spectral radii versus kh/π of the proposed method with ρb = 0.45 and several existing methods
at θ = π/4 using CFL= τb/2
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Table 1 Step-by-step solution using the proposed three-sub-step explicit method for solving linear problems

Fig. 22 Clamped-free bar

Therefore, from the dispersion analysis, reducing ρb and reducing τb have a similar effect for the new
method, that is, increased dispersion error and enhanced algorithmic dissipation. For a given ρb, the new
method always shows better or close properties compared to the NB and EG-α methods by selecting an
appropriate τb. Two cases, ρb = 0.0 and ρb = 0.45, are discussed in detail, selecting τb = 5.40 and τb = 5.70,
respectively. For a good trade-off between accuracy and dissipation, the proposed method with ρb = 0.45
and τb = 5.70 is recommended. With a larger τb ≤ τbm it can offer higher dispersion accuracy and higher
efficiency, and with a smaller τb ≥ τb3 it has stronger high-frequency dissipation.

Since the CFL number is best set as CFL = c0�t/h = τb/2, the recommended scheme (CFL = 2.85)
requires less computational effort, about (2.85/3−1.85/2)/(1.85/2) ≈ 2.7% than the NBmethod (p = 0.54,
CFL = 1.85), and about (2.85/0.90)/(0.90) ≈ 5.6% than the EG-α method (ρb = 0.45, CFL = 0.90).
Certainly, if higher efficiency is required, a larger τb ≤ τbm can also be used with the proposed method.

4 Illustrative solutions

In this section, several single degree-of-freedom linear and nonlinear examples are solved to demonstrate the
properties of the proposed method, and some of the benchmark wave propagation problems, used in Refs.
[14,21,28,29,39], are simulated to assess the performance of the proposed method. The proposed method
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(a)

(b)

Fig. 23 Midpoint velocity. a Time [0, 0.01]. b Time [0.09, 0.10]

Fig. 24 Pre-stressed membrane
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(a) (b) (c)

(d) (e)

(g)

(f)

Fig. 25 Snapshots of displacement at t ≈ 9139/800: a proposed method with τb = τbm; b proposed method with τb = 5.70; c
proposed method with τb = τb3; d NB method with p = 0.54; e EG-α method with ρb = 0.45; f TW method with ϕ = 1.033; g
CDM

with ρb = 0.45 and different τb, the NB method with p = 0.54 [28], the EG-α method with ρb = 0.45 [12]
and the TW method with ϕ = 1.033 [34] [25] are employed for comparison. The EG-α method with the
explicit treatment of physical damping [12] is selected, and its improved formulation illustrated in [1] is used
for the computations. The step-by-step computational procedure of the proposed method used for the linear
problems is presented in Table 1.

4.1 One-dimensional wave propagation in a clamped-free bar

The 1-dimensional wave propagation in a clamped-free bar excited by an external load F at the free end [29]
shown in Fig. 22 is considered. The elastic modulus, density, cross-sectional area and length of the bar and the
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Fig. 26 Displacements and velocities of θ = 0 and π/4 at t ≈ 9139/800

Fig. 27 A lamb problem

external load are set as E = 3 × 107, ρ = 7.3 × 10−4, A = 1, L = 200 and F = 104, respectively (all data
are nondimensional). The bar is meshed as 1000 2-node finite elements.

With the bar initially at rest, Fig. 23 shows the solutions of midpoint velocity for different time periods, and
the zoom-in figures at switch points. From the results, except for the TW method, the solutions of all second-
order methods need to experience a period of oscillation after each switch, and the oscillation gets more
persistent over time. From the zoom-in figures, although the solution of the TW method does not oscillate,
it deviates the most from the reference one. Among the second-order methods, the proposed method with
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Fig. 28 Displacements in x and y directions at two receivers x = 640 and 1280 using the Ricker wavelet line load

τb = τbm shows the closest solution to the reference one at the switch point, followed by the scheme with
τb = 5.7, the NB method, the EG-α method and the scheme with τb = τb3, but as one would expect, the
scheme with τb = τbm shows more oscillation. Considering accuracy and dissipation capability, the proposed
method with τb = 5.7 performs best. These conclusions are consistent with the dispersion error analysis in
Sect. 3.3.

