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Abstract: Fiber Bragg Gratings (FBGs) can be used as sensors for

strain, temperature and pressure measurements. For this purpose, the

ability to determine the Bragg peak wavelength with adequate wavelength

resolution and accuracy is essential. However, conventional peak detection

techniques, such as the maximum detection algorithm, can yield inaccurate

and imprecise results, especially when the Signal to Noise Ratio (SNR)

and the wavelength resolution are poor. Other techniques, such as the

cross-correlation demodulation algorithm are more precise and accurate

but require a considerable higher computational effort. To overcome

these problems, we developed a novel fast phase correlation (FPC) peak

detection algorithm, which computes the wavelength shift in the reflected

spectrum of a FBG sensor. This paper analyzes the performance of the FPC

algorithm for different values of the SNR and wavelength resolution. Using

simulations and experiments, we compared the FPC with the maximum

detection and cross-correlation algorithms. The FPC method demonstrated a

detection precision and accuracy comparable with those of cross-correlation

demodulation and considerably higher than those obtained with the maxi-

mum detection technique. Additionally, FPC showed to be about 50 times

faster than the cross-correlation. It is therefore a promising tool for future

implementation in real-time systems or in embedded hardware intended for

FBG sensor interrogation.

© 2014 Optical Society of America

OCIS codes: (060.2370) Fiber optics sensors; (050.2770) Gratings; (070.4790) Spectrum anal-

ysis; (070.7145) Ultrafast processing.
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13. C. Caucheteur, K. Chah, F. Lhommé, M. Blondel, and P. Mégret, “Autocorrelation demodulation technique for

fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 16(10), 2320–2322 (2004).

14. C. Huang, W. Jing, K. Liu, Y. Zhang, and G. D. Peng “Demodulation of fiber Bragg grating sensor using cross-

correlation algorithm,” IEEE Photonics Technol. Lett. 19(9), 707–709 (2007).

15. L. Negri, A. Nied, H. Kalinowsky, and A. Paterno “Benchmark of peak detection algorithms in fiber Bragg grating

interrogation and a new neural network for its performance improvement,” Sensors 11, 3466–3482 (2011).

16. L. Gui and S. T. Wereley, “A correlation-based continuous window-shift technique to reduce the peak-locking in

digital PIV evaluation,” Experiments Fluids 32, 506–517 (2002).

17. A. C. Eckstein and J. Charonko “Phase correlation processing for DPIV measurements,” Experiments Fluids 45,

485–500 (2008).

18. M. Raffel, C. Willert, and J. Kompenhans, Particle Image Velocimetry—A Practical Guide (Springer, 1998).

19. K. T. Christensen, “On the influence of peak-locking errors on turbulance statistics compared from piv ensem-

bles,” Experiments Fluids 36(3), 484–497 (2004).

20. J. Westerweel, “Fundamentals of digital particle image velocimetry,” Meas. Sci. Technol. 8(12), 1379–1392

(1997).

21. R. Kashyap, Fiber Bragg Gratings (Academic, 1999), Vol. IV.

22. H. Y. Ling, K. T. Lau,W. Jin, and K. C. Chan, “Characterization of dynamic strain measurement using reflection

spectrum from a fiber Bragg grating,” Opt. Commun. 270, 25–30 (2007).

23. Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355–377 (1997).

24. Optical Sensing Interrogator sm125, http://micronoptics.com/uploads/library/documents/datasheets/instruments.

1. Introduction

Fiber Bragg gratings (FBGs) made their first appearance about 30 years ago [1, 2]. Their com-

mon characteristics, such as small size, low weight, insensitivity to electromagnetic interfer-

ence, chemical inertness, high durability and resistance to corrosion, have made them extremely

attractive for the engineering community. FBGs are now widely used for sensing applications

[3–6] in the aerospace, automotive, petrochemical and biomedical industry. The working prin-

ciple of a FBG sensor is based on the shift of the Bragg wavelength occurring when the FBG

is subjected to physical parameters such as strain, stress, vibrations, temperature and pressure.

