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For the integrated navigation system, the correctness and the rapidity of fault detection for

each sensor subsystem affects the accuracy of navigation. In this paper, a novel fault detection

method for navigation systems is proposed based on Gaussian Process Regression (GPR). A

GPR model is first used to predict the innovation of a Kalman filter. To avoid local optimisa-

tion, particle swarm optimisation is adopted to find the optimal hyper-parameters for the

GPR model. The Fault Detection Function (FDF), which has an obvious jump in value

when a fault occurs, is composed of the predicted innovation, the actual innovation of the

Kalman filter and their variance. The fault can be detected by comparing the FDF value

with a predefined threshold. In order to verify its validity, the proposed method is used in a

SINS/GPS/Odometer integrated navigation system. The comparison experiments confirm

that the proposed method can detect a gradual fault more quickly compared with the residual

chi-squared test. Thus the navigation system with the proposed method gives more accurate

outputs and its reliability is greatly improved.
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1. INTRODUCTION. The navigation system provides navigation data, such as

position, velocity and attitude information, which is delivered to a computer for guid-

ance and control (Oh et al., 2005). Whether the navigation data is correct can affect

the realization of accurate navigation. In order to improve the reliability and continuity

of navigation, integrated navigation is used in many vehicles (Park et al., 2011). Since

several sensors are used in an integrated navigation system, the correctness of sensor

measurements directly affects the accuracy of navigation. Once a sensor fails, each sub-

system will be contaminated by the fault after the multi-sensor information fusion and

feedback. Therefore fault detection is essential to enhance the integrated navigation

system’s reliability and safety.
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Due to the importance of fault detection, many researchers have devoted themselves

to improving the reliability of systems. The existing fault detection methods can be

broadly classified into three categories (Zhu and Hu, 2012): fault detection method

based on an analytical model, fault detection method based on signal processing

and fault detection method based on prior knowledge. Fault detection methods

based on an analytical model process and diagnose the information under the assump-

tion that the mathematic model of the system is known. Kalman filtering (Brumback

and Srinath, 1987; Villez et al., 2011) and strong tracking filtering (Wang et al., 2004)

are the most popular methods in this category. The filter is used to obtain the state es-

timation for fault prediction based on the analytical model of the system. If the pre-

dicted state is greater than the predefined threshold, a fault occurs. Brumback and

Srinath (1987) constructed a chi-squared test statistic from the difference between

two estimates based on a Kalman filter to realise real-time fault detection. On this

basis, Joerger and Pervan (2013) put forward an improved method that can evaluate

the probability that an undetected fault causes state estimate errors to exceed prede-

fined bounds of acceptability. However, for some complex nonlinear systems, accurate

models cannot be obtained. The other two categories of fault detection methods avoid

this problem. Wavelet transformation (Jiang et al., 2003; Yan et al., 2014; Youssef,

2002) and Auto-Regressive Moving Average (ARMA) (Pham and Yang, 2010;

Mohsen and Abu EI-Yazeed, 2004; Munoz, 2000) analyse the measured signal directly,

and lead to fault detection methods based on signal processing. These methods detect

the fault by extracting characteristic values from the signals such as variance, amplitude

and frequency. Fault detection methods based on prior knowledge (Bacha et al., 2008;

Mahadevan and Shah, 2009; Shabanian andMontazeri, 2011) have been drawing more

and more attention because of their high intelligence. Bacha et al. (2008) realised auto-

matic classification and fault severity degree evaluation by using a Neural Network

(NN), of which the inputs were obtained using experimental data related to healthy

and faulty machines. However, the dataset needed to train the NN is exceedingly

large, which restricts the use of NN in practical application. By contrast, Support

Vector Machine (SVM) is a novel learning method that requires only a small number

of samples. Mahadevan and Shah (2009) used a feature selection and identified vari-

ables most closely related to the classification of normal and faulty data based on

SVM. The outputs of SVM do not have probabilistic meaning. Fortunately, the

newly developed Gaussian Process Regression (GPR) can overcome this drawback.

It can provide not only the prediction corresponding to the unknown input but also

the variance of the prediction (Huber, 2014). GPR has many advantages in solving pro-

blems in which the dataset has a high dimension or the size of the dataset is relatively

small or the samples nonlinear.