4.2 Two-dimensional wave propagation in a pre-stressed membrane

As shown in Fig. 24, the 2-dimensional membrane [21,28] excited by a lumped load at the centre, is considered.
The wave propagation equation has the form

1

c20

∂2u

∂t2
− ∇2u = f (0, 0, t) (63)

The wave velocity c0 is assumed as 1, and the load f (0, 0, t) = 4(1 − (2t − 1)2)H(1 − t) for t ≥ 0, where
H is the Heaviside function.

Due to the symmetry, the area of [0, 15 1/6] × [0, 15 1/6] is considered and meshed using 140×140 4-node
elements.

Figure 25 summarizes the snapshots of displacement at t ≈ 9139/800 resulting from the employed
methods. In this example, CDM using CFL = 1 is also employed, but its solution is clearly unsatisfactory
due to the high-frequency pollution. Among the remaining methods, the proposed one with τb = τb3 and TW
shows smoother solutions; the solutions of the other second-order methods are also quite accurate.



A novel explicit three-sub-step time integration method 847

Fig. 29 Snapshots of von Mises stress at t ≈ 0.999 using the Ricker wavelet line load: a proposed method with τb = τbm;
b proposed method with τb = 5.70; c proposed method with τb = τb3; d NB method with p = 0.54; e EG-α method with
ρb = 0.45; f TW method with ϕ = 1.033

The displacements and velocities of θ = 0 and π/4 in the interval 8 ≤ √
x2 + y2 ≤ 12 are plotted in

Fig. 26. Due to the use of constant time steps, the results given by these methods are the solutions of the step
closest to t = 9139/800, but not exactly at t = 9139/800, so the offset between the numerical solution and
the reference one cannot be used to account for the dispersion error of the method. For example, the scheme
with τb = τb3 shows the results at t ≈ 11.1646 actually. From Fig. 26, it can be observed that the second-order
methods all exhibit slight oscillations near the position

√
x2 + y2 ≈ 10. TheNBmethod, the EG-α method and

the proposed method with τb = 5.70 show very close solutions, while the scheme with τb = τb3 shows slighter
oscillations because of its stronger dissipation. These conclusions are also consistent with the comparison of
algorithmic dissipation in Sect. 3.3.

4.3 A lamb problem

The lamb problem used in [21,28] is considered. As shown in Fig. 27, the elastic medium is excited by the
line load F at x = 0, y = 0 in plane strain conditions. The mass density is set as ρ = 2200. The velocities of
P-wave and S-wave are cP = 3200, and cS = 1847.5. The CFL number is computed using cP. Two receivers
are placed at x = 640, y = 0 and x = 1280, y = 0.
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Fig. 30 Displacements in x and y directions at two receivers x = 640 and 1280 using the Heaviside function line load

In the first case, the Ricker wavelet line force, as

F(0, 0, t) = −106 ×
(
1 − 2π2 f̂ 2(t − t0)

2
)
e−π2 f̂ 2(t−t0)2 (64)

is applied, where the parameters are assumed as f̂ = 12.5 and t0 = 0.1. The plane is meshed into 1280× 640
4-node elements. Figure 28 shows the time history of displacements at two receivers. Figure 29 presents the
snapshots of the von Mises stress at the fixed time point t ≈ 0.999. All employed methods predict very
accurate solutions, the TW method showing the largest errors at the peaks in Fig. 28. The wave fronts of the
P-wave, S-wave and Rayleigh wave can be clearly seen in Fig. 29. In this case, since the contribution of high
frequencies to the solution is very small, the proposed method with τb = τbm is a better choice, owing to its
high efficiency and high dispersion accuracy.

