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ABSTRACT Time-frequency analysis always plays an important role in machine health monitoring

owing to its advantage in extracting the fault information contained in non-stationary signal. In this

paper, we present a novel technique to detect and diagnose the rolling bearing faults based on high-order

synchrosqueezing transform (FSSTH) and detrended fluctuation analysis (DFA). With this method, the

high-order synchrosqueezing transform is first utilized to decompose the vibration signal into an ensemble of

oscillatory components termed as intrinsic mode functions (IMFs). Meanwhile, an empirical equation, which

is based on the DFA, is introduced to adaptively determine the number of IMFs from FSSTH. Then, a time-

frequency representation originated from the decomposed modes or corresponding envelopes is exhibited

in order to identify the fault characteristic frequencies related to rolling bearing. Experiments are carried

out using both simulated signal and real ones from Case Western Reserve University. Results show that the

proposed method is more effective for the detection of fault characteristic frequencies compared with the

traditional synchrosqueezing transform (SST) based fault diagnosis algorithm, which renders this technique

is promising for machine fault diagnosis.

INDEX TERMS Fault diagnosis, rolling bearing, time-frequency analysis, high-order synchrosqueezing

transform, detrended fluctuation analysis.

I. INTRODUCTION

Rolling bearing is widely used in various industrial machines

and is considered one of the most stressed parts in rotating

machinery. In fact, bearing is prone to failure due to long-term

impact and overload [1]–[4]. Once a fault occurs in rolling

bearing, it will lead to expensive production shutdowns in

manufacturing industry [5]. Therefore, machine condition

monitoring is of great importance to ensure the safe and

efficient operation of equipment.

Time-frequency analysis method has been widely applied

in machine fault diagnosis because it is capable of pro-

viding the localization information related with the non-

stationary signal both in time and frequency domains [6], [7].

Commonly used approaches are short-time Fourier transform
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(STFT) [8], [9] and wavelet transform (WT) [10], [11].

Unfortunately, both have the limitation, namely that one

cannot accomplish the high resolutions in time and frequency

domains simultaneously [12]. Aiming at this problem, great

efforts have been made. In 1995, Auger and Flandrin [13]

proposed a reassignment method (RM) on the time-frequency

plane, which can improve the time-frequency localization

to some extent [14]. However, RM is not invertible, which

means that it is impossible for recovering the original signal.

S-transform, proposed by Stockwell et al. [15], combines

the elements of STFT and WT. A signal from the time

domain can be decomposed into the time-frequency plane

directly via the S-transform [16]. Wigner-Ville distribution

(WVD) [17], [18] obtains a higher time-frequency resolution,

but it suffers from the cross-term interferences as a result

of its quadratic nature, which hinders the readability in the

multicomponent case, thus is not suitable for many real
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applications. Matching pursuit (MP) [19], [20] provides an

alternative for time-frequency analysis, which implements

the signal decomposition in the over-complete dictionar-

ies. It achieves the higher time-frequency resolution, but at

the expense of an increased computational cost. Empirical

mode decomposition (EMD) [21], [22] and its extensions

ensemble EMD (EEMD) [23], [24] and complete EEMD

(CEEMD) [25], [26] belong to the adaptive non-parametric

algorithms. Despite their considerable success in many fields,

there is still a lack of solid theory foundation and a high

computational complexity. In 2011, Daubechies and Wu [27]

introduced a wavelet-based time-frequency representation by

means of frequency reassignment, called sychrosqueezing

transform (SST) that initially originated from the field of

audio signal analysis [28], it aims to improve the time-scale

representation resulted from continuous wavelet transform

(CWT) [29]. Subsequently, Thakur and Wu [30] developed

an extension of SST to the time-frequency representation

given by STFT, termed as STFT-based SST (FSST). Although

the FSST obtains the enhanced time-frequency resolution,

it encounters some difficulties when coping with the signals

with ‘‘fast varying’’ instantaneous frequency because of the

requirement of weak frequencymodulation hypothesis for the

modes comprising the signal. Since then, a lot of attempts

have being made to deal with this issue. In 2017, Pham

and Meignen [31] proposed a new adaptive signal analy-

sis algorithm that is known as high-order synchrosqueez-

ing transform (FSSTH). It is a new generalization of the

STFT-based synchrosqueezing transform by computing more

accurate estimates of the instantaneous frequencies using

higher order approximations both for the amplitude and

phase, which results in perfect concentration and recon-

struction for a wider variety of signals. Currently, FSSTH

has successfully been applied to the analysis of a tran-

sient gravitational-wave signal [31], seismic time-frequency

analysis [12] and machine fault diagnosis [32], [33].