This paper proposes a novel fault detection method for an integrated navigation

system based on GPR. The Fault Detection Function (FDF), which is composed of

the predicted innovation, the actual innovation of the Kalman filter and their variance,

is presented. The innovative formula of FDF makes it sensitive to the faults, which is

especially favourable to the detection of gradual faults. The GPR model, for the first

time, is used to predict the innovation of the Kalman filter. In order to avoid local op-

timisation, particle swarm optimisation is applied to find the optimal values of GPR

hyper-parameters. To highlight the advantages of the proposed method over the trad-

itional method, contrast experiments are carried out. The results demonstrate that the

proposed method can detect both abrupt faults and gradual faults effectively, which
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greatly contributes to enhancing the accuracy and reliability of integrated navigation

systems.

The paper is organised as follows: Section 2 introduces GPR assisted by particle

swarm optimisation; Section 3 presents the fault detection algorithm based on

GPR; Section 4 introduces SINS/GPS/Odometer (Strapdown Inertial Navigation

System / Global Positioning System / Odometer) fault-tolerant system; Section 5

describes experimental results; and the last section is committed to concluding

remarks.

2. GPR ASSISTED BY PARTICLE SWARM OPTIMISATION. GPR was first

proposed by Williams and Rasmussen (1995). It is a machine learning method devel-

oped from Bayesian theory and statistical theory. In mathematics, the GPR model is

equivalent to many well-known models, such as spline model, Bayesian linear model

and large artificial neural network.

A Gaussian Process (GP) is a collection of random variables, any finite number of

which has a joint Gaussian distribution. AGP is completely specified by its mean func-

tion and covariance function (Williams and Rasmussen, 2006). The mean function

m(x) and the covariance function k(x, x’) of a real process f(x) are defined respectively as

mðxÞ ¼ E½ f ðxÞ�
kðx,x0Þ ¼ E½ð f ðxÞ �mðxÞÞð f ðx0Þ �mðx0ÞÞ�

�

ð1Þ

Then the GP is written as f(x)∼GP(m(x), k(x, x’)).

The noisy version of the model is described as

y ¼ f ðxÞ þ ε ð2Þ
where x denotes the input vector. f(x) is the true value of function at location x. y is the

observation polluted by noise. Assume that the noise ε observes Gaussian distribution:

ε∼N (0, σ2n). Then the prior distribution of observation y, the joint prior distribution of

observation y and function value f* can be obtained as follows

y ∼ Nð0,KðX ,XÞ þ σ2nInÞ ð3Þ
y

f�

� �

∼ N 0,

KðX ,XÞ þ σ2nIn KðX ,x�Þ
Kðx�,XÞ kðx�,x�Þ

� �� �

ð4Þ

where the covariance matrix K(X, X) =Kn= (kij). The matrix element kij= k(xi, xj) is

used to measure the correlation between xi and xj. In denotes the n-dimensional unit

matrix. n is equal to the column number of X. K(X, x*) =K(x*, X)
T is the covariance

matrix between training set input X and test point x*. k(x*, x*) is the covariance of test

point x* itself.

There are several covariance functions, among which square covariance is often

used. The square covariance between xi and xj is written as

kðxi,xjÞ ¼ σ2f exp � 1

2
ðxi � xjÞTM�1ðxi � xjÞ

� �

ð5Þ

whereM = diag(l2) is a diagonal matrix whose order is equal to the dimension of xi. l is

the scale of the variance. σ2f denotes the variance of the single.
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Then, the posterior distribution of function value f* can be calculated as follows

f�jX ,y,x� ∼ Nð�f �; covð f�ÞÞ ð6Þ

where

�f � ¼ Kðx�,XÞ½KðX ,XÞ þ σ2nIn�
�1
y ð7Þ

covð f�Þ ¼ kðx�,x�Þ � Kðx�,XÞ½KðX ,XÞ þ σ2nIn�
�1
KðX ,x�Þ ð8Þ

here �f � and cov(f*) are predictive mean and variance of function value f* at location x*,

respectively.

There are some unknown parameters in Equations (7) and (8). In order to obtain

these parameters, we define the hyper-parameter θ ¼ fl,σ2f ,σ2ng. Finding the optimal

values of the hyper-parameter is crucial to train a good prediction model. To overcome

the problems of local optimal, Particle Swarm Optimisation (PSO) combined with the

maximum likelihood method is proposed to determine the hyper-parameter.