Accurately measuring these physical parameters therefore requires an accurate measurement of

the Bragg wavelength shift. Many demodulation schemes for FBG wavelength shift monitoring

have been developed, based for example on optical edge filters [7], on tunable fiber laser sources

[8], and on Fourier domain mode locking-technology [9]. These interrogation techniques have

reached a wavelength scanning frequency of several thousands of Hz [9], necessitating high

speed acquisition and computation capabilities. One way to speed up the acquisition process

is to reduce the amount of samples and hence the wavelength resolution. However, conven-

tional peak detection (CPD) techniques proposed in literature, such as the maximum detection

algorithm (MDA), the centroid detection algorithm (CDA) [10] and the polynomial fitting algo-

rithm, often produce poor results for low sample spectral resolution. Moreover CPD techniques

are very sensitive to noise. On the other hand, they are reasonably fast and easy to implement.

More recently implemented peak detection techniques, such as the least squares (LSQ) [11]
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algorithm, the minimum variance shift (MVS) [12] technique, the auto-and cross-correlation

algorithms (ACA, CCA) [13, 14], and the artificial neural network method [15], produce bet-

ter results and are less affected by wavelength resolution and noise. In particular, the CCA

algorithm demonstrated to achieve the most precise results while the neural network algorithm

showed to be less sensitive to distortion of the FBG spectrum. However, a major drawback

of these algorithms is the computation time, which is considerably higher compared to CPD

techniques and might not meet the requirements of many dynamic sensing systems. A further

problem common to all peak detection techniques is the so called peak locking effect. This phe-

nomenon has been widely studied in the particle-image velocimetry (PIV) community [16, 17]

but, to the best of our knowledge, it has never been considered in FBG applications up to now. It

consists in a modulation of both precision and accuracy errors, with minimum errors occurring

at integer resolution positions, and maximum errors biased toward mid-resolution positions.

Peak locking depends mainly on wavelength resolution and on the choice of the sub-resolution

estimator. [18, 19]. For example, with a wavelength resolution of 1 pm, in the case of a true

wavelength shift of 10.4 pm, the sub-interpolation estimator will lock the estimated wavelength

closer to 10 pm. On the other hand, a true wavelength of 10.6 pm would be estimated closer to

11 pm. Therefore, because of the peak locking error, true wavelength shifts that exist between

integer wavelength positions are inevitably pushed towards the nearest integer wavelength po-

sition, with a consequent degradation of both accuracy and precision. This behavior is further

influenced by the type of sub-interpolation estimator used. For instance, for PIV applications,

it has been demonstrated that Gaussian interpolation performs better than both centroid and

quadratic fits in terms of mitigating peak-locking effects [20]. All these considerations need to

be take into account in the evaluation of the performance of any peak detection algorithm if

misinterpretation of data wants to be avoided.

In this paper, we propose a fast and accurate peak detection algorithm based on fast phase-

correlation (FPC). The FPC algorithm determines the wavelength shift from the phase shift

between the undisturbed FBG spectrum and the perturbed spectrum. Using simulations, we

investigated the effects of sample resolution, peak locking and SNR on the precision and ac-

curacy of the FPC algorithm. At the same time, we compared the obtained FPC performance

with those of two other algorithms: the MDA algorithm with an integrating 10 points quadratic

interpolation routine and the CCA algorithm with a 3rd order polynomial subpixel interpola-

tion. The FPC precision and accuracy were of the same order of those obtained with the CCA

and considerably better than those provided by the MDA. However, the FPC showed a more

attenuated peak locking effect than MDA and CCA. At the same time, the computation time

of the FPC was up to 50 times lower than the time required by the CCA. Experiments were

carried out to validate the simulations. A cylindrical steel beam with three FBGs glued on its

lateral surface was axially loaded with a tensile test machine. The measurements confirmed the

effectiveness of the FPC algorithm.