However, the determination of the number of IMFs from

FSSTH does not been investigated, which is key for

non-stationary signal characterization and effective feature

extraction.

In this paper, we propose a metric based on detrended

fluctuation analysis (DFA) to determine the number of IMFs

fromFSSTH, and present a newmethod for the fault detection

of rolling bearing, which makes full use of the advantage of

FSSTH in extracting instantaneous frequencies with higher

precision. Firstly, the input signal is decomposed into a series

of oscillatory components adaptively by FSSTH; meanwhile,

the DFA is employed as a robust metric to determine the

optimal number of IMFs. Then, a time-frequency represen-

tation that relates to the decomposed IMFs or corresponding

envelopes is obtained in order to identify the fault char-

acteristic frequencies associated with rolling bearing. Both

simulated signal and experimental vibration signals from

Case Western Reserve University have verified the perfor-

mance of the proposed method on fault diagnosis for rolling

bearing.

The rest of the paper is organized as follows. In section II,

we depict the fundamental theory of high-order syn-

chrosqueezing transform, detrended fluctuation analysis, and

the proposed fault diagnosis algorithm for rolling bearing.

Section III illustrates the simulation test of the method by

numerical signal analysis. In section IV, the effectiveness and

robustness of the proposed approach in the rolling bearing

fault diagnosis is further verified using two experimental

signals. Finally, conclusions are drawn in Section V.

II. THE PROPOSED METHOD

A. HIGH-ORDER SYNCHROSQUEEZING TRANSFORM

The high-order synchrosqueezing transform is a new exten-

sion of the conventional STFT-based SST (FSST) that was

firstly proposed by Thakur and Wu [30], which achieves

more accurate estimates of the instantaneous frequencies by

using higher order approximations both for the amplitude and

phase [31].

An AM-FM signal is described as:

f (t) = A (t) ei2πφ(t). (1)

where A (t) and φ (t) denote the amplitude and phase func-

tions, respectively.

The STFT of signal f can be defined as:

V
g
f (t, η) =

∫

f (τ )g∗ (τ − t) e−i2πη(τ−t)dτ. (2)

where g is the window function and g∗ is the complex conju-

gate of g.

The traditional STFT-based SST (FSST) is defined as

follows:

T
g,γ
f (t, ω)

=
1

g∗ (0)

∫

{

η,

∣

∣

∣
V
g
f (t,η)

∣

∣

∣
>γ

}
V
g
f (t, η) δ

(

ω−ωf (t, η)
)

dη, (3)

where γ is the threshold and δ is the Dirac distribution.

ωf (t, η) denotes the instantaneous frequency estimate at time

t and frequency η and is estimated as:

ωf (t, η) = R

{

∂tV
g
f (t, η)

i2πV
g
f (t, η)

}

. (4)

where R {Z } represents the real part of complex num-

ber Z , and ∂t is the partial derivative with respect

to t .

The high-order SST computes the instantaneous frequency

by using the high order Taylor expansions of the amplitude

and phase, namely, the Taylor expansions of signal f in

equation (1) for τ close to t can be expressed as:

f (τ ) = exp

(

N
∑

k=0

[

log (A)
](k)

(t) + i2πφ(k) (t)

k!
(τ − t)k

)

.

(5)

where Z (k) (t) is the kth derivative of Z at time t .
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Therefore, equation (2) can be rewritten as:

V
g
f (t, η) =

∫

f (τ + t)g∗ (τ ) e−i2πητdτ

=

∫

exp

(

N
∑

k=0

[

log (A)
](k)

(t) + i2πφ(k) (t)

k!
τ k

)

× g∗ (τ ) e−i2πητdτ. (6)

The local instantaneous frequency estimate, ωf (t, η), can

be obtained via equation (4).

ωf (t, η) =

[

log (A)
]′

(t)

i2π
+ φ′ (t)

+

N
∑

k=2

[

log (A)
](k)

(t) + i2πφ(k) (t)

i2π (k − 1)!