Particle swarm optimisation was introduced by Kennedy and Eberhart (1995) and

modified by Shi and Eberhart (1998). It came from the simulation of foraging behav-

iour of bird flocks and fish schools. As an evolutionary algorithm to obtain global op-

timisation, PSO can solve complex problems which are nonlinear or have multiple

extremes.

Each particle represents a possible solution of the problem. The value of the object-

ive function at a particle’s position is defined as the fitness of the particle. The quality

of a particle is measured by its fitness. Every particle remembers its own best position

and the best position of its neighbours, which will be used when the particle changes its

velocity. The PSO algorithm searches for the optimal solution by the cooperation and

competition among individual particles.

Assume there is a swarm composed of N particles in D-dimensional search space.

The position of particle i is written as Pi = (pi1 pi2 …piD)
T and the velocity written as

Vi = (vi1 vi2 … viD)
T, in which i = 1, 2, …, N. The fitness of particle i is denoted as

fp(Pi). fp(Pbesti) and Pbesti = (pbesti1 pbesti2 … pbestiD)
T are the personal best fitness

and the personal best position of particle i, respectively. fp(Gbest) and Gbest=

(gbest1 gbest2 … gbestD)
T are the global best fitness and the global best position of

the particle swarm, respectively. At the iteration m, the d-th dimensional velocity com-

ponent vmid and position component pmid of particle i can be updated according to

Equations (9) and (10), respectively.

vmþ1
id ¼ ω � vmid þ c1r1ð pbestmid � pmidÞ þ c2r2ðgbestmd � pmidÞ ð9Þ

pmþ1
id ¼ pmid þ vmþ1

id ð10Þ

where m is the current iteration number. d= 1, 2,…, D. pbestmid and gbestmd are the d-th

dimensional component of the particle i’s personal best position vector and the global

best position vector at iteration m, respectively. r1, r2∈U(0,1) are random values. c1 is

the cognitive learning factor that represents the cognition that a particle has towards its

own success. c2 is the social learning factor that represents information sharing and co-

operation between the particles. ω is the inertia weight that decides the impact of the

previous velocity on the current velocity (Mahmoodabadi et al., 2012).

Based on the above theories, the algorithm to obtain the optimal values of the hyper-

parameter is described as follows.
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Step 1 Build the negative log marginal likelihood as

LðθÞ ¼ � log pðy X ; θj Þ

¼ 1

2
yT ðKn þ σ2nInÞ

�1
yþ 1

2
log Kn þ σ2nIn

�

�

�

�þ n

2
log 2π

ð11Þ

Step 2 Get the partial derivative of L(θ) on θ as

∂LðθÞ
∂θ

¼ 1

2
tr ðC�1yÞ � ðC�1yÞT � C�1

� 	

� ∂C
∂θ

� �

ð12Þ

where C ¼ Kn þ σ2nIn.

Step 3 Define the partial derivative as the fitness function of particle swarm opti-

misation to be minimised.

Step 3·1 Initialise velocities and positions of the particle swarm with random

numbers in the search space.

Step 3·2 Calculate the fitness function of each particle.

Step 3·3 Compare each particle’s fitness with its personal best fitness. If the current

fitness is better, it will be set as the personal best fitness of the particle, and

the current position set as the personal best position.

Step 3·4 Compare each particle’s personal best fitness with the global best fitness of

the particle swarm. If a personal best fitness is better, then set it as the

global best fitness, and the position that corresponds to the global best

fitness as the global best position.

Step 3·5 Update velocities and positions of the particles according to Equations (9)

and (10).

Step 3·6 If the criterion is met, output the global best position as the optimal solu-

tion. Otherwise, go to Step 3·2.

The criterion is usually a sufficiently good fitness or a maximum number of

iterations. Then the output global best position is just the optimal solution of hyper-

parameter θ.

3. FAULT DETECTION ALGORITHM BASED ON GPR. The error model of

the system can be expressed as follows

Xk ¼ Φk,k�1Xk�1 þWk�1 ð13Þ
where Xk−1 is the error states of the integrated navigation system at time tk−1, and Xk

the error states at time tk. Φk,k−1 is the state transition matrix between time tk−1 and tk.