Our paper is further structured as follows, In Section 2 we introduce the principles of the fast

phase-correlation method. Section 3 deals with our simulation results, for which we compared

the performance of different algorithms on simulated Bragg grating spectra. Section 4 summa-

rizes the experimental results and compares how the different peak detection methods behave

when applied to experimentally obtained Bragg grating responses. To close, Section 5 con-

cludes on the performances of our proposed FPC algorithm for different wavelength resolutions

and SNR levels.

2. Fast Phase Correlation (FPC) working principle

FBG based sensing relies on tracking the Bragg peak wavelength as it shifts with a change

in the measurand. In the proposed FPC algorithm, we start from a reference FBG reflec-

#202834 - $15.00 USD Received 11 Dec 2013; revised 12 Feb 2014; accepted 16 Feb 2014; published 19 Mar 2014
(C) 2014 OSA 24 March 2014 | Vol. 22,  No. 6 | DOI:10.1364/OE.22.007099 | OPTICS EXPRESS  7101



tion spectrum. This reference spectrum does not necessarily have to correspond to the undis-

turbed spectrum, which is the spectrum before the measurand acts on the FBG. The reference

spectrum is recorded as R(λ j), where λ j represents the j th element of the wavelength vector

and j=1,2,. . . ,(N-1). The number of samplings N depends on the wavelength scanning range

λmax −λmin and on the wavelength resolution δλ .

N =
λmax −λmin

δλ
(1)

When the measurand acts on the FBG, the perturbed spectrum is stored in a second vector

R′(λ j), for j=1,2,. . . ,(N-1). Assuming that there is no distortion of the spectrum, the perturbed

spectrum R′(λ j) can be rewritten as

R′(λ j) = R(λ j −Δλ ) (2)

where Δλ is the wavelength shift between R and R′. In order to evaluate Δλ , the FPC algorithm

first computes the fast Fourier trasforms R(k) and R
′(k) of R(λ j) and R′(λ j) respectively

R(k) =
N−1

∑
j=1

R(λ j) e
−2πi

N ( j−1)(k−1), k = 1,2, . . . ,M << N (3)

R
′(k) =

N−1

∑
j=1

R′(λ j) e
−2πi

N ( j−1)(k−1), k = 1,2, . . . ,M << N (4)

with k indicating the generic Fourier spectral line and M the maximum number of spectral lines

considered in the analysis.

For each value of k, starting from k = 2 to k = M, an estimation Δ̂λ of the wavelength shift is

calculated in the following way:

Δ̂λ (k−1) =
(

∠R
′(k)−∠R(k)

) Nk δλ

2π
, k = 2, . . . ,M << N (5)

where the symbol ∠ indicates the phase of the complex number. The wavelength shift Δλ is

then obtained taking the median value of the previously computed estimates

Δλ = median
2≤k≤M

(

Δ̂λ (k−1)
)

(6)

The choice of the median instead of other metrics, such as the mean, stems from considering

the robustness of the computation: the median is less sensitive to outliers. It must be noted

that one normally chooses M=N. In this case, however, M can be set to be considerably lower

than N, since only the first few frequency lines of R and R′ contain energy. Such an energy

distribution is due to the shape of both spectra R and R′, which can be approximated by “sinc”

functions. If the main lobe width of these sinc functions is indicated by rB, then the Fourier

transforms R and R
′ result to be rectangular-shaped, with energy distributed only within the

frequency band 0-rB/2. Therefore, the narrower is the peak, the lower is the number of spectral

lines M required for the analysis. When M << N, as in Eqs. (3)–(4), the FPC algorithm avoids

to compute (N−M) × N terms for each of the FFT in Eqs. (3)–(4), with a consequent advantage

in terms of execution speed.