V
tk−1g
f (t, η)

V
g
f (t, η)

.

(7)

Introduce the frequency modulation operator q
[k,N ]
η,f :

q
[k,N ]
η,f =

[

log (A)
](k)

(t) + i2πφ(k) (t)

i2π (k − 1)!
, (8)

The N th-order local complex instantaneous frequency,

ω
[N ]
η,f at time t and frequency η, can be represented by:

ω
[N ]
η,f (t, η)=



























ωf (t, η) +

N
∑

k=2

q
[k,N ]
η,f (η, t)

(

−xk,1 (t, η)
)

,

V
g
f (t, η) 6= 0 , ∂ηxj,j−1 (t, η) 6= 0 (j ≥ 2) .

ωf (t, η) ,

otherwise.

(9)

As a result, the high-order FSST is defined by using

ω
[N ]
η,f (t, η) instead of ωf (t, η) in equation (3):

T
g,γ
N ,f (t, ω)

=
1

g∗ (0)

∫

{

η,

∣

∣

∣
V
g
f (t,η)

∣

∣

∣
>γ

}
V
g
f (t, η) δ

(

ω − ω
[N ]
η,f (t, η)

)

dη.

(10)

Finally, the mode can be approximately reconstructed by:

f (t) ≈

∫

{ω,|ω−ϕ(t)|<d}

T
g,γ
N ,f (t, ω)dω. (11)

where d denotes the compensation factor and ϕ (t) is an

estimate for φ′ (t).

B. DETRENDED FLUCTUATION ANALYSIS

Detrended fluctuation analysis (DFA) proposed by

Peng et al. [34] is a successful method to measure long-range

dependency for the non-stationary time series.

The first step of the algorithm is that the average is removed

from the time series:

y (k) =

k
∑

i=1

[x (i) − x], 1 ≤ k ≤ N , (12)

FIGURE 1. Flowchart of the proposed method.

where x is the average of the time series within the range

[1,N ], and N is the number of samples.

Then, the average root mean square (RMS) fluctuation

F (n) is obtained by subtracting yn (k) from the time series

y (k) as defined below:

F (n) =

√

√

√

√

1

N

N
∑

k=1

[y (k) − yn (k)]2, (13)

where yn (k) is the estimated local trend in the box size n.

If the time series is long-range power-law corrected,

the fluctuation increases via a power law:

F (n) ∝ nα. (14)

The scaling exponent α is defined as the slope of the plot

of log [F (n)]
/

log (n), which is estimated in log-log scale.

It provides a clear and quantitative score caused by the tem-

poral correlations existing in the time series [35]. Generally

speaking, the scaling exponent yields α = 0.5 for completely

uncorrelated data. When 0 < α < 0.5, the signal is anti-

correlated. When α is in the range between 0.5 and 1.0,

temporal correlations exist [36]. DFA has become a widely

used technique for determination of scaling properties and

detection of long-range correlations in non-stationary time

series owing to its reliable ability of detrending the time

series [37]. In the paper, we utilize the DFA to determine the

number of IMFs from FSSTH.

C. PROCEDURE OF THE PROPOSED METHOD FOR

ROLLING BEARING FAULT DIAGNOSIS

The proposed method is mainly composed of FSSTH and

DFA, the overall structure of this method is illustrated

in Figure 1. The detailed implementation procedure for fault

diagnosis is summarized as follows:

1) Collect the vibration signal.
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FIGURE 2. Time-domain waveform (a) and Fourier spectrum (b) of the
simulated signal.

2) Use the FSSTH to decompose the input signal and obtain

an ensemble of oscillatory components (IMFs).

3) Estimate the scaling exponent regarding each IMF via

the DFA to determine the number of IMFs from FSSTH.

4) Compute the instantaneous frequency (IF) and instanta-

neous amplitude (IA) of each IMF or corresponding envelope.

5) Obtain the time-frequency representation (TFR).

6) Detect the characteristic frequency and extract the fault

feature.

III. SIMULATION TEST

To test the performance of the proposed method, we con-

sider a simulated signal s (t) generated by equation (15),

which consists in two FM components s1 (t), two frequency-

varying cosine components s2 (t), and an AM cosine

component s3 (t). The sampling frequency is 2048Hz.