In the second case, the line force is changed to

F(0, 0, t) =106 × [H(0.15 − t) − 3H(0.1 − t)

+3H(0.05 − t)] (65)

Since more wave modes can be excited by the force, a finer mesh of 3200×1600 finite elements is used for the
spatial discretization. Figures 30–31 show the displacements at the two receivers and the snapshots of the von
Mises stress at t ≈ 0.999, respectively. Oscillations can be observed in this case. From the zoom-in figures
in Fig. 30, the first-order TW method can filter out oscillations faster; among the second-order methods, the
proposed scheme with τb = τb3 shows stronger dissipation ability. In this case, because of the high-frequency
pollution, τb ∈ [τb3, 5.70] can be used in the proposed method to make the solution smoother.
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Fig. 31 Snapshots of von Mises stress at t ≈ 0.999 using the Heaviside function line load: a proposed method with τb = τbm;
b proposed method with τb = 5.70; c proposed method with τb = τb3; d NB method with p = 0.54; e EG-α method with
ρb = 0.45; f TW method with ϕ = 1.033

Table 2 CPU time (s)/number of total sub-steps required in the Lamb problem

Method First case Second case

New (τb = τbm) 2151.364672/666 32994.472394/1662
New (τb = 5.70) 2175.381367/675 33109.465137/1683
New (τb = τb3) 2306.297672/708 35028.459234/1770
NB (p = 0.54) 2297.381294/692 35188.950423/1730
EG-α (ρb = 0.45) 2342.617963/711 35456.711731/1777
TW (ϕ = 1.033) 2155.533272/667 33691.524873/1666

To compare the computational efficiency, Table 2 lists the required CPU time and the total number of
sub-steps of the employed methods for solving the period t ∈ [0, 0.999]. In single-step methods, each step is
counted as 1 sub-step. The simulations were run on an Intel i5-8265U CPU@ 1.60 GHz with 8.00 GB RAM.
As can be seen, the effort of each sub-step for these explicit methods is very close, so the proposed method
with τb = τbm and τb = 5.70, as well as the TWmethod, is slightly more efficient than the remaining schemes.
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5 Conclusions

Anovel second-order accurate three-sub-step explicit time integrationmethod is proposed. The optimal param-
eters, controlled by τb and ρb, i.e. the position of the bifurcation point, and the spectral radius at that point,
are defined according to the requirements of accuracy, stability, algorithmic dissipation and overshooting
characteristics.

A distinctive feature of the proposed method is that, in addition to ρb, also τb can be adjusted to control the
properties. For a given ρb, when τb = τbm, the proposed method has a broader stability interval and smaller
amplitude decay than the NB and EG-α methods. As τb decreases from τbm to τb3, the proposed method shows
higher period accuracy and stronger algorithmic dissipation. By selecting an appropriate τb ∈ (τb3, τbm), the
proposed method can reproduce spectral characteristics close to those of existing second-order methods. The
analysis of the spectral characteristics is illustrated by the convergence rates of several single degree-of-freedom
examples, where the scheme with τb = τb3 exhibits an appreciable accuracy advantage.

For the analysis of wave propagation, the dispersion error is discussed based on the displacement-based
spatial discretizations. As ρb or τb decreases, the proposed method has larger dispersion error for the par-
ticipating modes, but the range of discarded modes gets wider. For a good trade-off between accuracy and
algorithmic dissipation, one set of parameters, as ρb = 0.45, τb = 5.70, and CFL = τb/2 = 2.85, is selected
in the proposed method. The recommended scheme shows better dispersion accuracy than the NB method
(p = 0.54, CFL = 1.85) and the EG-α method (ρb = 0.45, CFL = 0.90), and almost the same degree
of algorithmic dissipation of the NB method (p = 0.54), and stronger dissipation than the EG-α method
(ρb = 0.45). If higher efficiency is expected, a larger τb ≤ τbm can be used in the proposed method, whereas
for strong dissipation demand, a smaller τb ≥ τb3 is more useful.

These considerations are illustrated by solving some benchmark wave propagation problems, where the
proposed method with ρb = 0.45 and different τb, the NB method with p = 0.54, the EG-α method with
ρb = 0.45 and the TW method with ϕ = 1.033 are considered. The comparison indicates that if the solutions
are mainly contributed by low-frequency dynamics, the scheme with τb = τbm is a better choice, since it has
higher dispersion accuracy and requires less computational effort than the other schemes. On the other hand,
if the solutions contain significant high-frequency pollution, a smaller τb ∈ [τb3, 5.70] can be used to quickly
filter out the high-frequency dynamics. The NB and EG-α methods show performances similar to those of
the proposed method with τb = 5.70. The TW method shows powerful filtering ability, but it cannot predict
accurate peak values.
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