Wk is a zero mean white noise sequence with covariance Qk.

The measurement equation of the system may be expressed as follows

Zk ¼ HkXk þ Vk ð14Þ
where Zk is the measurement differences at time tk. Hk is the local filter measurement

matrix. Vk is the measurement noise vectors with covariance Rk. Wk and Vk are

assumed to be independent.
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Consider the system described by Equations (13) and (14). The functional diagram

of the FDF construction is given in Figure 1. The FDF consists of two parts: the in-

novation of the Kalman filter and the predicted value of GPR model.

The time update of the Kalman filter defines the new estimate X̂k,k�1 of the state at

time tk based on the estimate at the previous time.

X̂k,k�1 ¼ Φk,k�1X̂k�1 ð15Þ

where X̂k�1 is the estimate of the state at time tk−1. Then the estimated measurement of

the system can be calculated as follows

Ẑk,k�1 ¼ HkX̂k,k�1 ð16Þ

The innovation of the Kalman filter is defined as

rk ¼ Zk � Ẑk,k�1 ð17Þ

If there are no failures in the system before time tk−1, the state estimate X̂k�1 at time tk−1

is correct. In this case, Ẑk,k�1 represents the estimated measurement of the system with

no faults at time tk. As a result, the innovation rk is a Gaussian white sequence with zero

mean as the system has no faults between time tk−1 and tk. The covariance of the innov-

ation rk can be calculated as follows

covðrkÞ ¼ HkPk,k�1H
T
k þ Rk ð18Þ

where Pk,k−1 denotes the expected value of the covariance matrix at time tk predicted at

time tk−1. Pk,k−1 can be obtained at the Kalman filter prediction step.

At the same time, a GPR model is devoted to predicting the innovation of the

Kalman filter. To build a GPR model, we need to have a dataset as a training

sample. Some measurements and its corresponding Kalman filter innovations of the

fault-free system, denoted by sZk and srk respectively, are taken as the training

samples. Using the training samples sZk and srk, the GPR model is established

through Steps 1–3 listed in Section 2. We train the GPR model based on finding the

optimal value of hyper-parameter θ. By defining the partial derivative as the fitness

function to be minimised, the PSO algorithm assists in finding the best setting of

the GPR hyper-parameter. As the GPR model has been trained, it has the function

of prediction. With the measurement Zk as the input, the GPR model can predict

Figure 1. The functional diagram of the FDF construction.
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the corresponding Kalman filter innovation r�k and give its covariance covðr�kÞ by

Equations (7) and (8) respectively. Figure 2 shows the above description as a flow chart.

So far, we have got all the elements needed for constituting the FDF. On this foun-

dation, we produce the definition of ηk, which is as follows

ηk ¼ rk � r�k ð19Þ

As the innovation rk and the predicted innovation r�k are independent of each other, the

covariance of ηk can be obtained as follows

Ak ¼ covðrkÞ þ covðr�kÞ ð20Þ

If the system is operating normally, ηk is a Gaussian white sequence with zero mean. If

a fault occurs, the mean of ηk is no longer equal to zero. Make assumptions about ηk as

follows:

H0 ¼ Fault-free EðηkÞ ¼ 0;Eðηk � ηTk Þ ¼ Ak

H1 ¼ Fault EðηkÞ ¼ μ;E½ðηk � μÞ � ðηk � μÞT � ¼ Ak

Figure 2. Particle Swarm Optimisation assists in training the GPR model.

911A NOVEL FAULT DETECTION METHODNO. 4

https://doi.org/10.1017/S0373463315001034 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463315001034


Hence, there are the following conditional probability density functions:

Prðη H0j Þ ¼ 1
ffiffiffiffiffiffi

2π
p

� Akj j1=2
expð� 1

2
ηTk A

�1
k ηkÞ ð21Þ

Prðη H1j Þ ¼ 1
ffiffiffiffiffiffi

2π
p

� Akj j1=2
exp½� 1

2
ðηk � μÞTA�1

k ðηk � μÞ� ð22Þ

where |Ak| denotes the determinant of Ak.