3. Simulation and results

To evaluate the FPC algorithm introduced above, we first developed a Matlab script to simulate

the dynamic behavior of an FBG subjected to a given deformation field. Then, we processed the
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simulated data using both the FPC and two other algorithms, the maximum detection algorithm

(MDA) and the cross-correlation demodulation (CCA) algorithm. The MDA algorithm includes

a 10 points quadratic interpolation around the maximum position, while the CCA script also

integrates a subpixel polynomial interpolation routine. Finally, we compared the performances

of the three algorithms in terms of precision, accuracy and computation time. Section 3.1 de-

scribes the principle of the dynamic FBG simulation, while section 3.2 explains the processing

procedure of the simulated FBG spectra and reports on the performances obtained for different

SNR values and wavelength resolutions.

3.1. Simulation of FBG under dynamical strain.

According to the Couple-Mode theory, the mode propagation through the grating of an FBG is

described by the following system of first order differential equations [21]

dR(z)

dz
= i(kdcR(z)+ kacS(z)) (7)

dS(z)

dz
=−i(kdcS(z)+ kacR(z)) (8)

where z is the mode direction of propagation, R(z) and S(z) are the amplitudes of the forward-

and backward-propagating modes. kdc and kac are respectively the “dc” and “ac” self-coupling

coefficients. For a uniform grating kdc and kac can be expressed as [21, 22]:

kdc = 2πneff

(

1

λ
−

1

λD

)

+
2π

λ
δneff (9)

kac =
π

λ
ν δneff (10)

where neff is the effective index modulation, δneff is the “dc” index change spatially averaged

over a grating period Λ0, λD = 2neffΛ0 is the designed Bragg wavelength and ν is the fringe

visibility. Assuming that the length of the grating is L, the reflecivity is given by

R(λ ) =

∣

∣

∣

∣

S(−L/2)

R(−L/2)

∣

∣

∣

∣

2

. (11)

Using the T-matrix formulation Eq. (11) can be computed as follows:

[

R(−L/2)
S(−L/2)

]

=
m

∏
r=1

Tr ×

[

R(L/2)
S(L/2)

]

(12)

where m is the number of sections in which the grating is divided and Tr is the r th transfer

matrix

Tr =

[

cosh(αΔz)− i
kdc
α sinh(αΔz) −i kac

α sinh(αΔz)

i kac
α sinh(αΔz) cosh(αΔz)− i

kdc
α sinh(αΔz)

]

(13)

α =

√

kac
2 − kdc

2 (14)

In order to simulate the dynamical behavior of the FBG, the following strain function along

the z axis is assumed

εzz(z, t) =C0 t (15)
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where C0 is a constant. In this circumstance, the design wavelength λD in (9) becomes

λD(z, t) = 2neffΛ0 (1+aε(z, t)) (16)

where a = 1− 1
2
neff [p12 −υ (p11 − p12)] is the grating gauge factor [22, 23], in which p11 and

p12 are the components of the fibre-optic strain tensor and υ is the Poisson’s ratio. At each time

step, the developed Matlab script recalculates the value of λD and refreshes the value of kdc

needed for the computation of the reflectivity according to Eq. (11). This numerical procedure

was used to simulate the behavior of an FBG with L = 10−2 m, Λ0 = 10−7 m, neff = 1.452,

δneff = 1.131× 10−4, ν = 1, p11 = 0.121, p12 = 0.270, υ = 0.17. The Bragg wavelength of

the grating in a strain-free state is 1540.16 nm. The normalized reflectivity was computed for a

uniform strain of C0 = 10−4 µε . Figure 1 shows the normalized reflectivity and the wavelength

shift ΔλD as a function of time.

(a)

0 0.5 1
0

20

40

60

80

100

t (sec)

Δ
λ

D
 (

p
m

)
(b)

Fig. 1. (a) Normalized reflectivity against wavelength and time under a uniform constant

strain C0 = 10−4 µε . The black line with markers indicates the strain-free spectrum. (b)

Theoretical shift of the design wavelength.