The waveform and spectrum of s (t) are shown in

Figures 2(a) and (b), respectively. It can be clearly seen that

the Fourier spectrum nearly exhibits each component that

comprises the simulated signal.

s1 (t) = cos
(

2π50t + 2π20t2
)

+ cos
(

2π90t + 2π30t2
)

,

s2 (t) =

{

cos (2π150t) , t < 0.3

cos (2π180t) , t ≥ 0.3
,

s3 (t) = [1 + 0.5 sin (2π5t)] cos (2π210t) ,

s (t) = s1 (t) + s2 (t) + s3 (t) . (15)

Now, the FSSTH is employed to decompose the simu-

lated signal s (t). To make the FSSTH adaptive, we need to

determine the optimal number of IMFs (K ) in a data-driven

way. In the paper, we utilize an empirical equation for the

determination of K [36]:

K = min
{

n ∈ Z+|n ≥ 2α lg (N )
}

. (16)

where α is the scaling exponent fromDFA of the input signal.

FIGURE 3. Scaling exponents with different IMFs from FSSTH,
(a) K = 3, 4; (b) K = 5; (c) K = 6, 7.

Figure 3 shows the variation of scaling exponents with

the number of IMFs from FSSTH, and the values are listed

in Table 1. The first IMFs with larger scaling exponent are

mostly comprised of high relevant components while the last

IMFs with lower scaling exponent mainly carry the compo-

nents with low correlation. As shown in Figure 3, if the K

is lower, for example 3 and 4, the IMFs are highly relevant

components, thus the scaling exponents are larger than 0.1

(Figure 3(a)).Whereas, whenK is larger, for example 6 and 7,

the scaling exponents do not always decrease with the IMF

number increasing, and it is more obvious when K = 7

(Figure 3(c)), which indicates the IMFs are characterized by

the low correlation. Figure 3(b) displays the scaling exponent
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TABLE 1. Scaling exponents for different IMFs.

FIGURE 4. Decomposition of the simulated signal into its IMFs using
FSSTH.

FIGURE 5. Time-frequency representation of the simulated signal by the
proposed method (a) and the traditional SST (b), respectively.

when K is equal to 5, the IMF includes two kinds of com-

ponents, and the α value of the last IMF is lower than 0.1.

Based on the observations, we select 5 forK as an appropriate

number of IMFs from FSSTH.

Figure 4 depicts the decomposed result of s (t) by the

FSSTH, five modes (IMF1-IMF5) are produced. It can be

FIGURE 6. Experimental bearing test rig.

TABLE 2. Expected fault frequencies.

observed that the IMF1 and IMF2 are corresponding to

low-frequency components that mainly result from s1 (t)

while the last three IMFs correspond to high-frequency com-

ponents 150Hz, 180Hz, and 210Hz. Then, we calculate the

instantaneous amplitudes and frequencies for each mode

and generate the time-frequency representation (Figure 5(a)).

As can be seen from Figure 5(a), the time-frequency map

of the simulated signal is clearly shown, and the proposed

method can effectively separate the two FM components

in s1 (t), the varying frequency at 0.3s in s2 (t), and the

AM component in s3 (t). For comparison, the time-frequency

representation of the same signal based on the traditional

SST is shown in Figure 5(b), where one clearly sees the

SST extracts two FM components in s1 (t) and the AM com-

ponent in s3 (t), however, some interferences are emerging

from 0.6s for s1 (t). For s2 (t), the mutation frequency can-

not successfully identified, and some distortions are present

simultaneously.

IV. EXPERIMENTAL EVALUATIONS

In this section, we apply the proposed method to the experi-

mental signals in order to assess the validity of our approach

further. We utilize the bearing dataset from Case Western

Reserve University, which have been widely used to test

new technologies. The rolling element test rig is shown

in Figure 6, which is composed of 1.5kW induction motor,

a torque transducer/encoder, a dynamometer, and control

electronics [38]. The theoretical fault frequencies are reported

in Table 2.
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FIGURE 7. Time-domain waveform (a), Fourier spectrum (b) and local
Fourier spectrum (c) of the vibration signal with inner race fault.