Neyman-Pearson lemma shows the effectiveness of likelihood ratio test. We calcu-

late the log likelihood rate of Pr(η|H1) and Pr(η|H0) as follows

Λk ¼ ln
Prðη H1j Þ
Prðη H0j Þ

¼ 1

2
½ηTk A�1

k ηk � ðηk � μÞTA�1
k ðηk � μÞ�

ð23Þ

The log likelihood rate Λk reaches its maximum when μ is equal to ηk. Then the FDF

can be obtained as follows

λk ¼ ηTk A
�1
k ηk

¼ ðrk � r�kÞ
T � ½covðrkÞ þ covðr�kÞ�

�1 � ðrk � r�kÞ
ð24Þ

As a fault occurs, ηk is no longer a Gaussian white sequence with zero mean. The value

of FDF λk will be bigger, which is used to detect the fault. The decision rule is given by

the following

λk > TD A fault has occurred

λk ⩽ TD No fault has occurred

where TD is the threshold for detection. If the threshold value is too large, the probabil-

ity of missed detection will increase. On the other hand, if the threshold value is too

small, the probability of false alarm will increase. Therefore, we must measure the

probability of false alarm and the probability of missed detection when determining

the detection threshold.

4. SINS/GPS/ODOMETER FAULT-TOLERANT SYSTEM

4.1. Fault-tolerant System Structure. To improve the precision and reliability of

the navigation system, multi-navigation system integrated schemes are the most

popular at present. The integrated navigation composed of SINS, GPS and odometer

is usually applied to land vehicles (Atia et al., 2014). SINS is an independent naviga-

tion system, which provides navigation parameters continually. Since the navigation

error of SINS grows over time, assisting navigation approaches are needed to

modify the cumulative error. As an assistant navigation observer, the odometer pro-

vides the velocity of the vehicle. GPS has high precision of positioning, but its reliabil-

ity will decline owing to such factors as strong jamming and the blackout effect caused

by obstructions.

While a number of methods for multi-sensor integration have been presented for

navigation applications, the Kalman filter has proved to have the best performance.
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Therefore, the Kalman filter is applied to realise the local filter. The fault-tolerant

structure of the SINS/GPS/Odometer integrated navigation system is given in

Figure 3. SINS is the reference system. Two local filter systems are composed of

GPS and odometer assisting SINS, respectively. The fault detection and isolation

device is designed respectively for each local filter to detect and expose the subsystem

fault in time, ensuring reliability of the navigation system. The FDF of local filter 1

indicates a fault in the GPS receiver, and that of local filter 2 indicates a fault in the

odometer. When a fault is detected, the master filter no longer uses the output from

the malfunctioning local filter. In other words, if a GPS receiver fault is detected,

the SINS/GPS/Odometer integrated navigation system will be changed into a

SINS/Odometer one. Similarly, if an odometer fault is detected, the SINS/GPS/

Odometer integrated navigation system will be changed into a SINS/GPS one. To

ensure the system fault tolerance capability, the non-feedback federal filter is

adopted to fuse the information of the subsystems. There is no feedback from the

master filter to the local filter, which ensures the best fault tolerance capability.

The master filter fuses the fault-free local filter information, and then outputs the

optimal state estimation. Navigation error is estimated by the federal filter, and then

fed back to the SINS.

4.2. System Model. Set the East-North-Up (ENU) geographic coordinate as the

navigation frame (n-frame), and the Right-Front-Up (RFU) frame as the body frame

(b-frame). Take the 15-dimensional error state vector as the state variable of the inte-

grated navigation system, namely

Xk ¼ fe fn fu δVe δVn δVu δL δλ δh εx εy εz ∇x ∇y ∇z½ �T

where ϕe, ϕn, ϕu are attitude errors. δVe, δVn, δVu are velocity errors. δL, δλ, δh are pos-

ition errors. εx, εy, εz are gyroscope drifts. ▽x, ▽y , ▽z are accelerometer biases.