It is worth noting that for unchirped gratings subjected to uniform axial strain ε(z), the reflec-

tivity can be directly calculated from the exact solution. However, the transfer matrix-method

was hier used in order to implement a procedure capable to perform the analysis on any kind of

grating subjected to any kind of axial strain. In future works a similar procedure will be used to

simulate and analize the behavior of FBG under dynamical non uniform strain fields.

3.2. Processing of simulated FBG spectra and performance analysis.

The FBG spectra simulated in Section 3.1 were used to test the FPC algorithm presented

in section 2. The strain-free spectrum was chosen as the reference spectrum R(k) while

the reflectivity at each time instant was taken as the vector R′(k). To simulate signals with

different signal-to-noise ratios, white Gaussian noise (AWGN) was added to the instanta-

neous reflectivity. Signals were generated for SNR values of 30 dB up to 60 dB in steps of

5 dB. For each SNR level, the wavelength shift was computed 500 times to determine the

statistics of the peak detection error. Figure 2 provides a graphical explanation of the procedure.

The precision σSNR and accuracy δSNR of the FPC algorithm for each SNR were computed

according with the following definitions:
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Fig. 2. Processing of the simulated spectra. The R(k) and R′(k) vectors are the input for the

FPC algorithm which computes the wavelength shift 500 times for each SNR level.

σSNR =

√

√

√

√

1

500

500

∑
n=1

[

(ΔλSNR,n −ΔλD)−
1

500

500

∑
n=1

(ΔλSNR,n −ΔλD)

]2

(17)

δSNR =
1

500

500

∑
n=1

|ΔλSNR,n −ΔλD| (18)

where ΔλSNR,n is the calculated wavelength shift for the given SNR at the nth repetition and

ΔλD is the corresponding shift of the design wavelength obtained from Eq. (16). It is worth to

notice that lower values of σ and δ indicate better precision and accuracy.

Figures 3 and 4 show the computed precision and accuracy of the FPC algorithm in comparison

with the MDA and CCA peak detection techniques.

The maximum number of spectral lines used in the FPC algorithm is M=7. Four different

sample resolutions δλ were considered: 10 pm (Figs. 3(a) and 4(a)), 25 pm (Figs. 3(b) and

4(b)), 30 pm (Figs. 3(c) and 4(c)) and 35 pm (Figs. 3(d) and 4(d)). The results show that, al-

though both FPC and CCA perform generally better than the MDA, the comparison of both

precision and accuracy changes from one wavelength shift Δλ to another. This is due to the

peak locking effect, which is low for high resolution (δλ=10 pm) but becomes dominant as the

resolution decreases (δλ=35 pm). Because of peak locking, an algorithm could be erroneously

considered more or less precise and accurate than another. For example, looking at Figs. 3(c)

and 4(c), at SNR=60 dB and Δλ=7 pm, the precision of FPC, CCA and MDA are respectively

0.14 pm, 0.09 pm and 0.77 pm. So one would conclude that the FPC precision improves by

82% compared to MDA but decreases by 35% compared to CCA. In terms of accuracy, for

the same SNR and wavelength shift, the FPC shows improvements of 89% and 63% compared

to MDA and CCA, respectively. However, when Δλ=20 pm, because of the peak locking, the

improvement introduced by the FPC compared to MDA reaches the 93% for precision and the

83% for accuracy. At the same time, compared to CCA, the precision decreases by 64% while

the accuracy improves by 62%. This happens because the proposed FPC algorithm exhibits a

less evident peak locking phenomenon compared to the MDA and CCA techniques. Figures 3

and 4 also show how the wavelength resolution affects the detection performances. The resolu-

tion has an attenuated influence on the FPC precision, which deteriorates only slightly when the

resolution decreases from 10 to 35 pm, especially for SNR levels above 45 dB. This makes the

selection of the spectral resolution quite flexible. The effect of the resolution on the accuracy is
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(a) Sample resolution δλ = 10 pm (N = 61)
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(d) Sample resolution δλ = 35 pm (N = 18)

Fig. 3. Precision of MDA, CCA and FPC algorithms for different wavelength resolutions.