A. CASE FOR INNER RACE FAULT

The vibration signal and its spectrum from inner race fault

dataset are plotted in Figure 7. It has been shown that many

peaks appear in the Fourier spectrum (Figure 7(b)), how-

ever, it is difficult to directly detect the fault characteristic

frequency (160.02Hz), even if the local Fourier spectrum is

provided (Figure 7(c)), where the dominant frequencies are

609Hz and 668Hz. Thus, the proposed method is employed

to analyze such vibration signal.

We perform the FSSTH into eight modes based on the

scaling exponents obtained from DFA, which are shown

in Figure 8. The IMF1 and IMF2 capture the lowest-

frequency oscillations in the data, the IMF3, IMF4, IMF5 and

IMF6 represent the middle-frequency components, and the

rest of IMFs correspond to the highest-frequency contents

in the vibration signal. Then, we calculate the instantaneous

frequencies and amplitudes of the envelopes of the decom-

posed modes and obtain the time-frequency representation

(Figure 9(a)). Meanwhile, we also provide a comparison with

the traditional SST, and the corresponding result is illustrated

in Figure 9(b). At first glance, it seems that both of the

methods can successfully extract the fault feature frequency

(fi = 160.02Hz) and its harmonic (2fi). However, if the close

observation is kept, we will find that FSSTH does a better job

capturing the characteristic frequencies with higher precision

owing to obtaining more accurate instantaneous frequencies

FIGURE 8. Decomposition of the vibration signal with inner race fault
into its IMFs by FSSTH.

FIGURE 9. Time-frequency representation of the vibration signal with
inner race fault by the proposed method (a) and the traditional SST (b),
respectively.

using higher order approximations for the amplitude and

phase compared with the traditional SST, which is beneficial

with regard to confirmation of fault.

B. CASE FOR OUTER RACE FAULT

The vibration signal with the outer race fault and its spec-

trum are given in Figure 10. The spectrum (Figure 10(c))
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FIGURE 10. Time-domain waveform (a), Fourier spectrum (b) and local
Fourier spectrum (c) of the vibration signal with outer race fault.

shows several dominant frequencies such as 164Hz,

363Hz, 726Hz and 960Hz. It is difficult to directly diag-

nose the fault frequency (105.93Hz) accurately from the

spectrum.

Now, we apply the proposed approach to the vibration

signal. Figure 11 describes the IMFs extracted by the FSSTH,

where the number K is set to 10 according to the scaling

exponents obtained from DFA. As reported in Figure 11,

low order IMFs denote slow oscillations (IMF1-IMF4), and

high order IMFs represent fast oscillations (IMF5-IMF10).

Subsequently, the instantaneous frequencies and amplitudes

of the envelopes are computed with respect to the decom-

posed modes, and the corresponding time-frequency repre-

sentation is obtained, which is displayed in Figure 12(a).

As a contrast, the time-frequency representation using the

traditional SST is exhibited in Figure 12(b). Compared with

the SST result, the proposed method performs clearly better.

On the Figure 12, one notices that the fault characteristic

frequency (fo = 105.93Hz) associated with the outer race and

the corresponding high harmonic frequencies (2fo and 3fo)

are successfully extracted. Therefore, this gives us a clue

that the outer race fault may occur in the rolling bearing.

However, the traditional SST shows relatively the less infor-

mation, only two frequency components, fo and 2fo, appear,

and some interferences are also present simultaneously in the

vicinity of 2fo.

FIGURE 11. Decomposition of the vibration signal with outer race fault
into its IMFs by FSSTH.

FIGURE 12. Time-frequency representation of the vibration signal with
outer race fault by the proposed method (a) and the traditional SST (b),
respectively.

V. CONCLUSION

Non-stationary signal analysis is an important issue for

machine fault diagnosis, especially when the machine is
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running under complex working conditions. In this paper,

we have presented a new approach for rolling bearing fault

diagnosis. First, the vibration signal is decomposed into a

series of band-limited components by means of the high-

order synchrosqueezing transform, and the detrended fluc-

tuation analysis is used to determine the number of modes.

Then, the time-frequency representation of the obtained

modes or corresponding envelopes is exhibited in order to

detect the fault feature frequencies associated with the rolling

bearing. The effectiveness of the proposed method has been

demonstrated by both simulation and experimental tests,

which indicate that it is a promising tool for the fault diag-

nosis and condition monitoring of the rolling bearing. In our

future work, the proposed method will be further investigated

on the data from complex working conditions in mechanical

equipment.
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