GPS and odometer assist SINS independently, constituting local filter 1 and local

filter 2, respectively. The two local filters estimate the state variable according to the

observed data. The measurement equations of the two local filters can be described

Figure 3. SINS/GPS/Odometer fault-tolerant system structure.
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respectively as

Z
ð1Þ
k ¼ LSINS � LGPS

λSINS � λGPS

� �

¼ H
ð1Þ
k X

ð1Þ
k þ V

ð1Þ
k ð25Þ

Z
ð2Þ
k ¼ VeSINS � VeOd

VnSINS � VnOd

� �

¼ H
ð2Þ
k X

ð2Þ
k þ V

ð2Þ
k ð26Þ

where the subscript SINS, GPS and Od denote SINS output, GPS receiver output and

odometer output, respectively. L, λ, Ve and Vn are latitude, longitude, east

velocity and north velocity of the vehicle, respectively. X
ð1Þ
k ¼ Xk. X

ð2Þ
k ¼ Xk. V

ð1Þ
k

and V
ð2Þ
k are the measurement noise vectors with covariance R

ð1Þ
k and R

ð2Þ
k respectively.

H
ð1Þ
k and H

ð2Þ
k are the local filter measurement matrices which take the following form

H
ð1Þ
k ¼ 02×6 I2×2 02×7ð Þ ð27Þ

H
ð2Þ
k ¼ 02×3 I2×2 02×10ð Þ ð28Þ

where I2×2 is a 2 × 2 identity matrix. 02×6, 02×7, 02×3 and 02×10 are zero matrices with

different orders.

Since the non-feedback federal filter is used, the master filter itself has no informa-

tion distribution and no filtering operation. The only responsibility of the master filter

is to fuse the local state estimates. The fusion algorithm can be described as follows

P
g
k ¼ ½ðPð1Þ

k Þ�1 þ ðPð2Þ
k Þ�1��1 ð29Þ

X̂
g
k ¼ P

g
k � ½ðP

ð1Þ
k Þ�1 � X̂ ð1Þ

k þ ðPð2Þ
k Þ�1 � X̂ ð2Þ

k � ð30Þ

where X̂
g
k denotes the optimal estimation. X̂

ð1Þ
k and X̂

ð2Þ
k are the estimates of the error

states obtained from local filter 1 and local filter 2, respectively. P
ð1Þ
k and P

ð2Þ
k are the

covariance matrixes of X̂
ð1Þ
k and X̂

ð2Þ
k , respectively. P

g
k is the covariance matrix of X̂

g
k .

5. EXPERIMENTS AND RESULTS. To evaluate the proposed detection

method, experiments have been carried out. Figure 4 shows the experimental vehicle

system that includes IMU, GPS receiver, odometer and navigation computer.

Pictures of the IMU and odometer are presented in Figure 5. The reference system

is an integrated navigation system consisting of a navigation-grade IMU and a GPS

receiver. The reference system provides precise navigation results as reference values.

The test navigation system for evaluating the proposed method is composed of a

GPS receiver, an odometer and a low-cost IMU. The two systems share the GPS re-

ceiver. Field tests were carried out in Beijing in a wide-open area, where satellite

signals were easy to receive.

To verify the proposed fault detection method, fault information is set artificially by

adding a gradual fault, an abrupt fault and an outlier into the measurements of the

GPS receiver. A gradual fault is usually caused by increasing measurement noise,

small biases or drifts in the signal over time. An abrupt fault may happen when the

GPS satellite signals are unavailable for a short time. An outlier is a single point

with a large error at a sampling time, which sometimes appears in a GPS receiver. It
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is worth noting that the simulated fault in the GPS receiver is only added to the mea-

surements of the test navigation system rather than the reference system. The total time

of the test was 900 seconds. Fault information is set up as shown in Table 1.

Based on the above experimental setup, experiments have been performed. Figure 6

shows the position trajectories of the integrated navigation system with different opera-

tions. The vehicle travelled from point A to point B. The position trajectory of the

systemwithout fault detection has significant errors comparedwith the reference position

trajectory. These large position errors are caused by the added faults in the GPS receiver.

When the abrupt fault and the outlier occur, the trajectories of the system with the two

methods are pretty close. This reveals that the two methods behave similarly when they

deal with the abrupt fault and the outlier. The trajectory of the system with residual

chi-squared method deviates from the reference position when the gradual fault occurs.

Then as the fault has been detected, the position errors have been reduced gradually.

However, under the same experimental conditions, the position curve of the system

with the proposed method is almost coincidental with that of the reference system.

Thus it can be seen that the proposed method detected all the added faults effectively.

Figure 4. The experimental vehicle system.