The MDA is used in conjunction with a 10 points quadratic interpolation around the max-

imum. The FPC is as precise as the CCA and considerably more precise than MDA. The

peak locking effect is less evident for the FPC than for MDA and CCA.

more evident, however. The accuracy of the FPC can be up to 50 times worse going from δλ=10

pm to δλ=35 pm. Besides precision and accuracy, the computation time is another key factor

for the evaluation of the performance of the proposed FPC algorithm. Table 1 reports the FPC

computation performance in comparison with the MDA and CCA algorithms. To ease the com-

parison, all the values have been normalized using the execution time of the MDA algorithm as a

reference. The analysis was performed with an Intel ® CoreT M i7−3740QM CPU @2.70 GHz

processor. It is evident that the FPC has the best performance, independently from the number

of samples N used for the analysis. More specifically, the FPC is 5 to 6.35 times faster than the
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Fig. 4. Accuracy of MDA, CCA and FPC algorithms for different wavelength resolutions.

The FPC is generally more accurate than CCA and MDA and shows a less evident peak

locking effect.

MDA and 30.15 to 50.18 times faster than the CCA.

For N=500, the time for a single phase correlation calculation is about 1 ms. From a practical

point of view this means that, the proposed FPC algorithm would allow real time measurements

at a scanning frequency of about 1 kHz. Tables 2 and 3 show the precision and accuracy of the

peak detection algorithm when Δλ=0 and SNR=55 dB.

Although the reported values cannot be considered as absolute because of the previously

explained peak locking effect, they provide a reference for comparing the performance of the

three peak detection methods. Looking at Tables 1, 2 and 3 it is clear that the proposed FPC
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Table 1. Normalized Time With Respect to MDA

N MDA CCA FPC CCA/FPC

61 1 8.03 0.16 50.18

500 1 7.33 0.18 40.72

1000 1 6.03 0.20 30.15

Table 2. Precision of the peak detection algorithm at Δλ=0 pm and SNR=55 dB

N MDA (pm) CCA (pm) FPC (pm)

61 1.721 0.025 0.040

500 2.07 0.009 0.014

1000 1.549 0.005 0.009

Table 3. Accuracy of the peak detection algorithm at Δλ=0 pm and SNR=55 dB

N MDA (pm) CCA (pm) FPC (pm)

61 1.539 0.021 0.035

500 2.632 0.008 0.011

1000 1.102 0.004 0.007

method represents a good trade-off between peak detection capabilities and computational re-

quirements, yielding almost the same precision and accuracy of the CCA algorithm but with a

computational effort lower than that required by a simple MDA algorithm.

4. Experiments and results

Experiments were carried out to validate the simulations and to demonstrate the effectiveness

of the proposed FPC algorithm. The experimental setup is shown in Fig. 5. Three FBG sensors

are glued on the lateral surface of a cylindrical steel bar and connected with a commercially

available sm125 Bragg grating interrogator [24]. The wavelength range of the interrogator goes

from 1510 to 1590 nm with a resolution of 5 pm. To better test the FPC capabilities, both type

(a) (b) (c)

Fig. 5. Experimental setup: (a) steel test bar mounted on the stress testing machine; (b)

zoom of the three FBG sensors glued on the steel bar; (c) interrogator.

I and type II gratings were adopted for the measurements. Type I gratings are associated with

refractive index modulation occurring below the damage threshold of glass and they are char-
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acterized by negligible losses in the reflected spectra. Type II gratings, instead, are written at

high power and are associated with changes in the refractive index above the damage thresh-

old of glass. Compared to type I, type II gratings are stable at much higher temperature (over

1000 ◦C), but they can suffer from significant scattering loss.
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Fig. 6. FBGs reflectivities when no strain is applied. FBG1 and FBG2 are type I gratings

while FBG3 is a type II grating. The peak region of FBG3 shows a plateau of about 0.8 nm,

increasing the peak detection uncertainty.

Two of the FBG sensors that we used, FBG1 and FBG2, have a type I grating while the third

sensor FBG3 has a type II grating. Figure 6 shows the reflected spectra of the three FBG sensors

when no force is applied to the test bar. The Bragg wavelengths in this condition are 1547.17,

1547.84 and 1525.06 nm for FBG1, FBG2 and FBG3 respectively. The tensile test machine ap-

plies a strain rate of 100 µε/sec. The FBGs reflected spectra are measured by the interrogator

with a frequency of 2 Hz, stored and successively processed using the FPC, CCA and MDA al-

gorithms. The wavelength shift of each FBG is computed using a wavelength window of 5 nm

(N=1001) centered around the initial Bragg wavelength. Since at each time instant the exact

wavelength shift is unknown, the precision of the algorithms is evaluated here as the standard

deviation of the L1 error between the measured data and their cubic fitting. Figures 7-9 report

the computed wavelength shifts as function of time.
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Fig. 7. Wavelength shift of FBG1 sensor computed with MDA, CCA and FPC. The preci-

sion σ of each algorithm is 1.882 pm (MDA), 0.597 pm (CCA) and 0.548 pm (FPC).

As expected, the proposed FPC algorithm shows the highest precisions of 0.548 pm, 0.587

and 1.543 pm on FBG1, FBG2 and FBG3 respectively. Compared to MDA and CCA, the FPC

algorithm improves the resolution by 71% and 9% in FBG1, 69% and 3% in FBG2 and 99%

and 53% in FBG3. The FPC performs quite well independently from the type of grating.

Comparing the type 1 gratings (Figs. 7 and 8) with the type 2 grating (Fig. 9) reveals a loss
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Fig. 8. Wavelength shift of FBG2 sensor computed with MDA, CCA and FPC. The preci-

sion σ of each algorithm is 1.865 pm (MDA), 0.599 pm (CCA) and 0.587 pm (FPC).
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Fig. 9. Wavelength shift of FBG3 sensor computed with MDA, CCA and FPC. The preci-

sion σ of each algorithm is 451.25 pm (MDA), 2.23 pm (CCA) and 1.05 pm (FPC).

of precision of 49% for the FPC and of 74% and 99% respectively for the CCA and MDA.

For FBG3, the extremely poor precision exhibited by the MDA algorithm is due to a combined

effect of the shape of the reflected spectrum (FBG3 in Fig. 6) and the intrinsic nature of the

peak searching algorithm. The FBG3 spectrum features a plateau of about 0.8 nm in the peak

region, which complicates the detection of the maximum and makes it much more sensitive

to noise fluctuations. On the contrary, the FPC and CCA perform better since they compute

the wavelength shift without searching for the maximum. The FPC, in addition, presents lower

precision variance of the CCA since it does not rely on subpixel interpolation to increase the

precision. Figure 9 shows a high error level for CCA, which disappears after 200 seconds. This

is a combined effect of sub-resolution interpolation, selected wavelength acquisition bandwidth

and applied strain. For the first 200 seconds of measurements, the applied strain is so small that

the cross-correlation vector is not symmetric and has its maximum value in the first position.