Figure 5. IMU and odometer.
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To further illustrate the performance of the proposed fault detection method,

detailed comparisons have been made between the residual chi-squared test and the

proposed method. Figure 7 shows the fault detection function (FDF) of GPS receiver

obtained by the residual chi-squared test and the proposed method respectively. FDF

reflects the magnitude of fault. The greater the fault, the higher the FDF value will be.

A comparison of Figure 7(a) and Figure 7(b) reveals that the FDFs obtained from the

two methods are in the same order of magnitude as a fault occurs. However, when there

Figure 6. Position trajectories.

Table 1. Setting faults for GPS receiver.

Fault types Fault value Time(s)

Gradual fault 2 m/s 100–200

Abrupt fault 500 m 580–600

Outlier 350 m 700

Figure 7. FDFof GPS receiver. (a) Using residual chi-squared test. (b) Using the proposed method.

916 YIXIAN ZHU AND OTHERS VOL. 69

https://doi.org/10.1017/S0373463315001034 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463315001034


is no fault, the FDFs are on different scales. During the fault-free period, the FDFs of

the two methods are mostly in the order of 103 and 10−3 respectively. This shows that

the FDF of the proposed method has a more obvious jump in value than that of the

residual chi-squared test when a fault occurs.

The large difference between the FDF value of the fault-free system and that of the

failing system benefits the detection of gradual faults. To confirm this point, further

comparison and analysis are made. Taking the detection of the gradual fault for the

GPS receiver as an example, the FDFs obtained from the two methods are locally amp-

lified, corresponding to Zoom A and Zoom B as shown in Figure 8. Taking the prob-

ability of false alarm and missed detection into consideration, the threshold of the

residual chi-squared test and that of the proposed method are assigned the values of

5000 and 1 respectively. The threshold of the proposed method is small, thanks to the

low FDF value of the fault-free system. Figure 8(a) shows that the FDF value is

higher than the predefined threshold starting at the 175th second. So the residual chi-

squared test has a delay of 74 s when it is used to detect the gradual fault. As

Figure 8(b) shows, the threshold of the proposed method is so small that it is sensitive

to the change of FDF value. At time t= 106 s, the FDF value is 1·734 which is

greater than the predefined threshold 1. The delay time is 5 s, which is much less than

that of the residual chi-squared. Less time delay in detection means lower probability

of missed detection. Thus it can be seen that the probability of missed detection of the

proposed method has considerably diminished. By comparing Figures 8(a) and 8(b),

it is clear that the times of false alarms of the residual chi-squared are significantly

more than that of the proposed method. The detailed comparison of detection results

is shown in Table 2, which further validates the above analysis.

Figure 9 shows the position errors obtained by the two methods. In Figure 9(a), the

position errors are outside the normal range from the moment that the gradual fault is

Figure 8. Drawings of partial enlargement. (a) Zoom A. (b) Zoom B.

Table 2. Comparison of detection results.

Times Residual chi-squared test Proposed method

False alarm 19 0

Missed detection 73 5
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added to the measurements of the GPS receiver. The reason for this phenomenon is

that the gradual fault is not detected until the time t = 175 s. Once the fault is detected,

the measurements of the GPS receiver will not be delivered to the master filter anymore

until the FDF value is lower than the threshold again. Then the position errors will be

corrected gradually by the SINS/Odometer integrated navigation. Figure 9(b) shows

the smooth position errors with a precision of 10 m. It is once again verified that the

proposed method can detect all the added faults in time, thereby avoiding the

defects that the faults have on the navigation results.

6. CONCLUSIONS. As a guarantee to system reliability, fault detection of the

integrated navigation system draws extensive attention. This paper proposes a novel

fault detection method based on GPR. In order to avoid the local optimisation, par-

ticle swarm optimisation combined with maximum likelihood method is introduced

to find the optimal hyper-parameters of the GPR model. FDF is made up of the pre-

diction of GPR, the innovation of the Kalman filter and their variance. Experiments

for a SINS/GPS/Odometer integrated navigation system to which the proposed

method is applied demonstrate that the method can detect both abrupt faults and

gradual faults effectively. Furthermore, the comparison experiments show the FDF

of the proposed method is more sensitive to faults than that of the residual chi-

squared test, which enhances the advantages of the proposed method. Therefore the

system using the proposed method offers more accurate navigation information.
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