In addition, the peak region is broad and flat, making therefore the interpolation routine less

effective. After 200 seconds, the applied strain is enough high to move the peak value of the

cross-correlation vector far from the first position. The cross-correlation acquire more sym-

metry and the peak region becomes sharper, allowing a better cubic interpolation. The effect

of the wavelength bandwidth is shown in Fig. 10. Compared to Fig. 9, the wavelength band-

width has been increased of 3 nm. In this case, for t<200 seconds, the CCA produces better

results than in Fig. 9 since the augmented wavelength bandwidth yield to a sharper and nar-

rower cross-correlation peak. Differently from CCA, the FPC algorithm is less influenced by

the size of the wavelength window even though it performs better for lower wavelength band-

width. According to the author, this is an additional positive feature of the FPC algorithm since

a wavelength bandwidth reduction is often desirable to restrain the number of samples and to

deal with multiple sensors at the same time.
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Fig. 10. Wavelength shift of FBG3 sensor computed with MDA, CCA and FPC using a

wavelength bandwidth of 8 nm (N=1600). The precision σ of each algorithm is 455.45 pm

(MDA), 1.51 pm (CCA) and 1.58 pm (FPC).

The effectiveness of the FPC method was also analyzed for different values of the wave-

length resolution. Since the lowest resolution allowed by our interrogator was 5 pm, we arti-

ficially modified the resolution by processing sparse spectra obtained by leaving out samples

from the original measurements. Figure 11 displays the evolution of the peak wavelength σ
with respect to resolution. As the resolution step increases, the FPC continues to provide good

sensing precision. Considering FBG1 and FBG2, the FPC peak wavelength σ first shows a

slight increase, then the curves remain almost flat up to a resolution of 55 pm. The σ values are

confined between 0.548 and 0.821 pm for FBG1 and between 0.587 and 0.891 pm for FBG2.

The FPC precision is worse for FBG3, with values going from a minimum of 1.051 pm at 5

pm resolution, to a maximum 2.091 pm at a 50 pm resolution. Compared with CCA, the FPC

precision is always better for FBG3. For FBG1 and FBG2 the FPC is more precise than CCA

up to a resolution of 40 pm, while for values of resolution above this limit the cross correlation

performs slightly better.
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Fig. 11. Standard deviation σ of the calculated peak wavelength versus sample spectral

resolution.

The MDA algorithm produces the worst results, especially for the type 2 grating sensor

(FBG3). In this case, the peak wavelength σ tends to be lower as the resolution decreases

from 5 to 35 pm and becomes almost stable for higher resolutions. When the resolution step

increases, the frequency bandwidth spanned by the 10 points quadratic interpolation used by

the MDA also increases, allowing for a better approximation of the peak region and making the

algorithm more stable. Despite this improvement, the MDA precision never reaches the same

level of CCA and FPC. At a 40 pm resolution, for example, the precision of the MDA algorithm

is 3.575 pm for FBG1, 4.467 pm for FBG2 and 66.71 pm for FBG3, against the 0.661, 0.701
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and 1.622 pm obtained by the FPC. This results suggest that, in contrast to the MDA, the FPC

could operate in combination with low resolution interrogator systems while still guaranteeing

a high sensing precision.

5. Conclusion

In this paper, we proposed a novel peak detection technique based on phase correlation. Using

simulations and experiments we investigated the performances of the proposed FPC algorithm

under different sample resolutions and SNR. We compared the FPC performances with the

maximum detection algorithm (MDA) and with the cross-correlation algorithm (CCA). The

FPC has the same order of measurements uncertainty as the cross-correlation algorithm but

with a lower sensitivity to peak locking effect, especially at low SNR. Moreover, compared

to MDA, the FPC is less influenced by wavelength resolution. Therefore, it allows using in-

terrogator systems with lower wavelength resolution, with a consequent advantage not only it

terms of acquisition speed but also in terms of cost of the device. The analyses of experimental

measurements proved that the FPC is less sensitive to spectral shape and provides high preci-

sion also in the case of FBG with a type 2 grating. In terms of computational time, the FPC is

one order of magnitude faster than CCA, with an execution speed of 1 ms when the number of

spectral samples is set to 500. These characteristics make the FPC a suitable method for real

time sensing applications and for future implementation in dynamic sensing systems.
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